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Abstract: To overcome the performance degradation in the presence of steering vector 
mismatches, strict restrictions on the number of available snapshots, and numerous 
interferences, a novel beamforming approach based on nonlinear least-square support 
vector regression machine (LS-SVR) is derived in this paper. In this approach, the 
conventional linearly constrained minimum variance cost function used by minimum 
variance distortionless response (MVDR) beamformer is replaced by a squared-loss 
function to increase robustness in complex scenarios and provide additional control over 
the sidelobe level. Gaussian kernels are also used to obtain better generalization capacity. 
This novel approach has two highlights, one is a recursive regression procedure to estimate 
the weight vectors on real-time, the other is a sparse model with novelty criterion to  
reduce the final size of the beamformer. The analysis and simulation tests show that the  
proposed approach offers better noise suppression capability and achieve near optimal 
signal-to-interference-and-noise ratio (SINR) with a low computational burden, as 
compared to other recently proposed robust beamforming techniques. 

Keywords: adaptive beamforming; least-squares support vector regression (LS-SVR); 
sparsification; kernel function 
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1. Introduction 

As one important branch of modern array signal processing, the beamforming technique has been 
widely studied and applied in the radar, wireless communication, sonar, medical imaging, as well as 
astronomy domains. The standard beamforming approach, such as the minimum variance distortionless 
response (MVDR) beamformer [1], was usually established based on an ideal antenna array with 
exactly known array manifold. Thus, it is very sensitive to practical circumstances, and its performance 
would be seriously degraded by diverse factors, such as the steering vector mismatch, array calibration 
errors and snapshot number restrictions. 

During the last decades, in order to resist the model mismatches and possible environment changes, 
the robust beamforming approach have been largely studied [2–5]. Among others, by introducing a 
penalty term into the objective function, the diagonal loading (DL) algorithm could effectively reduce 
the eigenvalue spread of the noise and prevent the distortion of beampattern [6]. Nevertheless, how to 
get the optimal loading factor for DL is still a serious issue when the desired steering vector and/or the 
available snapshot numbers are uncertain [7]. A robust adaptive beamforming, based on the worst-case 
performance optimization, would delimit the uncertainty set of steering vectors by upper bounding the 
norm of the steering vector mismatch [8]. However, neither the mismatch vector nor its upper bound is 
known in practice. To overcome this model defect in standard DL algorithm, an adaptive beamforming 
method was developed, which estimates iteratively the difference between the actual and presumed 
steering vectors in order to maximize the output signal-to-noise plus interference ratio (SINR) [9–11]. 
But this adaptive beamforming algorithm is not sufficiently reliable in the case when the snapshots  
are small. 

In order to reject jamming signals, poor array calibration, signal wave-front distortions, the 
minimum-variance-distortionless-response (MVDR) beamforming is modified by the means of 
incorporating multiple linear constrains [12–14]. Whereas, the augmentation of constrains would 
reduce the array freedom degrees in the linear beamforming framework. Nonlinear beamforming 
approaches provide a novel idea to address this issue for they can adapt better to the statistical 
properties of the given data than linear ones [15]. Neural network has been applied to beamforming 
among other nonlinear array processing tasks. But this approach suffers from serious drawbacks such 
as over-fitting or local minima, which leads to suboptimal solutions [16]. 

Support Vector Machines (SVM), introduced by Vapnik [17], is an important new methodology for 
pattern classification and nonlinear function approximation. This method addresses the beamforming 
problem by means of incorporating additional inequality constrains to penalize sidelobe levels and 
allowing a certain error in the desired signal direction [18]. Thus the MVDR beamforming method is 
reformulated and the cost function turns out to be equivalent to SVM for regression. However, the time 
consumed to train SVM beamformer scales super linearly to the number of observations, and it leads to 
an insurmountable computational burden in online operation modes [19]. The least-squares support 
vector machine (LS-SVM) inherits the SVM’s generalization capacity. By solving linear equations 
instead of a quadratic programming (QP) problem in the standard SVM, the training procedure and the 
computational complexity of the standard SVM would be effectively simplified [20]. The main 
drawback of LS-SVM is that it works in batch mode. Thus, it is difficult to be used in large-scale 



Sensors 2012, 12 12426 
 

 

applications. Recent researches about LS-SVM continuously focus on the improvement of the training 
algorithms, model selection and sparseness [21,22]. 

