A Novel Wind Speed Estimation Based on the Integration of an Artificial Neural Network and a Particle Filter Using BeiDou GEO Reflectometry
Abstract
:1. Introduction
2. Data Description and Preprocessing
3. Methodology
3.1. Artificial Neural Network
3.2. Particle Swarm Optimization
Algorithm 1: Pseudocode for particle swarm optimization |
3.3. Coastal GNSS-Reflectometry Waveform Modeling
3.4. Particle Filter
4. Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martin-Neira, M. A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry. ESA J. 1993, 17, 331–355. [Google Scholar]
- Soisuvarn, S.; Jelenak, Z.; Said, F.; Chang, P.S.; Egido, A. The GNSS Reflectometry Response to the Ocean Surface Winds and Waves. IEEE J. STARS 2016, 9, 4678–4699. [Google Scholar] [CrossRef]
- Han, M.; Zhu, Y.; Yang, D.; Hong, X.; Song, S. A Semi-Empirical SNR Model for Soil Moisture Retrieval Using GNSS SNR Data. Remote Sens. 2018, 10, 280. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, K.; Zou, J.; Wickert, J. Sea Ice Detection Based on Differential Delay-Doppler Maps from UK TechDemoSat-1. Sensors 2017, 17, 1614. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Alvarez, N.; Aguasca, A.; Valencia, E.; Bosch-Lluis, X.; Ramos-Pérez, I.; Park, H.; Camps, A.; Vall-Llossera, M. Snow Monitoring Using GNSS-R Techniques. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 4375–4378. [Google Scholar]
- Liu, S.; Li, G.; Xie, H.; Wang, X. Correlation Characteristic Analysis for Wind Speed in Different Geographical Hierarchies. Energies 2017, 10, 237. [Google Scholar] [CrossRef]
- Shao, W.; Yuan, X.; Sheng, Y.; Sun, J.; Zhou, W.; Zhang, Q. Development of Wind Speed Retrieval from Cross-Polarization Chinese Gaofen-3 Synthetic Aperture Radar in Typhoons. Sensors 2018, 18, 412. [Google Scholar] [CrossRef] [PubMed]
- Gleason, S.; Hodgart, S.; Sun, Y.; Gommenginger, C.; Mackin, S.; Adjrad, M.; Unwin, M. Detection and Processing of bistatically reflected GPS signals from low Earth orbit for the purpose of ocean remote sensing. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1229–1241. [Google Scholar] [CrossRef] [Green Version]
- Ruf, C.; Gleason, S.; Ridley, A.; Rose, R.; Scherrer, J. The nasa cygnss mission: Overview and status update. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2011; pp. 2641–2643. [Google Scholar]
- Saïd, F.; Katzberg, S.J.; Soisuvarn, S. Retrieving Hurricane Maximum Winds Using Simulated CYGNSS Power-Versus-Delay Waveforms. IEEE J. STARS 2017, 10, 3799–3809. [Google Scholar] [CrossRef]
- Yang, H.; Yang, X.; Zhang, Z.; Zhao, K. High-Precision Ionosphere Monitoring Using Continuous Measurements from BDS GEO Satellites. Sensors 2018, 18, 714. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Qu, L.Z.; Zhao, Q.L.; Guo, J.; Su, X.; Li, X.T. Precise Point Positioning with the BeiDou Navigation Satellite System. Sensors 2014, 14, 927–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Chen, S.; Hong, Z.; Han, Y.; Li, B.; Yang, S.; Wang, J. Feasibility of Oil Slick Detection Using BeiDou-R Coastal Simulation. Math. Probl. Eng. 2017, 2017, 8098029. [Google Scholar] [CrossRef]
- Yun, Z.; Binbin, L.; Luman, T.; Qiming, G.; Yanling, H.; Zhonghua, H. Phase Altimetry Using Reflected Signals from BeiDou GEO Satellites. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1410–1414. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, B.; Yang, D.; Li, W.; Zhu, Y. Sea-State Observation Using Reflected BeiDou GEO Signals in Frequency Domain. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1656–1660. [Google Scholar] [CrossRef]
