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Abstract: X-ray crystallography has been used to characterize the title compound for the first time;
1H NMR, 13C NMR and IR spectroscopic data have also been updated from earlier reports. We also
report the melting point of the title compound.
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1. Introduction

Friedel–Crafts acylation of 1,4-dimethylbenzene affords ketone 1 as the sole product [1].
Ketone 1 may then be efficiently converted to chalcone 2 via a Claisen–Schmidt reaction [2]
with benzaldehyde in the presence of sodium hydroxide (Scheme 1).
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1. Introduction 
Friedel–Crafts acylation of 1,4-dimethylbenzene affords ketone 1 as the sole product 

[1]. Ketone 1 may then be efficiently converted to chalcone 2 via a Claisen–Schmidt reac-
tion [2] with benzaldehyde in the presence of sodium hydroxide (Scheme 1). 

AcCl & AlCl3

CH2Cl2

O

NaOH

EtOH

PhCHO O

1 2
84% 71%  

Scheme 1. Friedel–Crafts acylation of p-xylene to afford 1-(2,5-dimethylphenyl)ethan-1-one (1) and 
subsequent aldol condensation with benzaldehyde to afford the title compound (2). 

Most of the literature’s procedures to prepare (E)-1-(2,5-Dimethylphenyl)-3-phe-
nylprop-2-en-1-one (2) use Friedel–Crafts conditions (AlCl3, Ac2O) to prepare ketone 1 
followed by the aldol condensation with benzaldehyde to from 2 [1], however, an alter-
native route has also been reported [3]. Scheme 2 illustrates a recent route to 2 that in-
volves the in-situ formation of ketone 4 by the base-mediated elimination of HCl from 
compound 3. Ketone 4 is formed in the presence of palladium(II) acetate; this allows a 
subsequent Heck reaction of iodobenzene with ketone 4 to proceed with the efficient for-
mation of chalcone 2 (84% yield reported). 
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Scheme 2. In situ formation of compound 4 and subsequent Heck reaction with iodobenzene to 
form chalcone 2. 
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Scheme 1. Friedel–Crafts acylation of p-xylene to afford 1-(2,5-dimethylphenyl)ethan-1-one (1) and
subsequent aldol condensation with benzaldehyde to afford the title compound (2).

Most of the literature’s procedures to prepare (E)-1-(2,5-Dimethylphenyl)-3-phenylprop-
2-en-1-one (2) use Friedel–Crafts conditions (AlCl3, Ac2O) to prepare ketone 1 followed
by the aldol condensation with benzaldehyde to from 2 [1], however, an alternative route
has also been reported [3]. Scheme 2 illustrates a recent route to 2 that involves the in-situ
formation of ketone 4 by the base-mediated elimination of HCl from compound 3. Ketone
4 is formed in the presence of palladium(II) acetate; this allows a subsequent Heck reaction
of iodobenzene with ketone 4 to proceed with the efficient formation of chalcone 2 (84%
yield reported).
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Most of the literature’s procedures to prepare (E)-1-(2,5-Dimethylphenyl)-3-phe-
nylprop-2-en-1-one (2) use Friedel–Crafts conditions (AlCl3, Ac2O) to prepare ketone 1 
followed by the aldol condensation with benzaldehyde to from 2 [1], however, an alter-
native route has also been reported [3]. Scheme 2 illustrates a recent route to 2 that in-
volves the in-situ formation of ketone 4 by the base-mediated elimination of HCl from 
compound 3. Ketone 4 is formed in the presence of palladium(II) acetate; this allows a 
subsequent Heck reaction of iodobenzene with ketone 4 to proceed with the efficient for-
mation of chalcone 2 (84% yield reported). 
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Scheme 2. In situ formation of compound 4 and subsequent Heck reaction with iodobenzene to 
form chalcone 2. 
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Compound 2 has found uses as a precursor in organic synthesis; two recent examples
are highlighted in Schemes 3 and 4. Chalcone 2 can be readily epoxidized in basic hydrogen
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peroxide to form epoxide 5; the subsequent irradiation of 5 with UV light affords the
corresponding β-hydroxy functionalized indanone 6 [1].
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to be 51−53 °C (see Video S1). 
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range predicted by the Karplus equation [6] for E-configured alkenes. Furthermore, crys-
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Chalcone 2 can be readily converted to 7 by a trifluoromethylation/desilylation se-
quence; the treatment of 7 with sulfuric acid then affords the corresponding trifluoromethyl
indene 8 [4].
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2. Results

