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Abstract: There are many different cells that perform highly specialized functions in the
human hematological and immune systems. Due to the relevance of their activity, in
this work we investigated the cell types and subtypes that form this complex system,
using single-cell RNA sequencing (scRNA-seq) to dissect and assess the markers that best
define each cell population. We first developed an optimized computational workflow
for analyzing large scRNA-seq datasets. We then used it to find gene markers of the
different cell types present in bone marrow (BM) and peripheral blood (PB). We analyzed
three different single-cell datasets to find specific cell markers using this strategy: first, we
searched in the CD marker genes and then in the genes encoding membrane proteins and
finally in all detected protein-coding genes. This allowed us not only to confirm known
CDs that best mark some cell types (e.g., monocytes, B cells, NK cells, etc.) but also to test
the ability of new genes to distinguish specific cell types. Finally, we applied a machine
learning method (Random Forest) to test the accuracy of the different markers we found.
As a result of all this work, we have found and propose specific and robust gene signatures
to identify different types and subtypes of hematological and immune cells.

Keywords: single cell; RNA-seq; human gene; gene signature; cell marker; biomarker; CD;
blood; bone marrow; immune cell; bioinformatics; machine learning

1. Introduction
Hematopoiesis is the complex process where an enormous number of adult cells

are constantly regenerated throughout life, producing multiple populations of highly
specialized cells of different types with unique functions [1]. In humans, this process occurs
primarily in the adult bone marrow (BM), and the hematopoietic system is divided into
four major cellular lineages: erythroid lineage, megakaryocyte lineage, myeloid lineage,
and lymphoid lineage [2]. The main cell types in the myeloid lineage are the following:
myeloid dendritic cells, plasmacytoid dendritic cells, classical monocytes, non-classical
monocytes, and neutrophils. The main cell types in the lymphoid lineage are T cells (with
many subtypes, such as CD4+ T cells and CD8+ T cells), B cells, plasmatic cells, and natural
killer (NK) cells. All these cells play different roles in the immune system and in the
multiple physiological functions carried out by the hematological system. Therefore, the
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molecular characterization, isolation, and analysis of these different types of immune and
hematological cells have received growing interest in biomedical studies, especially for the
advancement of cell therapies and regenerative medicine and for a better characterization
of many diseases that cause specific cytopenias or abnormal cell growth (as is the case in
many hematological malignancies, such as leukemias, lymphomas, etc.) [3].

The different cell populations are commonly classified by clusters of differentiation
(CDs), which are surface molecular markers of the cells used for immunophenotyping
and distinguishing between the different cell types and subtypes [4]. These markers, once
identified as characteristic of certain specific cells, are called CDs to follow a common
nomenclature that allows for better identification and sharing within the international
scientific and research community [5]. These surface markers have specific functions de-
pending on the cell and can be differentially expressed when the cells undergo intracellular
genetic alterations or when there are changes in cell state or changes in environmental
conditions [6,7]. In humans, the current CD collection includes a list of 371 molecules
(mainly proteins) designated by the Human Cell Differentiation Molecules (HCDM) coun-
cil (http://www.hcdm.org/) [6,7] and reported in various biomolecular databases; for
example, in UniProt (human cell differentiation molecules: CD nomenclature and list of
entries; cdlist.txt). In general, CDs are well-defined and contrasted cell markers, but new
markers are still needed to identify and specify many subtypes and subpopulations of
human cells. An example of this is that some of the most recent CDs added to the list are
C-type lectins with the identifications CD367, CD368, CD369, CD370, and CD371 [5]. These
membrane markers are very relevant in the clinic, because abnormal expression of these
CDs in bone marrow and peripheral blood is one of the first diagnostic features to identify
patients with different types of leukemia [4]. This demonstrates the enormous importance
of generating deeper and more precise knowledge about the molecular markers that can
identify specific cell types or trace particular alterations in specific cells.

Transcriptomics and full gene expression profiling of many human samples from
different organs, tissues, and cells over the past decades have provided a large corpus of
knowledge about the protein-coding genes that are present in different cell types or at
different stages of the cells in different human cell lineages. Many of these studies have
been performed on the hematologic lineage because, as noted above, it encompasses many
different cell types. Despite these advances, current CD markers are unable to separate
some subpopulations with similar molecular profiles that are functionally distinct, such
as naive and memory CD4+ T cells, or naive and memory CD8+ T cells, or regulatory
T cells (Tregs) and helper T cells. In this context, technologies such as single-cell RNA
sequencing (scRNA-seq) can uncover complex and unknown populations without losing
cellular differences, revealing regulatory relationships between genes and showing the
evolutionary relationships of different cells [8]. Because of that, in this work, we evaluate the
performance of several widely used markers (CDs) and discover other genes or membrane
proteins that mark specific human hematological cells.

