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Abstract: The Juvenile Salmon Acoustic Telemetry System (JSATS) is an active sensing 

technology developed by the U.S. Army Corps of Engineers, Portland District, for detecting 

and tracking small fish. It is used primarily for evaluating behavior and survival of juvenile 

salmonids migrating through the Federal Columbia River Power System to the Pacific 

Ocean. It provides critical data for salmon protection and development of more “fish-

friendly” hydroelectric facilities. The objective of this study was to design and build a 

Measurement and Calibration System (MCS) for evaluating the JSATS components, 

because the JSATS requires comprehensive acceptance and performance testing in a 

controlled environment before it is deployed in the field. The MCS consists of a reference 

transducer, a water test tank lined with anechoic material, a motion control unit, a reference 

receiver, a signal conditioner and amplifier unit, a data acquisition board, MATLAB control 

and analysis interface, and a computer. The fully integrated MCS has been evaluated 

successfully at various simulated distances and using different encoded signals at 

frequencies within the bandwidth of the JSATS transmitter. The MCS provides accurate 

acoustic mapping capability in a controlled environment and automates the process that 

allows real-time measurements and evaluation of the piezoelectric transducers, sensors, or 

the acoustic fields. The MCS has been in use since 2009 for acceptance and performance 

testing of, and further improvements to, the JSATS. 
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1. Introduction 

The Juvenile Salmon Acoustic Telemetry System (JSATS) is an active sensing technology that was 

developed by the U.S. Army Corps of Engineers (USACE), Portland District, to evaluate the migration 

timing, behavior, and survival of juvenile salmonids migrating through the Federal Columbia River 

Power System (FCRPS) [1]. The JSATS consists of acoustic microtransmitters (or transducers); 

autonomous, cabled, or portable receivers with hydrophones (piezoelectric sensors); and data 

management and processing applications. Receivers have been deployed at large hydroelectric  

dams [2] and in free-flowing sections [3] of the FCRPS, as well as throughout the estuary of the Columbia 

River [4]. Each microtransmitter, surgically implanted in study fish, transmits a unique binary code 

encoded using binary phase shift keying (BPSK) at a frequency of 416.7 kHz. Its code structure 

includes a total of 31 bits, with 7 synchronization bits (Barker code 1110010), 16 data bits, and 8 

cyclic redundancy check (CRC) bits. The microtransmitters emit this unique 31-bit code at a 

programmed interval, typically every 3, 5, or 10 s, for 310 cycles at a carrier period of 2.4 µs, resulting 

in an acoustic length of approximately 1.1 m at 20 °C. 

When the study fish implanted with the microtransmitters travel within the detection range of the 

deployed receivers, the acoustic signals are converted into an analog voltage by the piezoelectric 

sensors in the receivers [5,6], amplified by high-impedance preamplifiers, and transmitted to a signal-

conditioning interface where they are further amplified and conditioned prior to being input to a digital 

signal processing (DSP) and field-programmable gate array (FPGA) card for detection analysis. The 

conditioned and detected signals are then decoded by BPSK, a digital modulation technique that 

transmits and decodes messages by altering the phase of the carrier wave using two phases, 0 and 180° [7]. 

Self-contained autonomous receivers that detect, decode, and store decoded messages are typically 

deployed in areas within the Columbia River basin where a power source is not readily available and 

cable runs are not feasible. Cabled systems are deployed at hydroelectric facilities and are used to 

determine route of passage and near-dam behavior for tagged fish. Each cabled system is synchronized 

to a universal Global Positioning System (GPS) clock with accuracy within 0.4 μs, and the acquired 

waveforms are saved to the computer before being decoded. Similar to GPS by satellites, time-of-

arrival information from at least four receivers is required to resolve three-dimensional source 

locations [8,9]. 

