Magnetic Lateral Flow Strip for the Detection of Cocaine in Urine by Naked Eyes and Smart Phone Camera
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Apparatus
2.2. Preparation of MB-Ab Conjugate
2.3. Preparation of MLFS
2.4. The Process of MLFS for Detection of CC
2.5. The Sensitivity of MLFS
2.6. The Specificity of MLFS
2.7. Real Sample Analysis
3. Results and Discussion
3.1. The Principle of MLFS
3.2. Optimal Detection Conditions
3.3. The Sensitivity of MLFS
3.4. The Specificity of MLFS
3.5. Real Samples Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nutt, D.; King, L.A.; Saulsbury, W.; Blakemore, C. Development of a Rational Scale to Assess the Harm of Drugs of Potential Misuse. Lancet 2007, 369, 1047–1053. [Google Scholar] [CrossRef]
- O’Leary, M.E.; Hancox, J.C. Role of Voltage-Gated Sodium, Potassium and Calcium Channels in the Development of Cocaine-Associated Cardiac Arrhythmias. Br. J. Clin. Pharmaco. 2010, 69, 427–442. [Google Scholar] [CrossRef] [PubMed]
- Floriani, G.; Gasparetto, J.C.; Pontarolo, R.; Goncalves, A.G. Development and Validation of an HPLC-DAD Method for Simultaneous Determination of Cocaine, Benzoic acid, Benzoylecgonine and the Main Adulterants Found in Products based on Cocaine. Forensic. Sci. Int. 2014, 235, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Bassan, D.M.; Erdmann, F.; Kruell, R. Quantitative Determination of 43 Common Drugs and Drugs of Abuse in Human Serum by HPLC-MS/MS. Anal. Bioanal. Chem. 2011, 400, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Lopez, P.; Martello, S.; Bermejo, A.M.; De Vincenzi, E.; TaBernero, M.J.; Chiarotti, M. Validation of ELISA Screening and LC-MS/MS Confirmation Methods for Cocaine in Hair after Simple Extraction. Anal. Bioanal. Chem. 2010, 397, 1539–1548. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.L.; Quarino, L. A Novel Method for the Detection of Cocaine in Hair using a Freeze/Thaw Method and GC/MS Analysis. Rom. J. Leg. Med. 2012, 20, 291–296. [Google Scholar] [CrossRef]
- Lopez-Guarnido, O.; Alvarez, I.; Gil, F.; Rodrigo, L.; Catano, H.C.; Bermejo, A.M.; TaBernero, M.J.; Pla, A.; Hernandez, A.F. Hair Testing for Cocaine and Metabolites by GC/MS: Criteria to Quantitatively Assess Cocaine Use. J. Appl. Toxicol. 2013, 33, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Kohler, I.; Schappler, J.; Rudaz, S. Highly Sensitive Capillary Electrophoresis-Mass SpectRometry for Rapid Screening and Accurate Quantitation of Drugs of Abuse in Urine. Anal. Chim. Acta 2013, 780, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Agius, R.; Nadulski, T. Utility of Coloured Hair for the Detection of Drugs and Alcohol. Drug Test. Anal. 2014, 6, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wei, Y.Z.; Jin, H.M.; Li, C.B.; Du, H.W. A 96-well Plate Based Dot-ELISA Array for Simultaneous Detection of Multi-Drugs. Anal. Lett. 2009, 42, 2807–2819. [Google Scholar] [CrossRef]
- Szekeres, P.G.; Leong, K.; Day, T.A.; Kingston, A.E.; Karran, E.H. Development of Homogeneous 384-Well High-throughput Screening Assays for Aβ1 1–40 and Aβ1–42 using AlphaScreen (TM) Technology. J. Biomol. Screen. 2008, 13, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Liu, G.; Eden, H.S.; Ai, H.; Chen, X.Y. Surface-Engineered Magnetic Nanoparticle Platforms for Cancer Imaging and Therapy. Acc. Chem. Res. 2011, 44, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.J.; Tsai, P.J.; Chen, Y.C. Functional Nanoparticle-Based Proteomic Strategies for Characterization of Pathogenic Bacteria. Anal. Chem. 2008, 80, 9612–9621. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.L.; He, Y.J.; Chen, X.W.; Wang, J.H. Quantum Dots Conjugated with Fe3O4-Filled Carbon Nanotubes for Cancer-Targeted Imaging and Magnetically Guided Drug Delivery. Langmuir 2012, 28, 16469–16476. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Cho, H.R.; Oh, M.H.; Lee, S.H.; Kim, K.; Kim, B.H.; Shin, K.; Ahn, T.Y.; Choi, J.W.; Kim, Y.W.; Choi, S.H.; Hyeon, T. Multifunctional Fe3O4/TaOx Core/Shell Nanoparticles for Simultaneous Magnetic Resonance Imaging and X-ray Computed Tomography. J. Am. Chem. Soc. 2012, 134, 10309–10312. [Google Scholar] [CrossRef] [PubMed]