- Yan, S.; Zhao, F.; Chen, N.; Gong, J. Soil moisture estimation based on BeiDou B1 interference signal analysis. Sci. China Earth Sci. 2016, 59, 2427–2440. [Google Scholar] [CrossRef]
- Rodriguez-Alvarez, N.; Akos, D.M.; Zavorotny, V.U.; Smith, J.A.; Camps, A.; Fairall, C.W. Airborne GNSS-R Wind Retrievals Using Delay Doppler Maps. IEEE Trans. Geosci. Remote Sens. 2005, 15, 626–641. [Google Scholar] [CrossRef]
- Clarizia, M.P.; Ruf, C.S.; Jales, P.; Gommenginger, C. Spaceborne GNSS-R Minimum VarianceWind Speed Estimator. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6829–6843. [Google Scholar] [CrossRef]
- Li, W.; Fabra, F.; Yang, D.; Rius, A.; Martín-Neira, M.; Yin, C.; Wang, Q.; Cao, Y. Initial Results of Typhoon Wind Speed Observation Using Coastal GNSS-R of BeiDou GEO Satellite. IEEE J. STARS 2016, 9, 4720–4729. [Google Scholar] [CrossRef]
- Chen, L.; Weimin, H. An Algorithm for Sea-Surface Wind Field Retrieval From GNSS-R Delay-Doppler Map. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2110–2114. [Google Scholar] [CrossRef]
- Generoso, G.; Pia, A.; Carmela, G.; Maurizio, D.B. Ocean Wind Speed Estimation From the GNSS Scattered Power Function. IEEE J. STARS 2018, 99, 1–9. [Google Scholar]
- Giuseppe, F.; Christine, G.; Philip, J.; Martin, U.; Andrew, S.; Colette, R.; Josep, R. Spaceborne GNSS reflectometry for ocean winds: First results from the UK TechDemoSat-1 mission. Geophys. Res. Lett. 2015, 42, 5435–5441. [Google Scholar] [Green Version]
- Maria, P.C.; Christopher, S.R. Wind Speed Retrieval Algorithm for the Cyclone Global Navigation Satellite System (CYGNSS) Mission. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4419–4432. [Google Scholar]
- Wang, F.; Yang, D.; Zhang, B.; Li, W.; Darrozes, J. Wind Speed Retrieval Using Coastal Ocean-Scattered GNSS Signals. IEEE J. STARS 2017, 9, 5272–5283. [Google Scholar] [CrossRef]
- Banda, E.; Folly, K.A. Short Term Load Forecasting Based on Hybrid ANN and PSO. In Advances in Swarm and Computational Intelligence, Proceedings of the International Conference in Swarm Intelligence, Beijing, China, 25–28 June 2015; Springer: Cham, Switzerland, 2015; pp. 98–106. [Google Scholar]
- Das, G.; Pattnaik, P.K.; Padhy, S.K. Artificial Neural Network trained by Particle Swarm Optimization for non-linear channel equalization. Expert Syst. Appl. 2014, 41, 3491–3496. [Google Scholar] [CrossRef]
- Garro, B.A.; Vázquez, R.A. Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms. Comput. Intell. Neurosci. 2015, 2015, 3491–3496. [Google Scholar] [CrossRef] [PubMed]
- Patwardhan, S.C.; Narasimhan, S.; Jagadeesan, P.; Gopaluni, B.; Shah, S.L. Nonlinear Bayesian state estimation: A review of recent developments. Control Eng. Pract. 2012, 20, 933–953. [Google Scholar] [CrossRef]
- Van Leeuwen, P.J. Particle filtering in geophysical systems. Mon. Weather Rev. 2009, 137, 4089–4114. [Google Scholar] [CrossRef]
- Dunik, J.; Straka, O.; Simandl, M.; Blasch, E. Random-point-based filters: Analysis and comparison in target tracking. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1403–1421. [Google Scholar] [CrossRef]