The detailed information of fish movements and survival that the JSATS provides is critical to 

understanding the effects of hydroelectric systems on salmonid stocks listed under the Endangered 

Species Act [1]. However, before the JSATS is deployed in the field, it requires comprehensive 

acceptance and performance testing in a controlled environment. The objective of this study was to 

design and build a Measurement and Calibration System (MCS) for evaluating and further improving 

the JSATS. 
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2. System Instrumentation 

The MCS consists of reference transducers, a water test tank lined with anechoic material 

(Figure 1), a motion control unit, reference receivers, a signal conditioner and amplifier unit, data 

acquisition (DAQ) board, a MATLAB control interface, and a computer. Because the system employs 

the computer’s DAQ board to generate the waveforms, the waveform simulator/generator is not shown 

in the functional diagram (Figure 2). 

Figure 1. Schematic of the measurement tank for receiver (sensor) sensitivity and beam 

pattern testing. 

 

Figure 2. Functional diagram of the measurement and calibration system. 

 
 

The rectangular fiberglass water test tank is 1.26 m in length, 0.95 m in width, and 0.90 m in depth. 

It is lined with 26-mm-thick anechoic material (acoustic absorber Aptflex F48, Precision Acoustics, 

Ltd, Dorchester, Dorset, UK). This special material has low ultrasonic reflection and is highly 
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absorbent for ultrasound. For a 26-mm-thick lining, the echo reduction is better than 20 dB (10% of 

reflected magnitude) for acoustic waves at frequencies below 500 kHz, resulting in accurate 

underwater acoustic measurements without impact from acoustic noise in a controlled environment. 

A broad band spherical hydrophone (RESON TC4034, RESON A/S, Slangerup, Denmark) or 

universal high-frequency transducer (RESON TC3029) is used as the reference transducer to transmit 

the encoded acoustic signals by converting the voltage signal to acoustic pressure. The TC4034 

provides uniform omnidirectional characteristics over a wide usable frequency range of 1 Hz to 480 kHz. 

The TC3029 is a compact universal 500 kHz transducer, ideal for high-frequency measurements. The 

transducer is connected to an analog output channel of the DAQ board.  

A miniature probe hydrophone (RESON TC4038) is used as the reference receiver. This 

hydrophone provides a flat frequency response and omnidirectional characteristics for high frequencies 

ranging from 100 to 500 kHz. Analog signals from the receivers are conditioned by a low-noise 1 MHz 

bandwidth voltage preamplifier (RESON EC6081/VP2000). The low-pass and high-pass filters  

(−6 dB/octave roll-off) are set typically at 1 MHz and 50 kHz, respectively. The amplifier gain ranges 

from 0 to 60 dB to optimize the input range of the DAQ board, depending on the amplitude of the 

incoming signal. 

The interface was developed in MATLAB computing language (MathWorks, Inc., Natick, 

Massachusetts, USA) for a Dell Dimension 340 desktop computer (Dell Inc., Round Rock, Texas, 

USA) to communicate with all components, including the motion control unit, waveform 

simulation/generation, data acquisition, and data analysis. The MATLAB control and analysis 

interface could also be compiled into libraries and executable files for use in the field or by any users 

without access to MATLAB. A NI PCI-6111 board (National Instruments Corporation, Austin, Texas, 

USA) was used for both outputting the encoded signals and acquiring the received signals. It is a 12-bit 

analog-to-digital, simultaneous-sampling multifunction data acquisition board. It has two 

simultaneously sampled analog inputs at 5 million samples per second (MS/s) per channel and two 16-bit 

analog output channels at up to 4 MS/s for one channel or 2.5 MS/s for dual channels. It was chosen 

for its high output and sampling rate capabilities and compatibility with MATLAB. The high sampling 

rates allow accurate representation of JSATS 416.7 kHz signals with at least ten samples per signal 

cycle. The compatibility with MATLAB allows easy incorporation of data analysis packages already 

developed in MATLAB, leading to real-time measurement and data analysis.  

The motion control unit consists of various automation components (Parker Hannifin Corp., 

Cleveland, Ohio, USA): a 20802 rotary table geared with an HV231 stepper motor, as well as an E-AC 

motor drive and a 6K8 controller. The receiver is held in the tank by a cylindrical fixture extending to 

the motorized rotary positioning table above, which is attached to the top of the tank (Figure 1). The 

controller communicates with the computer via a serial cable and MATLAB commands. 