2. Results
2.1. Single-Cell RNAseq Datasets

We collected three independent transcriptomic datasets of human samples generated
by single-cell RNA sequencing (scRNA-seq), containing single-cell gene expression data
from different human primary cells (see Table 1 in Section 2, Materials and Methods, for
a full description of the characteristics of these datasets) [9–11]. The datasets were collected
from a variety of published resources and generated using the 10x Genomics Chromium
platform for cell isolation and the Illumina HiSeq 3000, HiSeq 4000, and NovaSeq 6000 high-
throughput sequencing platforms for transcriptomic expression profiling.

http://www.hcdm.org/
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Table 1. Information of the datasets used for the single-cell analysis. BM = bone marrow;
PBMCs = peripheral blood mononuclear cells; BMMC = bone marrow mononuclear cells.

Datasets
Authors
Journal
(Year)

Year
and
[Ref.]

Public
Repository Platform Used Number

of Cells

Number of
Healthy
Donors

Source
Tissue

Supervised
Data

(FACS)

Dataset 1 Xie et al.
Natl Sci Rev
(2021)

2020
[9]

GEO:
GSE149938

Illumina
HiSeq 4000
(Homo sapiens)

7643 21 BMMC/
PBMC Yes

Dataset 2 Oetjen et al.
JCI Insight
(2018)

2018
[10]

GEO:
GSE120221

Illumina
HiSeq 3000
(Homo sapiens)

90,653 20 BMMC No

Dataset 3
10x
Genomics
(2020)

2020
[11]

10k PBMCs
from a
healthy
donor

Illumina
NovaSeq 6000
(Homo sapiens)

10,985 1 PBMC No

2.2. Single-Cell Analysis Workflow and Identification of Hematological and Immune Cell Types

We first prepared a bioinformatics workflow for scRNA-seq data analysis, shown in
Figure 1, and applied it to the three collected datasets. The analysis was run using the
expression data of different selected gene lists: (i) the CD list of 369 human genes known to
encode for CD markers, taken from the Human Protein Atlas (List 1, with 369 genes);
(ii) a list of membrane-associated genes that included all the 369 CD markers plus
an additional set of 63 genes that encode for membrane proteins (List 2, with 432 genes);
(iii) the list of all the genes that were detected as expressed in each of the three scRNA-seq
datasets analyzed (List 3, containing a different number of genes in each dataset).

The set of 63 genes included in List 2 was obtained from the intersection of two lists:
(i) the list of 363 genes generated as the union of unique genes from the TOP 20 most
differentially expressed genes found in each of the 27 clusters of Dataset 1 (obtained with
FindAllMarkers, Seurat function); with (ii) the list of 5518 genes predicted to encode
membrane proteins (MPs) by MDM (majority decision method) but that were not included
in the list of 369 CD markers. The intersection of these two gene lists yielded a new list of
63 genes (as shown in Figure 2a, intersection of 5518 MP genes with 363 top marker genes:
MPs and top markers but not CDs).

Using three independent scRNA-seq datasets and following the workflow described
in Figure 1, we performed a series of analyses to determine how many different cell types
and subtypes could be identified in each dataset using the expression of the three gene
lists described at the beginning of this section (i.e., the MPs, the CDs, and the top markers
reported in Figure 2a). In Figure 2b, we present a graphical scheme including all the
different hematological and immune cell types identified in the single-cell data, organized
into three lineages: myeloid, lymphoid, and progenitors, starting with six general cell
groups: monocytes (Mon), dendritic cells (DCs), B lymphocytes (B cells), T lymphocytes
(T cells), and natural killer cells (NK cells). Each of these major cell groups contains
several different cell types or subtypes, which are shown in a second layer in Figure 2b.
The names of all these cell types are given in the LEGEND in Figure 2. All different cell
populations identified in the analyses of each one of the three single cell datasets studied
(Datasets 1, 2, and 3, reported in Table 1) are marked with a colored square in Figure 2b, and
they are the following: 27 cell types found in Dataset 1; 19 in Dataset 2; and 12 in Dataset 3.
The largest number of cell types included in this analysis, 27, was found in Dataset 1.
Furthermore, these cell types were experimentally validated in the work published by
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Xie et al. (2020) [9]. Therefore, we used Dataset 1 as a reference for the identification of
cell types at the deepest granularity (i.e., the deepest level of cell class separation and
analysis). We also used two other levels with a smaller number of cell types: Level 2, which
distinguishes 16 cell types; and Level 1, which distinguishes only 7 more general cell types.
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sion per cell, the clusters or groups of cells found, and the phenotypic information of the samples). 
We applied the second part of the workflow described to generate the Seurat objects for each dataset. 