- Tulsyan, A.; Huang, B.; Gopaluni, R.B.; Forbes, J.F. On-line Bayesian parameter estimation in general non-linear state-space models: A tutorial and new results. arXiv, 2013; arXiv:1307.3490. [Google Scholar]
- Zain, A.M.; Haron, H.; Sharif, S. Application of Regression and ANN Techniques for Modeling of the Surface Roughness in End Milling Machining Process. In Proceedings of the Third Asia International Conference on Modelling & Simulation, Bali, Indonesia, 25–29 May 2009; pp. 188–193. [Google Scholar]
- Tao, Y.; Xu, M.; Zhong, Y.; Cheng, Y. GAN-Assisted Two-Stream Neural Network for High-Resolution Remote Sensing Image Classification. Remote Sens. 2017, 9, 1328. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–4948. [Google Scholar]
- Zavorotny, V.U.; Voronovich, A.G. Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Trans. Geosci. Remote Sens. 2000, 38, 951–964. [Google Scholar] [CrossRef]
- Katzberg, S.J.; Torres, O.; Ganoe, G. Calibration of reflected GPS for tropical storm wind speed retrievals. Geophys. Res. Lett. 2006, 33, 1–5. [Google Scholar] [CrossRef]
- Hsu, S.A.; Eric, A.M.; David, B.G. Wind Speed Retrieval Algorithm for the Cyclone Global Navigation Satellite System (CYGNSS) Mission. Appl. Meteorol. 1994, 33, 757–765. [Google Scholar] [CrossRef]
- Xiao, P.; Lei, Z.X. Sequential filtering for surface wind speed estimation from ambient noise measurement. Chin. Ocean Eng. Soc. 2017, 31, 74–78. [Google Scholar] [CrossRef]
Algorithm | RMSE (m/s) | |||||
---|---|---|---|---|---|---|
30% | 70% | |||||
WS < 20 | WS > 20 | Overall | WS < 20 | WS > 20 | Overall | |
Regression | 4.7839 | 13.4543 | 5.9009 | 4.7261 | 13.6445 | 5.8908 |
ANN based BP | 4.4942 | 6.5375 | 4.6796 | 2.5595 | 4.4798 | 2.7516 |
ANN based PSO | 2.8843 | 3.4397 | 2.9299 | 2.3081 | 3.1553 | 2.3826 |
ANN based PSO combined with PF | 2.3982 | 3.5124 | 2.4997 | 1.8524 | 3.1126 | 1.9758 |
Number of Neurons | RMSE (m/s) | |||||
---|---|---|---|---|---|---|
30% | 70% | |||||
WS < 20 | WS > 20 | Overall | WS < 20 | WS > 20 | Overall | |
6 | 3.5606 | 5.9404 | 3.7926 | 3.1049 | 5.5643 | 3.3540 |
8 | 3.5511 | 5.8782 | 3.7771 | 3.0445 | 5.2631 | 3.2650 |
10 | 2.8843 | 3.4397 | 2.9299 | 2.3084 | 3.1553 | 2.3828 |
12 | 3.3689 | 6.6578 | 3.7200 | 3.3045 | 4.8027 | 3.4404 |
14 | 5.2888 | 5.5649 | 5.3101 | 4.9382 | 5.6721 | 4.9974 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasantikul, K.; Yang, D.; Wang, Q.; Lwin, A. A Novel Wind Speed Estimation Based on the Integration of an Artificial Neural Network and a Particle Filter Using BeiDou GEO Reflectometry. Sensors 2018, 18, 3350. https://doi.org/10.3390/s18103350
Kasantikul K, Yang D, Wang Q, Lwin A. A Novel Wind Speed Estimation Based on the Integration of an Artificial Neural Network and a Particle Filter Using BeiDou GEO Reflectometry. Sensors. 2018; 18(10):3350. https://doi.org/10.3390/s18103350
Chicago/Turabian StyleKasantikul, Kittipong, Dongkai Yang, Qiang Wang, and Aung Lwin. 2018. "A Novel Wind Speed Estimation Based on the Integration of an Artificial Neural Network and a Particle Filter Using BeiDou GEO Reflectometry" Sensors 18, no. 10: 3350. https://doi.org/10.3390/s18103350
APA StyleKasantikul, K., Yang, D., Wang, Q., & Lwin, A. (2018). A Novel Wind Speed Estimation Based on the Integration of an Artificial Neural Network and a Particle Filter Using BeiDou GEO Reflectometry. Sensors, 18(10), 3350. https://doi.org/10.3390/s18103350