3. System Calibration and Data Acquisition 

During the design process, a general formulation was derived for system calibration and 

performance measurements. Suppose: 

 Vrms is the root-mean-square (RMS) value of the transmitted waveform in volts. 

 Wrms is the RMS value of the acquired waveform in volts. 
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 G is the corresponding gain of the signal amplifier in decibels (dB), defined as 20 times the 

logarithm of the RMS ratio. 

 D is the distance from the transducer to the receiver in meters; D is 1 m in Figure 1. 

 Ps is the transmitting sensitivity of the transducer in dB re 1 µPa /V @ 1 m. 

 Hs is the hydrophone sensitivity in dB re 1 V /µPa. 

 TL is the transmitting loss in dB. 

Transmitting loss is estimated [10] as  

TL ൎ 20 ൈ logሺDሻ (1) 

If the transducer sensitivity is known, the receiver (hydrophone) sensitivity is then obtained from 

Hs ൌ 20 ൈ logሺW୰୫ୱሻ െ 20 ൈ logሺV୰୫ୱሻ െ Ps  TL െ G  (2) 

If the receiver sensitivity is known, then transmitting sensitivity of the transducer is 

Ps ൌ 20 ൈ logሺW୰୫ୱሻ െ 20 ൈ logሺV୰୫ୱሻ െ Hs  TL െ G  (3) 

The system was designed to automate the process that provides real-time measurements and 

evaluation of the piezoelectric transducers, sensors, or acoustic fields. A basic functional breakdown is 

as follows: 

 

1. The DAQ board triggers the waveform generator to send a preprogrammed signal (pulse, sine 

wave, or full coded waveform) to the transducer. 

2. The transducer converts the signal to acoustic pressure signals in the tank. 

3. The piezoelectric sensor in the receiver converts the acoustic pressure signal into voltage that is 

conditioned and amplified before being digitized and loaded into the computer buffer memory. 

4. The signal is saved to the computer hard drive if it meets the predetermined detection criteria. 

5. Steps 1 through 4 are repeated until the preset number of measurements is made. 

6. The data acquisition board triggers the motion control unit to move to the next location and start 

new measurements. 

7. Decoding utilities are used to evaluate system performance; data analysis packages are employed 

to compute sensitivities, beam profiles, or other characteristics. 
 

To calibrate the system, the reference transducer and reference receiver were spaced 1.12 m apart in 

the tank. The output and data acquisition sampling frequency was set to 2.5 MS/s. As an example, the 

reference hydrophone (RESON TC4038) had a factory-calibrated sensitivity of −228.50 dB re 1V /μPa 

at a carrier wave frequency of 416.7 kHz. Ps was 161.3 dB re 1 µPa /V @ 1 m. For this test case, the 

transmitted waveform had an RMS value of 5 V. Gain was set as 50 dB. Eight measurements were 

taken 1-s apart for each orientation, with RMS values between 0.617 and 0.618 V (SE is 0.0004 V) at 

the position with the highest sensitivity, which was defined as the zero-degree orientation. The 

measured hydrophone sensitivities at zero degree using Equation (2) ranged from −228.49 to −228.47 

dB re 1 V/µPa (SE is 0.01), which agrees well with the factory-calibrated data (−228.50 dB re 1 

V/µPa). The beam profile also demonstrated good agreement (Figure 3). 
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Figure 3. Comparison of the beam profile measured using the measurement and calibration 

system and factory-calibrated data. 

 

4. System Performance Measurements 

The test tank was designed to provide accurate acoustic mapping capability in a controlled 

environment. It was verified by transmitting a coded waveform (720087AF) at a signal level of 126 dB 

re 1 µPa @ 1 m using the transducer (Figure 4a). It was equivalent to 30 dB attenuation, given the 

typical source level of 156 dB re 1 µPa @ 1 m for JSATS microtransmitters. An analogous range 

between the transducer and the receiver would be 32 m given 30 dB ൌ 20 ൈ logሺ32ሻ. The waveform 

acquired by the receiver had a signal-to-noise ratio of 24.2 dB and showed no evidence of impact from 

acoustic reflection (Figure 4b). It was decoded successfully with correct time of arrival at 772 µs. 