Figure 1. Workflow applied to the analysis of the single-cell RNA-seq datasets studied in this work.
The first part (from 1.1 to 1.5) corresponds to the experimental steps from the biological samples till
obtaining the raw expression counts per cell and per gene. These steps include the following: the
single-cell isolation (using 10x Genomics Chromium platform), the single-cell RNA sequencing (using
Illumina sequencers HiSeq or NovaSeq), the quantification of the reads, the alignment of the reads to
the reference genome or transcriptome, and the calculation of the raw counts data matrix per cell and
per gene. The second part (from 2.1 to 2.7) includes the actual analytical bioinformatics section of
the workflow, starting with quality control and filtering, normalization, scaling, and dimensionality
reduction, clustering for the identification of different cell populations, and generation of the Seurat
single-cell object containing all the output data (i.e., the quantification of gene expression per cell, the
clusters or groups of cells found, and the phenotypic information of the samples). We applied the
second part of the workflow described to generate the Seurat objects for each dataset.
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in Figure 1, we performed a series of analyses to determine how many different cell types 

Figure 2. Scheme showing (a) the lists of human genes that are used in this work, indicating their
size and the overlap between them: 5518 genes predicted to encode membrane proteins; 369 genes
encoding known CD markers; and 363 genes corresponding to the union of unique genes from the
TOP 20 most differentially expressed genes found in each of the 27 clusters of Dataset 1. The Venn
diagram shows the intersections between these 3 sets of genes. Part (b) of this figure schematically
shows all the hematological and immune cell types that we worked with in this study and that
were detected in the 3 datasets (Datasets 1, 2, and 3). The cell types identified in each of these
datasets are marked with a colored square: green squares for Dataset 1, which includes 27 cell types;
black squares for Dataset 2, which includes 19 cell types; and blue squares for Dataset 3, which includes
12 cell types. The cells are organized into lineages: myeloid cells, progenitor cells, and lymphoid
cells; and from less specific to more specific cell types (from top to bottom). The legend at the bottom
gives the names of all the specific cell types studied. Finally, colored background panels with a red
square inside are included in the figure to mark the cell types studied at different levels of dissection
or cell type separation. Thus, three main levels are considered: Level 1, which includes 7 different cell
types in the grey-colored panels; Level 2, which includes 16 cell types in the green-colored panels; and
Level 3, which includes 27 different cell types and subtypes in the cream colored panels. This largest
number of cell types (27 in Level 3) is the same defined in Dataset 1, because that study included
experimental validation of the different cell populations and was therefore used as a reference in
this work.
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2.3. Comparative Analysis of scRNA-Seq Datasets of Blood and Bone Marrow Mononuclear Cells

A comparative analysis of three independent scRNA-seq datasets of peripheral blood
mononuclear cells (PBMCs) and bone-marrow mononuclear cells (BMMCs) isolated from
healthy donors was performed using the bioinformatic workflow presented in Figure 1.
The visualization of the single-cell maps obtained for each of these datasets is shown in
Figure 3, which also indicates the number of different cell types identified in each set.
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gene lists. The number of distinct groups found in each case were the following: (i) Dataset 
1, 19 clusters with List 1, 18 clusters with List 2, and 28 clusters with List 3; (ii) Dataset 2, 
15 clusters with List 1, 17 clusters with List 2, and 20 clusters with List 3; (iii) Dataset 3, 11 

Figure 3. Single-cell tSNE and UMAP maps of three complementary sample cell sets obtained
from peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BMMCs).
(a) Three tSNE plots corresponding to the analysis of Dataset 1, which contains 7643 cells and
identifies clusters corresponding to 27 different cell types. The three plots include clusters of different
cell populations (i.e., different cell types or subtypes) generated using different numbers of genes:
369 CD markers (gene List 1); 369 CD markers plus 63 genes encoding membrane proteins (List 2); and
all expressed genes detected in the cells of this dataset (List 3). (b) Three UMAP plots corresponding
to the analysis of Dataset 2, which contains 90,653 cells and identifies clusters corresponding to
19 different cell types. The three plots were generated in the same way as indicated above, using
different numbers of genes: List 1; List 2; and List 3. (c) Three UMAP plots corresponding to the
analysis of Dataset 3, which contains 10,985 cells and identifies clusters corresponding to 12 different
cell types. The three plots were generated in the same way as indicated above, using different
numbers of genes: List 1; List 2; and List 3.

