Device for Acoustic Support of Orientation in the Surroundings for Blind People †
Abstract
:1. Introduction
2. Spatial Hearing
2.1. Imaginative Ability of Blind People
2.2. Overview of Hardware and Software Supporting
3. 3D Sensors
3.1. Time of Flight Sensors
3.2. Structured Light Sensors
3.3. Comparison of Sensor Capabilities
4. Elements Used in the Device
4.1. Xbox Kinect v1
4.2. Other Elements
4.2.1. Raspberry Pi 1 Model B+
4.2.2. Power Supply—Power Bank
4.2.3. Headphones
5. Design of a Device Supporting the Blind
5.1. The Principle of Device Operation
5.1.1. Depth Values Returned by the Kinect Sensor
5.1.2. Transmission of the Depth Map with Sounds
5.1.3. Learning Mode
5.1.4. Selection and Generation of Sounds
6. Functional Tests of the Device
7. Conclusions and Further Works
Author Contributions
Funding
Conflicts of Interest
References
- Kubanek, M.; Depta, F.; Smorawa, D. System of Acoustic Assistance in Spatial Orientation for the Blind. Hard and Soft Computing for Artificial Intelligence, Multimedia and Security. In Proceedings of the International Multi-Conference on Advanced Computer Systems, Międzyzdroje, Poland, 19–21 October 2016; Springer: Berlin/Heidelberg, Germany, 2017; Volume 534, pp. 266–277. [Google Scholar]
- Pec, M.; Bujacz, M.; Strumillo, P. Personalized head related transfer function measurement and verification through sound localization resolution. In Proceedings of the 15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, 3–7 September 2007; pp. 2326–2330. [Google Scholar]
- Pec, M.; Strumillo, P.; Pelczynski, P.; Bujacz, M. The Hearing Images–Support Systems of Blind People in the Perception of the Environment; Technical and Information Bulletin of the Branch Board of Lodz SEP, No 6; SEP: Lodz, Poland, 2006; pp. 6–11. [Google Scholar]
- Moore, B. An Introduction to the Psychology of Hearing, 5th ed.; Elsevier Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Buonamici, F.; Furferi, R.; Governi, L.; Volpe, Y. Making blind people autonomous in the exploration of tactile models: A feasibility study. Lect. Notes Comput. Sci. 2015, 9176, 82–93. [Google Scholar]
- Hayhoe, S. Non-visual programming, perceptual culture and multimedia: Case studies of five blind computer programmers. In Multiple Sensorial Media Advances and Applications: New Developments in MulSeMedia; IGI Global: Hershey, PA, USA, 2012; pp. 80–98. [Google Scholar]
- Tolman, B.; Harris, R.B.; Gaussiran, T.; Munton, D.; Little, J.; Mach, R.; Nelsen, S.; Renfro, B.; Schlossberg, D. The GPS Toolkit Open Source GPS Software. In Proceedings of the 17th International Technical Meeting of the Satellite Division of the ION, Long Beach, CA, USA, 21–24 September 2004. [Google Scholar]
- Velazquez, R. Wearable Assistive Devices for the Blind. Chapter 17. In Wearable and Autonomous Biomedical Devices and Systems for Smart Environment; Ekuakille, A.L., Mukhopadhyay, S.C., Eds.; Issues and Characterization, LNEE 75; Springer: Berlin/Heidelberg, Germany, 2010; pp. 331–349. [Google Scholar]
- Taguchi, Y.; Jian, Y.D.; Ramalingam, S.; Feng, C. Point-plane SLAM for hand-held 3D sensors. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013. [Google Scholar]
- Paudel, D.P.; Demonceaux, C.; Habed, A.; Vasseur, P.; Kweon, I.S. 2D-3D camera fusion for visual odometry in outdoor environments. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS 2014) 2014 IEEE/RSJ, Chicago, IL, USA, 14–18 September 2014; pp. 157–162. [Google Scholar]
- Stefanczyk, M.; Kornuta, T. Image acquisition RGB-D: Methods. Meas. Autom. Robot. 2014, 1, 82–90. [Google Scholar]
- Al-Naji, A.; Gibson, K.; Lee, S.-H.; Chahl, J. Real Time Apnoea Monitoring of Children Using the Microsoft Kinect Sensor: A Pilot Study. Sensors 2017, 17, 286. [Google Scholar] [CrossRef] [PubMed]
- 1Takizawa, H.; Yamaguchi, S.; Aoyagi, M.; Ezaki, N.; Mizuno, S.; Cane, K. Kinect cane: An Assistive System for the Visually Impaired Based on the Concept of Object Recognition Aid. Pers. Ubiquitous Comput. 2015, 19, 955–965. [Google Scholar] [CrossRef]
- Vera, P.; Zenteno, D.; Salas, J. A smartphone-based virtual white cane. Pattern Anal. Appl. 2014, 17, 623–632. [Google Scholar] [CrossRef]
- Dang, Q.K.; Chee, Y.; Pham, D.D.; Suh, Y.S. A virtual blind cane using a line laser-based vision system and an inertial measurement unit. Sensors 2016, 16, 95–118. [Google Scholar] [CrossRef] [PubMed]
- The project of the Virtual Acoustic Space. Available online: http://www.iac.es/proyecto/eavi/english/investigacion.html (accessed on 5 December 2018).