Ketone 1 readily reacts with benzaldehyde under basic conditions to form chalcone 2;
the reaction is usually complete within 30 min. Compound 2 has been previously reported
as a yellow oil in the literature [5], and although other publications do report a pale yellow
solid, they do not report a melting point [3]. Upon leaving the yellow oil of 2 to stand for
24−48 h, we observed the formation of large yellow crystals (Figure 1). The crystals were
washed with cold ethanol and dried in vacuo. The melting point was determined to be
51−53 ◦C (see Video S1).
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Figure 1. Crystals of 2.

The 1H NMR spectrum (see Supporting Information Figure S7) of chalcone 2 provides
useful evidence for the E configuration of the alkene double bond. The H8–H9 (numbering
in Figure 6) coupling constant (3JHH) has been found to be 16.0 Hz. This value is within the
range predicted by the Karplus equation [6] for E-configured alkenes. Furthermore, crystals
of 2 were of suitable quality for single-crystal X-ray diffraction and confirmed the expected
structure of 2 (Figure 2). The molecule is planar from the phenyl ring to the ketone (mean
deviation from plane of 0.092 Å), indicative of conjugation. The xylyl group does not take
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part in the conjugation, as it is forced out of that plane by the steric clash between ketone
and the ortho methyl group [torsion C2–C1–C7–C8 40.9(4)].
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Figure 2. The molecular structure of 2. The anisotropic displacement ellipsoids of non-hydrogen
atoms are set at the 50% probability level.

The bond lengths are all comparable to chalcone (CSD code BZYACO), with the C8–C9
bond length being 1.326(3) Å (cf. 1.319(6) Å) and the C7–O7 bond being 1.222(3) Å in 2
and 1.204(6) Å in chalcone [7]. The major difference between the structure of 2 and that of
chalcone is the dihedral angle between the two aromatic rings. In chalcone, the two phenyl
rings are nearly coplanar, with a small 11.35◦ angle between the mean planes. However,
in 2, the angle between the mean planes of the phenyl and xylyl rings is much larger at
56.23(6)◦. This can be attributed to the ortho-methyl group (C16) imposing some steric
demands around the carbonyl group, preventing it from lying essentially coplanar with the
styrene part of the molecule (Figure 3).
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Figure 3. Ball and stick images of chalcone (left) and 2 (right) showing the differences between the
dihedral angles of the two aromatic rings.

There is a weak hydrogen bond of 2.638 Å between the carbonyl oxygen (O7) and
the hydrogen (H17b) from the meta-methyl group on the xylyl ring. This results in the
formation of 1D helical chains along the c-axis, as shown in Figure 4.
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Figure 4. The 1D helical chains formed along the c-axis in 2 by the C=O···H interaction.

Perhaps surprisingly, the only structurally similar motif reported in the CSD, outside
of its incorporation into cyclophanes, is in 1-(2,5-dimethylphenyl)-3-oxy-3-phenylprop-2-
en-1-onato(difluoro) boron (CSD code WAQPEM) (Figure 5) [8]. The diketone backbone in
WAQPEM is essentially planar as the angles between the mean planes of the phenyl and
xylyl rings are much smaller than those of 2 at 19.9◦ and 19.7◦ (for the two molecules in the
asymmetric unit). This is due to the coordination with the boron allowing for delocalization
across the backbone.
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Figure 5. Two views of an overlay of 2 (red) and WAQPEM (green).