The different cell clusters identified in the analyses of the three datasets shown in
Figure 3 were found using the expression signal detected in the cells corresponding to
different lists of genes. As the cells under investigation were hematological and immune
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cells, the first search was carried out using the list of known CD markers. Cluster of
differentiation (CD) markers are cell surface molecules or antigens used in immunology
and cell biology to identify and characterize different cell types. This list is mainly com-
posed of proteins, so we took it from the Human Protein Atlas database (https://www.
proteinatlas.org/search/protein_class:CD+markers, accessed on 16 December 2021), which
provided us with a list of 369 proteins encoded by genes (List 1 in Figure 3, included in
Supplementary Table S1). The second gene list we used had 432 genes (List 2), which was
composed of 369 CD markers plus 63 genes encoding membrane proteins, as mentioned
above. The third gene list used (List 3) contains all genes that were found to be expressed
(i.e., detected) in the three BM/PBMC datasets, which were the following: 19,813 genes in
Dataset 1; 33,660 genes in Dataset 2; and 36,601 genes in Dataset 3. As can be seen from
the tSNE and UMAP plots in Figure 3, the granularity of the single-cell maps is marked by
the number of different cell populations found in each dataset and is equal to the number
of clusters identified in each set. The number of clusters found was the following: 27 in
Dataset 1, 19 in Dataset 2, and 12 in Dataset 3; and these numbers of clusters correspond
to the same number of cell types described in Figure 2. At the same time, the granularity
within each dataset increases as the number of genes included in the analyzed expression
data increases.

2.4. Evaluation of the Clustering with Silhouette Using Different Gene Lists

We evaluate the clustering power of the three gene lists in the three independent
datasets, taking into account the highest ability to separate and distinguish different groups
of cells when applying the Silhouette algorithm. The results of this analysis are presented in
Supplementary Figure S1, which shows in nine plots the output of the clustering algorithm
Silhouette for each one of the three datasets and each one of the three gene lists. The
number of distinct groups found in each case were the following: (i) Dataset 1, 19 clusters
with List 1, 18 clusters with List 2, and 28 clusters with List 3; (ii) Dataset 2, 15 clusters with
List 1, 17 clusters with List 2, and 20 clusters with List 3; (iii) Dataset 3, 11 clusters with
List 1 and also with List 2 and 12 clusters with List 3. The value of the mean Silhouette
width (MSW), as a measure of the separation and definition of the clusters, is given for
each clustering in Supplementary Figure S1, and it was greater than 0.5 in four cases: in
Dataset 1 with List 3 (0.51) and in Dataset 3 with List 1 (0.53), List 3 (0.57), and List 3 (0.54).
It is clear that the ability to separate the cells into different groups depends on the number
of genes used in the clustering, as these are the features that characterize the cell types, but
also on the quality of the transcriptomic signal obtained in each dataset. It is also evident
that the smaller the number of clusters identified, the easier it is to optimize the separation
between clusters.

In Dataset 1, the average Silhouette widths (MSW = 0.49, 0.48, 0.51) did not show
high differences between the use of the three gene lists tested. On the other hand,
Dataset 2 and Dataset 3 showed their highest values using List 2, which had 432 genes
(MSW = 0.39 and 0.57, respectively). These results showed that the ability to discriminate
cell types by adding membrane protein genes (which were included in List 2 with respect
to List 1) increased the separation capacity compared to using only the CD genes (List 1).
Furthermore, the results of this analysis with the Silhouette algorithm also show that the
number of cell types found (i.e., the number of distinct cell populations or distinct groups
of cells) is not dependent on the number of cells tested or the number of genes detected in
the single-cell technology, because Dataset 1 has fewer cells (7642 cells) and fewer genes
(19,813 genes) than Dataset 2 (with 90,653 cells and 33,660 genes), but Dataset 1 has many
more clusters and a better separation of the clusters than Dataset 2. This also indicates that

https://www.proteinatlas.org/search/protein_class:CD+markers
https://www.proteinatlas.org/search/protein_class:CD+markers


Int. J. Mol. Sci. 2025, 26, 805 8 of 20

the quality of the obtained single-cell transcriptomic profiles is more important than the
number of cells and genes.