Because JSATS transmitter codes use 16 data bits for four hexadecimal characters and CRCs are 

dependent on the four data characters, there are 65,536 unique tag code combinations for JSATS code 

space. Phase shift count was defined as the number of phase changes in the binary representation of the 

16 data bits and 8 CRC bits. For example, for tag code 72007058 the data are hexadecimal 0070 and 

the CRC is hexadecimal 58, so the data bits and CRC bits (excluding 72—the 7 bit barker code) are 

0000-0000-0111-0000-0101-1000, and the phase shift count is 6. Twenty-eight tag codes were used to 

represent the 14 different phase shift counts of JSATS code space, with two tag codes randomly 

selected from each phase shift count category. Decoding efficiency was calculated as the number of 

correctly decoded detections divided by the number of actual transmissions. An attenuation curve was 

created by averaging the decoding efficiencies of the 28 tag codes for each of the six levels of signal 

attenuation (−40, −50, −55, −60, −65, −70 dB). These attenuation levels were achieved by transmitting 

the encoded waveforms at signal levels of 116, 106, 101, 96, 91, and 86 dB re 1 µPa @ 1 m, 
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respectively. For simulated ranges in an ideal environment, they are equivalent to 100, 316, 562, 1,000, 

1,778, and 3,162 m, respectively. For each attenuation level, 560 encoded signals were transmitted. 

The measurement results confirmed that the receiver had a detection range of more than 500 m in a 

controlled freshwater environment (Figure 5). The current JSATS receiver design requires that a 

receiver demonstrates a decode efficiency at the −55 dB level greater than or equal to 50% before it is 

accepted and deployed for field use. 

Figure 4. Comparison of original simulated waveform and acquired waveform. Note that 

there is a slight delay due to the travel time of the signal and latency of hardware 

triggering. However, this delay has no impact on the measurements because only the 

message portion of the waveform is used for analysis. 

 
 

Encoded signals were transmitted via the reference transducer to the receiver using carrier wave 

frequencies different from the JSATS center frequency. The frequency shift was achieved by re-

sampling the original waveform using a polyphase filter implementation [11]. Figure 6 shows a typical 

example of the sensitivity measurement within a frequency bandwidth. For this example, the measured 

sensitivities were within specified −180 ± 3 dB re 1 V/µPa across the full range of the frequency 

bandwidth for the JSATS transmitter (416.7 kHz ± 0.5%). 
 

Time ( s)

V
o

lta
g

e
(V

o
lts

)

200 400 600 800 1000
-0.3

-0.2

-0.1

0

0.1

0.2

0.3
(a)

Time ( s)

V
o

lta
g

e
(V

o
lts

)

800 1000 1200 1400 1600
-2

-1

0

1

2
(b)

Arrival time 772 s



Sensors 2010, 10                            

 

 

3097

Figure 5. Decoding efficiency for simulated range testing in an ideal environment. 

 

Figure 6. Sensitivity measurements of receivers in the measurement tank at different frequencies. 

 

5. Conclusions 

The JSATS is an active sensing technology that was developed by the USACE for evaluating 

behavior and survival of juvenile salmonids migrating through the FCRPS. It has been successfully 

used to acquire information for salmon protection and development of more “fish-friendly” 

hydroelectric facilities. The MCS was designed and implemented to provide accurate acoustic mapping 

capability in a controlled environment, and automates the process that provides real-time 
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measurements and evaluation of the JSATS piezoelectric transducers or sensors or the acoustic fields. 

The fully integrated MCS has been evaluated successfully using different encoded signals at various 

simulated distances and frequencies within the bandwidth of the JSATS transmitters. The MCS is also 

currently being used for competitive procurement acceptance and performance testing and for further 

development and refinement of the JSATS. 
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