This paper presents a new LS-SVR-based approach to address the robust beamforming issue. This 
approach alleviates the array output SINR degradation in the presence of steering vector mismatches, 
strict restrictions on the number of available snapshots, and numerous interferences by replacing the 
conventional linearly constrained minimum variance cost function with a squared-loss function, and 
achieves better generalization capacity by applying Gaussian kernels to the array observations. We 
also present a fast recursive procedure to estimate the weight vectors on real-time, and a novelty 
criterion to perform model reduction. The paper is organized as follows. The signal model, also the 
minimum mean square error (MMSE) and the MVDR-beamformer solutions are presented in Section 2. 
The basic principle of LS-SVR-based beamforming method is introduced in Section 3. In Section 4, a 
recursive procedure to calculate the regression parameters is provided. And a sparse mode is presented 
in Section 5. The simulation tests under different mismatch scenarios are illustrated in Section 6. A 
summary conclusion is given at the last of this paper. 

2. Sensor Signal Model 

Consider a linear array of M sensors receives signals from D narrowband source. The vector of 
array observations ( ) 1CMt ×∈x  at time t could be modeled as: 

( ) ( ) ( )t t t= +x As n  (1) 

where, [ ]T 1
1 2, , , R D

Dθ θ θ ×= ∈θ "  is the vector with the directions of arrival (DOA) and ( )T⋅ stands for 

transpose, ( ) ( ) ( )[ ]1 2, D
M Dθ θ θ ×= ∈A a a a C"  is the matrix containing the array steering vectors 

( ) ( ) ( ) ( )2 sin / 2 sin 1 / 11, i i
Tj d j d M M

i e eπ θ λ π θ λθ − − − ×⎡ ⎤= ∈⎣ ⎦a C" . The uncorrelated sources are represented by the 

vector ( ) ( ) ( ) ( ) 1
1 2,

T D
Dt s k s k s k ×= ∈⎡ ⎤⎣ ⎦s C" . The vector ( ) 1Mt ×∈n C  is the sensor noise, and it is 

assumed as complex Gaussian with zero-mean: 

( ) ( ) ( )[ ]1 2, Dθ θ θ=A a a a"  (2) 

The output of the beamformer is defined as: 

( )( ) Hy t t= w x (3) 
where, [ ]T 1

1, , CM
Mw w ×= ∈w "  is the complex vector of beamformer weights, ( )T⋅ denotes transpose, 

and ( )H⋅ denotes Hermitian transpose. 

If certain observations are known during the procedure of training parameters, then, according to 
the MMSE criterion, the complex vector of beamformer weights w can be described as: 

1−=w R p  (4) 

where, R is M × M covariance matrix, and p is the cross-correlation between the desired output and 
the received signal. 

The classical MVDR beamformer minimizes the array output energy, and the weights subject to a 
constraint of unity array response on the desired array steering vectors, that is: 
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H H
1s.t.    ( ) 1min θ =

w
w Rw w a  (5) 

The constraint H
1( ) 1θ =w a  prevents the gain at the look direction from being reduced, and the 

solution of Equation (5) can be easily estimated by means of using Largrange multiplier method: 
1

1
H 1

1 1

( )
( ) ( )

θ
θ θ

−

−= R aw
a R a

 (6) 

In practice, it is not feasible to calculate the exact covariance matrix R and it would be estimated by 

the sample covariance matrix ( ) ( )
1

1ˆ
K

H

k
k k

K =

= ∑R x x where K  is the number of observed snapshots. 

The performance of MVDR beamformer in Equation (5) is sensitive to mismatch between the 
presumed and actual steering vectors due to the uncertainty of the desired signal DOA, strict 
restrictions on the number of available snapshots, and numerous interferences.  