2.5. Finding Gene Markers for Specific Cell Types and Subtypes Identified in the
Single-Cell Datasets

After identifying the main clusters or groups of cells found in the analyses of the
three datasets studied, we ran a series of functions using the Seurat library to find the main
gene markers of each cell cluster. These markers are chosen because they show, for each
cell cluster, a significant differential expression with respect to all the other cells of the
single-cell map. In this way, we found the genes included in Figure 4, which shows a set of
top markers for fifteen cell types: three progenitor cells; seven lymphoid lineage cells; and
five myeloid lineage cells.
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Figure 4. Tables on the left: selected top markers for 15 cell types: (i) 3 types of progenitor cells;
(ii) 7 types of lymphoid lineage cells; and (iii) 5 types of myeloid lineage cells. Right panels: for each
group of cell types, three tSNE plots corresponding to Dataset 1, showing the expression of 3 selected
genes (marked in red or yellow according to the scales included in each plot). The figure also shows,
in red, green, or blue, the source list of the genes (i.e., the set in which the genes are included: the CD
set, the MP set, or the set that is all other genes but not CDs or MPs).

Following a similar strategy described above in Figure 4 for the identification of gene
markers associated with each cell type, we performed a more exhaustive search for markers
using the highest number of different cell types and subtypes identified in our study, which
was 29: (i) 27 cell types derived from Dataset 1 (as shown for Level 3, the deepest level,
described in Figure 2); plus (ii) 2 cell types corresponding to dendritic cells not detected in
Dataset 1 but detected in Datasets 2 and 3 (pDC and mDC in Figure 2). The full name and
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lineage of these 29 cell types and subtypes are presented in Supplementary Table S2, where
it can be seen that 2 correspond to stem or multipotent progenitors (HSC and MPP), 5 to
lymphoid progenitors (BNK, CLP, LMPP, MLP, and NKP), another 5 to myeloid progenitors
(cMoP, CMP, GMP, hMDP, and MEP), 12 correspond to cell types of the lymphoid lineage,
either B cells, NK cells, or T cells (immB, memB, naiB, preB, proB, regB, kineNK/NK1,
toxiNK/NK2, plasma, CD4T, CD8T, and pDC), and finally 5 correspond to cell types of the
myeloid lineage (claM, interM, nonM, preM, and mDC).

Using these 29 cell types, we interrogate the clusters obtained in the analysis of the
single-cell data (27 types found in Dataset 1 and 2 types from Dataset 3) to obtain the top
30 gene markers that are most differentially expressed (i.e., most active) in each of these
cell types compared to the rest of the cell types in the data. This was performed using the
FindAllMarkers function of the Seurat algorithm. The results of this search are provided in
Supplementary Table S3, which includes, for each of the 29 cell types, the 30 genes that best
mark that cell type, ranked by adjusted p-values (obtained in the statistical contrast of the
cells assigned to each cell type versus all other cells). The analysis also includes, for each
cell type, the percentage of cells expressing each gene marker in the cluster assigned to that
type versus the average percentage of expression of that gene in all other clusters. In total,
this search for the best markers of these 29 cell types yields a set of 596 unique genes that
will be further compared with other gene sets used to identify hematological and immune
cell types.

2.6. Machine Learning Comparative Evaluation of the Cell Type Gene Markers Found

After evaluating the ability to separate and distinguish our cells in each dataset, we
tested how our gene signature (i.e., the set of 596 identified gene markers) was able to
distinguish different cell types and subtypes compared to other gene signatures. We
carried this out using the Random Forest algorithm within Dataset 1 as it was supervised,
and we compared the performance of four gene signatures: (1). the set consisting of the
top 30 CDs that best identify the clusters in Dataset 1 (218 unique genes); (2). the set
consisting of the top 30 CDs together with membrane protein genes (MPs) that best identify
the clusters in Dataset 1 (281 unique genes); (3). the set of 596 unique gene markers we
identified (described above); (4). the set of 547 genes included in the LM22 signature of
CIBERSORT, which is a standard reference set for the identification of hematological and
immune cells [12,13]. We tested these four signatures at three different “levels” of cell type
and subtype separation granularity: Level 1, which includes 7 cell types; Level 2, which
includes 16 cell types; and Level 3, which includes 27 cell types (the cell types included in
each level are described in Figure 2).