- Yigit, M.V.; Moore, A.; Medarova, Z. Magnetic Nanoparticles for Cancer Diagnosis and Therapy. Pharm. Res. 2012, 29, 1180–1188. [Google Scholar] [CrossRef] [PubMed]
- Serrate, D.; De Teresa, J.M.; Marquina, C.; Marzo, J.; Saurel, D.; Cardoso, F.A.; Cardoso, S.; Freitas, P.P.; Ibarra, M.R. Quantitative Biomolecular Sensing Station Based on Magnetoresistive Patterned Arrays. Biosens. Bioelectron. 2012, 35, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.S.; Guo, L.; Xu, W.; Xu, H.Y.; Aguilar, Z.P.; Xu, G.M.; Lai, W.H.; Xiong, Y.H.; Wan, Y.Q. Sulfonated Polystyrene Magnetic Nanobeads Coupled with Immunochromatographic Strip for Clenbuterol Determination in Pork Muscle. Talanta 2014, 129, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Liu, Y.Y.; Wang, Y.L.; Xu, X.W.; Lu, Y.; Pan, Y.J.; Guo, F.F.; Shi, D.L. Effect of Physiochemical Property of Fe3O4 Particle on Magnetic Lateral Flow Immunochromatographic Assay. Sensor Actuators. B Chem. 2014, 197, 129–136. [Google Scholar] [CrossRef]
- Marquina, C.; De Teresa, J.M.; Serrate, D.; Marzo, J.; Cardoso, F.A.; Saurel, D.; Cardoso, S.; Freitas, P.P.; Ibarra, M.R. GMR Sensors and Magnetic Nanoparticles for Immuno-Chromatographic Assays. J. Magn. Magn. Mater. 2012, 324, 3495–3498. [Google Scholar] [CrossRef]
- Liu, C.; Jia, Q.; Yang, C.; Qiao, R.; Jing, L.; Wang, L.; Xu, C.; Gao, M. Lateral Flow Immunochromatographic Assay for Sensitive Pesticide Detection by Using Fe3O4 Nanoparticle Aggregates as Color Reagents. Anal. Chem. 2011, 83, 6778–6784. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Zhou, Z.; Lia, H.; Liu, S. Quantitative Detection of Human Chorionic Gonadotropin Antigen via Immunogold Chromatographic Test Strips. Anal. Methods 2014, 6, 450–455. [Google Scholar] [CrossRef]
- Wei, Q.; Nagi, R.; Sadeghi, K.; Feng, S.; Yan, E.; Ki, S.J.; Caire, R.; Tseng, D.; Ozcan, A. Detection and Spatial Mapping of Mercury Contamination in Water Samples Using a Smart-Phone. ACS Nano 2014, 8, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Qi, H.; Luo, W.; Tseng, D.; Ki, S.J.; Wan, Z.; Gorocs, Z.; Bentolila, L.A.; Wu, T.T.; Sun, R.; Ozcan, A. Fluorescent Imaging of Single Nanoparticles and Viruses on a Smart Phone. ACS Nano 2013, 7, 9147–9155. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Sun, J.S.; Xianyu, Y.L.; Yin, B.F.; Niu, Y.J.; Wang, S.B.; Cao, F.J.; Zhang, X.Q.; Wang, Y.; Jiang, X.Y. A Dual-Readout Chemiluminescent-Gold Lateral Flow Test for Multiplex and Ultrasensitive Detection of Disease Biomarkers in Real Samples. Nanoscale 2016, 8, 15205–15212. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Dong, M.; Zhang, C.; Wang, Y.; Xie, M.; Chen, Y. Magnetic Lateral Flow Strip for the Detection of Cocaine in Urine by Naked Eyes and Smart Phone Camera. Sensors 2017, 17, 1286. https://doi.org/10.3390/s17061286
Wu J, Dong M, Zhang C, Wang Y, Xie M, Chen Y. Magnetic Lateral Flow Strip for the Detection of Cocaine in Urine by Naked Eyes and Smart Phone Camera. Sensors. 2017; 17(6):1286. https://doi.org/10.3390/s17061286
Chicago/Turabian StyleWu, Jing, Mingling Dong, Cheng Zhang, Yu Wang, Mengxia Xie, and Yiping Chen. 2017. "Magnetic Lateral Flow Strip for the Detection of Cocaine in Urine by Naked Eyes and Smart Phone Camera" Sensors 17, no. 6: 1286. https://doi.org/10.3390/s17061286
APA StyleWu, J., Dong, M., Zhang, C., Wang, Y., Xie, M., & Chen, Y. (2017). Magnetic Lateral Flow Strip for the Detection of Cocaine in Urine by Naked Eyes and Smart Phone Camera. Sensors, 17(6), 1286. https://doi.org/10.3390/s17061286