3. LS-SVR-Based Beamforming Method 

3.1. Nonlinear SVM-Based Beamforming 

Consider a set of snapshots xi, i = 1,   N at time t  from an array and the corresponding set of desired 
symbols yi, i = 1,   N, are available for training purpose. The basic idea of nonlinear beamforming is to 
transform the data set xi, i = 1,   N into a higher (possibly infinite) dimension feature space H by a 
nonlinear transformation ( )φ ⋅ . Thus, the beamformer’s output can be formulated as a linear regression 
in H. It could be expressed as: 

H ( )i i iy eφ= +w x  (7) 

where, ∈Ηw  is the linear parameter set and ei is the output error.  
The parameter set w can be estimated by minimizing a certain cost function on output error ei. For 

SVM regression, the parameter set w and the ε–intensive loss function could be estimated by the 
minimum risk criterion, i.e., 

2

1

1min ( , ) ( , )
2

N

i i
i

J C Lεε ξ ζ
=

= + ∑w w  (8) 

subject to , 0n nξ ζ ≥ . Where, C ≥ 0 is the tradeoff term between the minimization of the weight norm 
and the output error. The ε–intensive loss function is given by: 

0,
( )

,
e

L e
e e

ε
ε ε

⎧ <⎪= ⎨ − ≥⎪⎩
 (9) 

where ε is a positive parameter which is used as an error threshold. 
The weight vector w is regularized by solving Equation (8), Thus, the generalization capacity of the 

beamformer will be remarkably improved. 
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3.2. Nonlinear LS-SVR Beamforming 

Instead of the inequality constrains in standard SVM algorithm, the equality ones are taken in LS-SVR, 
and the linear equation of the ε–intensive loss function is replaced by a quadratic equation. Therefore, 
The LS-SVR beamformer can be described as the following quadratic optimization problem [20]: 

2 2
,

1

T
, , ,

1min ( , )
2

s.t.   - ( ) , 1, 2, ,

N

t t t i t
i

i t i t t i t t

J e C e

e y b i Nφ
=

= +

= − =

∑w w

w x "　

 (10) 

where, ei 
t  is the error at time t. The sum of squared errors in Equation (10) represents the ε–intensive 

loss function under the linear constraint. This treatment would greatly reduce the computation 
complexity since only the linear equation, instead of the QP problem in SVM, is solved.  

The array observations of the beamformer are complex, whereas the variables in the objective 
function of SVM are real. So, it is necessary to rewrite the complex variables as real variables. For this 
reason, the array observations xi, the beamformer outputs yi and the weight vectors tw  are rewritten as:  

,

,

TT T 2
, ,

TT T 2
, ,

TT T 2

,

,

Re( ) Im( ) , 1, ,

Im( ) -Re( ) , 1, , 2

Re( ) Im( )

Re( ), 1, ,
Im( ), 1, , 2

i t

i t

M
i t i t

M
i t t i t t

M
t t t

i t

i t t

R i N

R i t N

R

y i N
y

y i t N

− −

−

⎧⎡ ⎤ ∈ =⎪⎣ ⎦= ⎨
⎡ ⎤⎪ ∈ = +⎣ ⎦⎩

⎡ ⎤= ∈⎣ ⎦
=⎧⎪= ⎨ = +⎪⎩

x x
x

x x

w w w

"

"

"
"

 (11) 

The result of the quadratic optimization problem of Equation (10) is the saddle point of the 
following Lagrange function: 

,

,

2N
T

, , ,
1

( , , , ) ( , )

{ ( ) }
i t

i t t t t t t

i t t i t t i t
i

L b e J e

b e yα φ
=

= −

+ + −∑

x α w

w x
 (12) 

where, T
1 2 2( , ) , 0t N iα α α α= >α "，  is Lagrange multipliers, defined as regression parameters in this paper.  