In all cell type levels of prediction, the highest accuracy (i.e., the best mean overall
accuracy, MOA = 0.96 for 7 cell types of Level 1 and 0.84 for 16 cell types of Level 2) was
obtained with the signature produced by selecting the top 30 of all genes (i.e., the signature
of 596 genes) (Figure 5a). And the second best was obtained with the signature produced
by selecting the top 30 CDs and membrane protein genes of each cluster (MOA = 0.94 for
Level 1 and 0.81 for Level 2), which is better than the widely used LM22 signature. These
results once again showed that deep analysis of single-cell data can provide many new
cell-specific gene markers and that the use of some extra genes (such as those predicted to
be membrane proteins by MDM), added to the list of CDs, provided a set of markers that
were quite accurate for identifying hematological and immune cell types (Figure 5).
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label of each of the 27 clusters of cells present in the single-cell analysis of Dataset 1.
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Figure 5a shows the results of the comparative evaluation, performed using Random
Forest, of the predictive power of each one of the four gene signatures (four sets of gene
markers) obtained in the identification of the cell types and subtypes present in Dataset 1.
The comparisons are performed considering 7 different cell types, 16 cell types, and 27 cell
types, corresponding to three levels of granularity. The accuracy (MOA) corresponding
to each set and each level is provided. Since the Random Forest test was run 10 times,
Figure 5b shows a heatmap of the binary matrix including, for each of the 27 cell types,
the times that the cells of a given cluster are correctly assigned to the known label (i.e., the
times that the cells of a cluster are assigned to the correct cell type).

The figure shows that most cell types, such as CD4T, CD8T, classical and non-classical
monocytes (claM, nonM), plasma cells, etc., are well identified, with a correct classification
rate above 85. In contrast, the cell types that are most confused are those that are closer in
lineage, such as subtypes of B cells (for example, regulatory B cells, regB, and naive B cells
(naiB)) or subtypes of progenitors (such as megakaryocyte/erythroid progenitors, MEPs,
confused with multipotential progenitors, MPPs; or megakaryocyte/erythroid progenitors,
MEPs, with common myeloid progenitors, CMPs).

2.7. Analysis of Cell Trajectories in the Single-Cell Map to Reveal Cellular Relationships and
Identify Different Lineages

Another complementary analysis that we can perform on the single-cell data of the
hematological and immune cell sets studied here is the analysis of the trajectories that may
be present in the cell maps. This analysis, performed using the TSCAN algorithm [14],
explores the data to find progressive changes in the expression profiles of specific genes
along the groups or clusters of cells identified in the maps.

Figure 6 shows this analysis of trajectories upon the single-cell data of Dataset 1. This
dataset was supervised, and the original study [9] provided the experimental identification
of multiple cell types and subtypes of hematological and immune cells, followed by the
corresponding assignment of these types to 27 cell populations and cell clusters in the
single-cell map. This mapping is shown in Figure 6a, and thanks to the fact that the dataset
includes several progenitors of the main lineages (myeloid and lymphoid lineage), as well
as most of the differentiated cells of these lineages (such as six subtypes of B cells or four
subtypes of monocytes), we obtain three clear trajectories derived from the expression
profiles of the cells, which reflect very well the evolution of the cells from populations of
progenitors to populations of differentiated cells.

The three main trajectories found in the analysis of the single-cell map of Dataset 1,
shown in the t-SNE plots (Figure 6a–c), reflect that the expression profiles of the cell
populations move or evolve from stem cells (HSCs) to monocytes (Mon), revealing the
myeloid lineage; move from stem cells (HSCs) to B lymphocytes (B cells and plasma cells),
revealing the B lymphoid lineage; and move from stem cells (HSCs) to T lymphocytes
(T cells and NK cells), revealing the T-lymphoid lineage.
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Figure 6. Trajectory analysis of the cells from supervised Dataset 1. (a) Single-cell t-SNE map showing
populations of 27 cell types and subtypes. (b) The same single-cell t-SNE map with a color gradient
indicating the differentiation trend: from dark purple for progenitor phenotypes to light green and
yellow for differentiated phenotypes. (c) The same single-cell t-SNE map, now with the major cell
clusters (15 groups) highlighted in color and the trajectories found by TSCAN indicated by black lines.
(d) Expression profiles of three gene markers (CD34, CD3e, and CD20) that reflect the trajectories
found corresponding to the myeloid lineage, the lymphoid lineage till B and plasma cells, and the
lymphoid lineage till T cells and NK cells.