3. Materials and Methods

All synthetic manipulations were performed in air. Glassware was dried in an oven
(ca. 110 ◦C) prior to use. Solvents and chemicals were used as provided without further
purification. IR spectra were recorded on a Perkin Elmer Spectrum Two instrument with a
DTGS detector and a diamond ATR attachment. The HRMS data were acquired from the
University of St Andrews Mass Spectrometry Service. All NMR spectra were recorded using
a Bruker Avance II 400 (MHz) spectrometer at 20 ◦C. The 13C NMR spectrum was recorded
using the DEPTQ-135 pulse sequence with broadband proton decoupling. Assignments
were made in conjunction with selected 2D NMR experiments. Tetramethylsilane was
used as an external standard (δH, δC 0.00 ppm). Residual solvent peaks were also used
for secondary calibration (CDCl3 δH 7.260 ppm; δC 77.160 ppm). Chemical shifts (δ) are
given in parts per million (ppm) relative to the TMS peak. NMR Spectra were analyzed
using the MestReNova software package (version 14). The numbering scheme for the NMR
assignment is shown in Figure 6.
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oil (6.23 g, 84%). The NMR data agree with the literature procedure: 1H NMR: (400.3 MHz, 
CDCl3) δH 7.49 (1H, s, H-5), 7.19 (1H, d, 3JHH 7.8 Hz, H-3), 7.13 (1H, d, 3JHH 7.8 Hz, H-2), 2.57 
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3.2. Synthesis of 1-(2,5-Dimethylphenyl)-3-phenylprop-2-en-1-one (2) 
The following is adapted from a procedure in the literature [2]. Compound 1 (2.22 g, 

15 mmol) was dissolved in 95% ethanol (15 mL) and benzaldehyde (1.55 mL, 1.61 g, 15 
mmol) was added in one portion. With continuous stirring, a sodium hydroxide solution 
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and dichloromethane (50 mL) was added. The organic layer was separated, and the aque-
ous layer washed with dichloromethane (3 × 10 mL). The combined organic layers were 
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addition of diethyl ether (3 mL) promoted crystallization of the oil over 24–48 h, affording 
bright yellow crystals of 2 suitable for X-ray diffraction (2.53 g, 71%) (Mp. 51−53 °C). The 
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Figure 6. NMR numbering schemes for compounds 1 and 2.
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3.1. Synthesis of 1-(2,5-Dimethylphenyl)ethan-1-one (1)

The following is adapted from a procedure in the literature [1]. In a three-necked
flask equipped with an addition funnel and a reflux condenser, aluminum chloride (9.34 g,
70 mmol) was combined with dichloromethane (20 mL) with continuous stirring. The sus-
pension was cooled to 0 ◦C using an ice/water bath. A solution of acetyl chloride (5.0 mL,
5.50 g, 70 mmol) in dichloromethane (10 mL) was added dropwise over 15 min. Then,
a solution of p-xylene (6.2 mL, 5.32 g, 50 mmol) in dichloromethane (12 mL) was added
dropwise over 30 min. After addition, the solution was warmed to ambient conditions and
allowed to stir for a further 30 min. The mixture was poured into a mix of ice (ca. 40 g) and
conc. hydrochloric acid (12 mL) and stirred for 25 min. The organic layer was separated
and the aqueous layer washed with dichloromethane (3 × 15 mL). The combined organic
layers were washed with saturated aqueous sodium bicarbonate (2 × 15 mL) then dried
over sodium sulfate. The solvent was removed in vacuo to afford 1 as a pale-yellow oil
(6.23 g, 84%). The NMR data agree with the literature procedure: 1H NMR: (400.3 MHz,
CDCl3) δH 7.49 (1H, s, H-5), 7.19 (1H, d, 3JHH 7.8 Hz, H-3), 7.13 (1H, d, 3JHH 7.8 Hz, H-2),
2.57 (3H, s, H-8), 2.48 (3H, s, H-9), 2.36 (3H, s, H-10). 13C DEPTQ NMR (100.7 MHz, CDCl3)
δC 202.1 (s, qC-7), 137.8 (s, qC-1), 135.33 (s, qC-4fff), 135.30 (s, qC-6), 132.3 (s, C-3), 132.1
(s, C-2), 130.0 (s, C-5), 29.7 (s, C-8), 21.2 (s, C-9), 21.0 (s, C-10). IR νmax (ATR/cm−1) 3025w
(νCH), 2926w (νCH), 1679vs (νC=O), 1354s, 1256s, 1188s, 953m, 816s, 615s.