According to the Karush-Kuhn-Tucker (KKT) conditions, differentiating the above function with 
respect to the Lagrange multipliers tα  and , ,, ,i t t i tb ex  yields: 

2

,
1

2

1

,
,

T
, , ,

,

0 ( )

0 0

0

0 ( )

N

t i i t
it
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i
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i t
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i t

L
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e
L b e y

α φ
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=

=
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⎪ ∂ = ⇒ =⎪∂⎪
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∑

∑

w x
w

w x

 (13) 
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The system obtained from the KKT conditions is linear. Its result is obtained by solving the linear 
system which is expressed as following matrix: 

T

1

00 t

t tt

b
C−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ ⎣ ⎦ ⎣ ⎦⎣ ⎦

e
α ye Q I

 (14) 

where, T
1 2 2( , , )t Ny y y=y " , T(1,1, ,1)=e " , Qi is Gramm matrix and the element of Qi is 

, , ,( ), ( ) ( , )i j i t i t t i jkφ φ=< >=Q x x x x , , 1, 2, 2i j N= " , ( , )t i jk x x  denotes kernel function responsible for 
the nonlinear mapping ( )φ ⋅ , which greatly simplify the inner product calculation in the feature space. 
Thus, linear methods can be applied on the transformed data, and it is not necessary to perform 
computations in the high-dimensional feature space. As the most widely used kernel function in many 
practical applications, Gaussian kernel is taken here: 

2

2( , ) exp
2

i j
i jk

σ

⎛ ⎞−⎜ ⎟= −
⎜ ⎟
⎝ ⎠

x x
x x

 
(15) 

where σ > 0 is the kernel radius. 
The outputs of the nonlinear LS-SVR beamformer are: 

2

1 1 ,
1

( , )
N

t i t i t t
i

y k bα+ +
=

= +∑ x x  (16) 

4. Recursive Algorithms 

From Equation (16), it could be known that once the regression parameters αt and bt are computed, 
the beamformer outputs can be obtained. Denoting 1 1 1( )t t t C− − −= = +U H Q I , the result of LS-SVR 
(Equation (14)) can be represented as: 

T

1

00 t

t tt

b
−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

e
α ye U

 (17) 

Then, we have:  
T

T

T

T

t t
t

t

t t
t t t

t

yb =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

e U
e U e

ee U yα U y
e U e

 (18) 

As the number of snapshots increases, the dimension of Gramm matrix Qi will be increasing 
because it is in proportional to the number of snapshots. Therefore, the computation for the regression 
parameters αt and bt would be very intensive as the snapshots increase, and it is key issue for LS-SVR 
beamformer to find out a fast algorithm to improve the computation efficiency of Ui.  

At time step t, Qi and Hi are the matrixes with dimension of 2N × 2N: 
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1 1 1

1
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( , ) ( , )

t

t

t t t

k k

k k

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

x x x x
Q

x x x x

…
# % #

"
1
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x x x x
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"

(19) 

 

As time run to t + 1, new input snapshots xt+1 and the corresponding desired array output 1ty +  are 
added to the current training set. So Qt+1 and Ht+1 can be represented as: 

1 1 2 1 2( 1) 1

1
1 2 2 2 2( 1) 1

1 2( 1) 2 2( 1) 2( 1) 2( 1)
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+

+
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⎛ ⎞
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⎜ ⎟⎜ ⎟
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(20) 

Comparing the elements of Ht and Ht+1, the matrix Ht+1 could be reconstructed by the matrix Ht 
plus an additional row and column, i.e., 

1
1 T

1 1

t t
t

t tv
+

+
+ +

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

H v
H

v
 (21) 

where, 
T

1 1 2( 1) 2 2( 1)( , ), ( , )t N N Nk k+ + +⎡ ⎤= ⎣ ⎦v x x x x" , 2( 1) 2( 1)1 ( , ) 1 /N Nt k Cv + ++ += x x .  