3. Discussion
We conducted a comprehensive integration and analysis of three single-cell RNA

sequencing datasets derived from human peripheral blood and bone marrow cells. Our
investigation focused on identifying and evaluating three gene sets (List 1: 369 CD marker
genes; List 2: 432 genes, CD markers plus 63 membrane proteins; and List 3: all expressed
genes detected in each dataset) to establish robust and functional signatures for distinct
cell types and subtypes. The high resolution of the scRNA-seq technique enabled us to
uncover novel insights into the expression profiles of blood and immune cells that could
refine and expand the gene markers currently employed for isolating and studying these
cellular populations.

Our primary objective was to assess the ability of the different gene sets to distinguish
cell types. Analysis using Silhouette scores revealed that List 2, comprising 432 genes,
demonstrated superior discrimination of hematological cell types. This suggests that the
additional 63 genes in List 2, predicted to encode membrane proteins by MDM, significantly
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enhance cell-type resolution. Notable markers include established genes such as DERL3
for plasma cells, KLRF1 for NK cells, and FCRLA for B cells [15–17]. Additionally, we
identified potentially novel markers with high specificity and limited prior characterization,
such as MGST1, SMIM3, and SMIM24 for progenitor cells or FPR1, IFI30, and SPNS3 for
myeloid cells. These findings offer promising avenues for further investigation into their
roles in cell identity and function.

Regarding progenitor cells, SMIM24 has been previously associated with a stemness
blood phenotype [16], while the roles of SMIM3 and MGST1 in this context remain less
clear. These two markers were observed to indicate specific lineage immaturity, correspond-
ing to lymphoid and myeloid lineages, respectively. These progenitor cell populations
are not well characterized yet [17], emphasizing the importance of the information pro-
vided by these novel markers. We saw this fact in Dataset 1, as the algorithms were
unable to achieve reliable isolation, and the clustering did not correspond to the cell types
assigned by FACS. This indicates that, in addition to the lack of well-defined markers,
the precise identities of the cell types, such as CMPs (common myeloid progenitors) or
GMPs (granulocyte–macrophage progenitors), remain unclear. Evidence suggests that
distinct human myeloid progenitor populations give rise to neutrophil/monocyte and
mast cell/basophil/eosinophil lineages, with the latter populations clustering together
and segregating from neutrophil/monocyte lineages [18]. In our analysis, this segregation
was reflected by the clustering of CMPs and MEPs (megakaryocyte–erythroid progenitors)
together, while GMPs and cMOPs (common monocyte progenitors) formed a separate
cluster, representing precursors to monocytes and neutrophils. Moreover, the existing FACS
markers for these cells showed a poor correlation with their transcriptomic profiles. These
findings highlight the need for further studies to identify robust gene signatures that can
better distinguish the subtypes of hematopoietic progenitor cells.

Moving to myeloid cells, the novel membrane markers proposed (FPR1, IFI30, and
SPNS3) did not show a clear relationship with the cell types we assigned when compared
to information from the Human Protein Atlas [19]. Nevertheless, the marker assignments
derived for these cells enabled successful isolation, as discussed in the Section 2 regarding
the establishment of these robust signatures. This finding was further validated using the
Random Forest prediction method, along with Silhouette score analysis, which yielded
the highest values for these myeloid cells. These results confirm that myeloid cells are the
best-separated populations with the most distinctive gene signatures.

In our clustering analysis, one of the most notable findings involved the CD4 marker
in lymphoid cells. Across all datasets, we observed that CD4 was more highly expressed in
monocytes than in the commonly designated CD4+ T lymphocytes. Interestingly, in both
datasets, only about 10% of these T lymphocytes expressed this marker. This finding is
significant, because despite the low expression of CD4 in these cells at the transcriptomic
level, the presence of the CD4 protein on the cell membrane remains high. Currently,
protocols for isolating lymphoid cells for clinical applications, such as CAR-T cell devel-
opment, tend to focus on more functional markers, such as those identified and used in
our study (e.g., CD27 and CD8) [20,21]. This highlights the importance of using robust and
functionally relevant markers for both research and therapeutic purposes.