3.2. Synthesis of 1-(2,5-Dimethylphenyl)-3-phenylprop-2-en-1-one (2)

The following is adapted from a procedure in the literature [2]. Compound 1 (2.22 g,
15 mmol) was dissolved in 95% ethanol (15 mL) and benzaldehyde (1.55 mL, 1.61 g,
15 mmol) was added in one portion. With continuous stirring, a sodium hydroxide solution
(3 mL, 8.33 molL−1, 25 mmol) was added dropwise to the reaction mixture over 2–3 min.
Stirring was continued for a further 30 min. The solution was poured onto ice (ca. 45 g) and
dichloromethane (50 mL) was added. The organic layer was separated, and the aqueous
layer washed with dichloromethane (3 × 10 mL). The combined organic layers were dried
over sodium sulfate. The volatiles were removed in vacuo to afford a yellow oil. The
addition of diethyl ether (3 mL) promoted crystallization of the oil over 24–48 h, affording
bright yellow crystals of 2 suitable for X-ray diffraction (2.53 g, 71%) (Mp. 51−53 ◦C). The
NMR data agree with the literature procedure: 1H NMR: (400.3 MHz, CDCl3) δH 7.60−7.55
(2H, m, H-11), 7.48 (1H, d, 3JHH 16.0 Hz, H-9), 7.42−7.38 (3H, m, H-12,13), 7.30 (1H, s, H-5),
7.22−7.16 (2H, m, H-2,3), 7.14 (1H, d, 3JHH 16.0 Hz, H-8), 2.40 (3H, s, H-14), 2.37 (3H, s,
H-15). 13C DEPTQ NMR (100.7 MHz, CDCl3) δC 196.9 (s, qC-7), 145.8 (s, C-9), 139.2 (s,
qC-1), 135.2 (s, qC-4), 134.8 (s, qC-10), 133.8 (s, qC-6), 131.3 (s, C-2,3), 130.7 (s, C-13), 129.1
(s, C-12), 128.7 (s, C-5), 128.5 (s, C-11), 126.9 (s, C-8), 21.0 (s, C-15), 19.9 (s, C-14). IR νmax
(ATR/cm−1) 3061w (νCH), 2926w (νCH), 1666vs (νC=O), 1597vs (νC=C), 1447m, 1328s, 1168s,
984vs, 775vs, 696vs, 564m.

X-ray diffraction data for compound 2 were collected at 173 K using a Rigaku FR-X Ultra-
high Brilliance Microfocus RA generator/confocal optics [Mo Kα radiation (λ = 0.71073 Å)]
with an XtaLAB P200 diffractometer. Intensity data were collected (using a calculated
strategy) and processed (including correction for Lorentz, polarization and absorption)
using CrysAlisPro [9]. The structure was solved by dual-space methods (SHELXT) [10]
and refined by full-matrix least-squares against F2 (SHELXL-2019/3) [11]. Non-hydrogen
atoms were refined anisotropically, and hydrogen atoms were refined using a riding model.
All calculations were performed using the Olex2 interface [12].

Crystal data for 2: C17H16O (M = 236.30 gmol−1), orthorhombic, space group P212121
(no. 19), a = 7.3103(3), b = 13.6107(4), c = 13.4970(4) Å, vol. = 1342.94(8) Å3, Z = 4, ρcalc
(gcm−3) = 1.169, 15,416 reflections measured, 3212 unique (Rint = 0.0594), which were used
in all calculations. The final R1 [I > 2σ(I)] was 0.0449 and wR2 (all data) was 0.1180.

Supplementary Materials: Figures S1–S12: spectroscopic data of compounds 1 and 2. Video S1:
melting point of 2.
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