According to the theorem of inverting block matrix, the inverse of Ht+1 can be expressed by the 
inverse of Ht and the new column vt+1 as: 

1

1 1 T 1 1
1 1 11

T 1
1

t t t t

t

t

t t t

t

β β
β β+

− − − −
+ + +−

−
+

⎛ ⎞+ −
= ⎜ ⎟⎜ ⎟−⎝ ⎠

H H v v H H v
H

v H
 (22) 

where, ( )T 1
1 1 1tt t tvβ −

+ + += − v H v . Thus the inverse of Ht+1,which is equal to Ut+1, can be calculated from 
the inverse of Ht, and it is not necessary to calculate the inverse of Ht when it has high dimension, so 
the computation complexity would be greatly reduced and the numerical stability problem arising from 
inverse matrix would be also avoided. When the set of snapshots is small, the Ut can be computed 
directly by matrix inverse theory. 

5. Sparsification 

The crucial drawback of LS-SVR beamformer is that it deals with high-dimension matrix, which is 
equal to the number of the snapshots due to the use of a quadratic constraint function. This would bring 
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a big implementation problem to the proposed beamforming method since it is required to increase 
memory and computational resources as time evolves. Several methods have been proposed to cope 
with these problems [23,24]. The sliding-window approach [25] fixes the size of LS-SVR beamformer 
and allows it to be operated online in time-varying environments by keeping only the last N input 
snapshots in the sliding-window and simply abandoning those out of it. In [26], an exponential 
forgetting mechanism is introduced to describe the influence, which is imposed on the present situation 
by the past data [26]. This paper employs the novelty criterion, presented by Platt [27,28], to reduce 
the final size of the proposed beamformer, keep the algorithm complexity bounded and realize online 
sparsification. The basic idea of this approach is to construct a dictionary with center set C and update 
it appropriately according to the novelty criterion. The stages of the proposed specification are given  
as follows:  

Step 1: Initialing an empty center set C0; 
Step 2: Calculating the distance between the new snapshot x t  and the present dictionary 

Cdis=min
k i t k∈ −c x c ; 

Step 3: If the distance obtained from Step 2 is smaller than the preset threshold δ1, xt is not added 
into the dictionary, otherwise the prediction error ˆei i iy y= −  is calculated; 

Step 4: if ei  is larger than another preset threshold δ2, xt is accepted as a new center and Ci is 
updated to Ci+1, otherwise go to Step 2. 

Increasing δ1 and δ2, the final size of the LS-SVR beamformer will be decreased. But this will result 
to performance degradation. In practical applications, δ1 is set to around one tenth of the kernel 
bandwidth, and δ2 is around the square root of the steady-state mean square error (MSE). Cross-validation 
also can be used to select these appropriate thresholds. 

Applying the above sparsification procedure, the computation complexity of the proposed 
beamformer will be reduced from O(N2) to O(K2), where K is the effective number of centers in the 
network at time t. As K is finite, the online real-time beamforming will be practical. 

6. Simulation Tests 

To evaluate the performance of the proposed LS-SVR-based beamformer, simulation tests are 
carried out. A 10 elements uniform linear array with half-wavelength spacing is taken into account. 
The desired signal comes from a presumed direction θ = 3° and two irrelevant interferences, with 
interference-to-noise ratio (INR) of 20 dB, impinge on the array from θ2 = −32° and θ3 = 17° 
respectively. The additive noise is assumed to be a 0-dB complex white Gaussian distributed random 
variable. For comparison purpose, the conventional MVDR, the diagonal loading MVDR (MVDR-DL), 
the ES [29], the SQP [9] and the RR [30] method are considered. The parameters of the proposed 
beamformer, σ, δ1 and δ2, are chosen as 1.0, 0.1 and 0.08 respectively. The load value of MVDR-DL 
beamformer is set to (Pe+10 dB), where Pe denotes the power of desired signal. All results are obtained 
from 100 independent simulation runs. 

The first simulation aims to compare the performance of these beamformers when steering vector 
mismatch is presented. From Figure 1(a), we observe that the proposed LS-SVR beamformer 
consistently improves its output SINR as SNR increases and performs much closer as the idea one 
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when the input SNR is varied from −20 dB to 30 dB. Due to the DOA mismatch, the interested signal 
is considered as interference and a null is allocated in the desired signal direction by the MVDR 
beamformer. As a result, the output SINR is decreased. When input SNR is larger than −5 dB, the 
output SINR of MVDR beamformer degrades seriously. In comparing with the MVDR beamformer, 
the MVDR-DL, ES, SQP and RR methods get more robustness against DOA mismatch. But they still 
suffer from a degradation of performance while the input SNR becomes higher.  