- Tapu, R.; Mocanu, B.; Zaharia, T. Wearable assistive devices for visually impaired: A state of the art survey. Pattern Recognit. Lett. 2018, 19, 4–10. [Google Scholar] [CrossRef]
- Malūkas, U.; Maskeliūnas, R.; Damasevicius, R.; Wozniak, M. Real time path finding for assisted living using deep learning. J. Univ. Comput. Sci. 2018, 24, 475–487. [Google Scholar]
- Ramadhan, A.J. Wearable Smart System for Visually Impaired People. Sensors 2018, 18, 843. [Google Scholar] [CrossRef] [PubMed]
- Orujov, F.; Maskeliūnas, R.; Damaševičius, R.; Wei, W.; Li, Y. Smartphone based intelligent indoor positioning using fuzzy logic. Future Gener. Comput. Syst. 2018, 89, 335–348. [Google Scholar] [CrossRef]
- Elmannai, W.; Elleithy, K. Sensor-Based Assistive Devices for Visually-Impaired People: Current Status, Challenges, and Future Directions. Sensors 2017, 17, 565. [Google Scholar] [CrossRef] [PubMed]
- Stoll, C.; Palluel-Germain, R.; Fristot, V.; Pellerin, D.; Alleysson, D.; Graff, C. Navigating from a Depth Image Converted into Sound. Appl. Bionics Biomech. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z. Microsoft Kinect Sensor and Its Effect. IEEE Multimed. 2012, 19, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Kinect for Xbox 360 and Kinect for Windows (KfW) v1 specs. Available online: https://zoomicon.wordpress.com/2015/07/28/kinect-for-xbox-360-and-kinect-for-windows-kfw-v1-specs/ (accessed on 5 December 2018).
- Upton, E.; Halfacree, G. Raspberry Pi. User’s Guide; Helion Publisher: Gliwice, Poland, 2013. [Google Scholar]
- Tone Frequency Table. Available online: http://www.fizykon.org/muzyka/muzyka_tabela_czestotliwosci_tonow.htm (accessed on 5 December 2018).
Tone Mark | Frequency Values [Hz] | |||||
---|---|---|---|---|---|---|
C+ | 67.32 | 134.63 | 269.27 | 538.63 | 1077.16 | 2154.33 |
E+ | 84.81 | 169.63 | 339.26 | 678.62 | 1357.13 | 2714.27 |
G+ | 100.92 | 201.85 | 403.49 | 806.97 | 1613.95 | 3227.89 |
Ais+ | 119.97 | 239.93 | 479.86 | 959.62 | 1919.24 | 3838.47 |
Type of Test | Route Number | ||||
---|---|---|---|---|---|
Route 1 | Route 2 | Route 3 | Route 4 | Route 5 | |
Effectiveness [%] | 51 | 62 | 62 | 63 | 65 |
Average time [s] | 131 | 160 | 159 | 169 | 172 |
Standard deviation (for time) | 9 | 13 | 12 | 13 | 10 |
Kind of Test | Route Number | ||||
---|---|---|---|---|---|
Route 1 | Route 2 | Route 3 | Route 4 | Route 5 | |
Effectiveness [%] | 91 | 94 | 97 | 98 | 99 |
Average time [s] | 81 | 92 | 103 | 94 | 111 |
Standard deviation (for time) | 7 | 9 | 12 | 8 | 9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubanek, M.; Bobulski, J. Device for Acoustic Support of Orientation in the Surroundings for Blind People. Sensors 2018, 18, 4309. https://doi.org/10.3390/s18124309
Kubanek M, Bobulski J. Device for Acoustic Support of Orientation in the Surroundings for Blind People. Sensors. 2018; 18(12):4309. https://doi.org/10.3390/s18124309
Chicago/Turabian StyleKubanek, Mariusz, and Janusz Bobulski. 2018. "Device for Acoustic Support of Orientation in the Surroundings for Blind People" Sensors 18, no. 12: 4309. https://doi.org/10.3390/s18124309
APA StyleKubanek, M., & Bobulski, J. (2018). Device for Acoustic Support of Orientation in the Surroundings for Blind People. Sensors, 18(12), 4309. https://doi.org/10.3390/s18124309