Figure 1. Scenario with only DOA mismatch (a) Output SINR versus SNR;  
(b) Beam-patterns, SNR = 10 dB, 2 interference. 
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Figure 1(b) shows the normali\zed beampattern plots when the input SNR is equal to 10 dB. As it is 
illustrated, all beam-patterns of the robust beamformers have nulls at the DOAs of the interferences. 
But the proposed LS-SVR still outperforms others by markedly lower sidelobe level, and maintaining 
distortionless response for the desired signal. 

The covariance matrix would be inaccurately estimated owing to insufficient snapshots, DOA 
mismatch of desired signal and array calibration errors. This kind of inaccuracy may result in the 
degradation of array response. Hence, both the errors of insufficient snapshots and DOA mismatch are 
considered to verify the proposed beamformer in our second simulation tests. Figure 2 shows the 
resulting output SINRs versus the snapshot number K. When snapshots are over 20, the LS-SVR 
clearly outperforms other beamformers tested. Owing to the steering vector mismatch, the MVDR 
beamformer see the desired signal as interference and fails in its operation.  

The performance of the proposed beamformer in the scenario with multiple interferences is 
demonstrated in the third test. The steering vector mismatch is also presented. As it can be seen from 
Figure 3(a), the proposed algorithm performs equally well as ES and SQP when the number of 
interferences less than 5. When the interference numbers is increased to 8, the output SINR of the 
proposed LS-SVR beamformer is only 1 dB lower than that of idea beamformer. In contrast, the output 
SINRs of other beamformers tested are dramatically decreased due to the decrease of the available 
freedom degrees which are devoted to suppress the interference.  
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Figure 2. Scenario with limited snapshots and two interferences. 
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Figure 3. Scenario with DOA mismatch and multiple interferences (a) SINR versus 
Number of interferences; (b) Beam-patterns, SNR = 10 dB, 4 interference. 
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The corresponding beampatterns of the beamformers are demonstrated in Figure 3(b), where the 
four interferences with DOAs of θi = [17.4°, −11.5°, 53.1°, −23.5°] are taken into account. It can be 
seen that the LS-SVR beamformer not only presents deep nulls at the DOAs of interference, but also 
achieves better sidelobe suppression than other beamformers tested. Thus, the proposed LS-SVR 
method can get better SINR performance than the usual robust linear beamforming algorithms in the 
case of numerous interferences. 

To show the computation complexity of the novel approach, the dictionary size growth with the 
input samples is given in Figure 4. As it can be seen in Figure 4, only 396 center numbers are needed 
to calculate the beamformed output for 4,000 input samples. In comparison with the original LS-SVR 
algorithm, in which 4,000 centers are needed for the same case. Thus, the computation cost is  
largely reduced. 
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Figure 4. Dictionary size vs. input samples for the novel approach. 
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7. Conclusions 

We present a novel nonlinear LS-SVR-based beamforming approach in this paper. This approach 
first uses a squared-loss function to replace the conventional linearly constrained minimum variance 
cost function, which can significantly increase robustness against mismatch problems and provide 
additional control over the sidelobe level. The method also applies Gaussian kernels to the array 
observations to improve the generalization capacity. Finally, the method uses a recursive regression 
procedure to estimate the weight vectors on real-time and performs mode reduction to reduce the final 
size of the beamformer.  

The simulation tests, with steering vector mismatch, numerous interferences and limited available 
snapshots, are carried out to verify the performance of the proposed beamforming algorithm in 
comparison with other recently proposed ones. The test results show that the proposed beamforming 
method significantly outperforms many other recently proposed linear robust beamforming techniques 
in terms of signal distortion in the desired signal and noise reduction in scenarios with DOA mismatch, 
limited observation samples, and numerous interferences. 
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