A similar observation was made with NK cells, where we consistently isolated the
same activator and repressor markers across datasets, enabling the algorithms to identify
two distinct clusters or populations. The conventional FACS-based classification of NK
cells relies on the CD56 and CD16 markers, which we confirmed in our datasets: one
cluster exhibited high CD56 expression with lower levels of CD16a, while the other showed
higher CD16a expression with no CD56 expression [22]. The significance of our find-
ings lies in the additional markers associated with these two profiles. For the high-CD56
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population, markers such as KLRC1 and KLRF1 were prominent, whereas the non-CD56
population was associated with markers like KIR2DL3 and KIR3DL2. These markers define
two functional NK cell populations: the low-CD56 population, characterized by high cyto-
toxic activity, and the high-CD56 population, which exhibited a more immunomodulatory
profile with reduced cytotoxicity [22]. This distinction has important implications for
isolating NK cells for the development of CAR-NK therapies. In particular, selection of NK
cells based on functional markers such as KIR2DL3 or low-CD56 expression for cytotoxic
activity may be advantageous, as this behavior was consistently observed in all cases.

To isolate these markers, we identified the most differentially expressed markers for
each cluster and utilized trajectory analysis in Dataset 1 to track how their expression pro-
files changed along the differentiation trajectory (adding the pseudotime hyperparameter).
This approach provided valuable insights for precisely delineating each subpopulation
and constructing robust gene signatures. To evaluate the performance of CD markers,
we compared the cell-type assignment capacity of our markers against other gene lists
(Lists 2 and 3), which also included CD markers. Using Random Forest algorithms, we
observed that the signature incorporating the 63 additional membrane genes outperformed
others. This confirmed the effectiveness and selection strength of this human surface marker
list (List 2) in our single-cell transcriptomic datasets. Importantly, this list could serve as the
foundation for defining a new human cluster of differentiation (CD) for peripheral blood
and bone marrow cell populations. This finding is particularly noteworthy, as previous
studies of CD markers and membrane proteins have primarily relied on methodologies
such as flow cytometry, mass spectrometry, or RNA-seq [23–25]. By contrast, our single-
cell approach provides a novel perspective and enhanced resolution for identifying and
characterizing these markers.

Additionally, we investigated several key non-membrane-associated markers from
List 3. One such marker, TCF7, is particularly notable, having been previously charac-
terized for its expression in naïve and immature T cells. TCF7 plays a crucial role in the
development of memory phenotypes within these T-cell populations [26]. In this way, TCF7
is a well-known marker for CD8 memory T cells, but it can also indicate immature T cells.
This reflects an inherent complexity when using certain genes as exclusive markers, as their
expression may be present in more than one cell population, making it difficult to accurately
and specifically interpret each of the clusters assigned to immune cells or difficult to identify
a specific population, since multiple cell types share functional pathways or molecular
features. In our study, fully aware of these complexities, we did not use a single marker
for a cell type but rather applied an analytical approach that identifies multiple markers
for each cluster combined with multiple clustering algorithms. We also identified surface
markers indicative of stemness, including SPINK2, which was specifically expressed in
hematopoietic stem cells (HSCs), the most undifferentiated cell populations, in a manner
analogous to CD34 expression [27]. Furthermore, GATA1 was identified as a marker of
myeloid–erythroid progenitors [28].

Despite the valuable insights provided by our study, there are several limitations to
consider. First, the cells analyzed were isolated from bone marrow and peripheral blood,
so the gene signatures identified may not be representative of all immune cells present
in other tissues, such as liver or intestine. In addition, certain cell populations were only
present in a single dataset, highlighting the need for further validation. Furthermore,
the absence of specific cell types in certain datasets led to the assignment of non-specific
markers to related lineage populations that were present. Finally, future work will be
required to validate the novel markers identified in this work for specific cell types and cell
populations. In fact, as a complement to the scRNA-seq data presented here, we understand
that practical confirmation of the gene signatures found will be required using cellular
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techniques based on protein recognition, such as flow cytometry (FC) or fluorescence-
activated cell sorting (FACS). These techniques use specific labeling with antibodies and
are the standard primary approaches to validate markers that may become novel CDs. In
addition, we plan to provide complementary validation to the results presented here using
new scRNA-seq datasets that will allow refinement and extension of our findings.

Indeed, incorporating datasets from individuals in diverse physiological and patho-
logical conditions—such as fasting, diabetic, aging, or cancer-affected subjects—would
significantly strengthen the applicability and robustness of the proposed markers across
a broader range of contexts. This approach would allow us to evaluate whether the iden-
tified markers reliably distinguish cell populations under varying biological states and
pathologies. The inclusion of such datasets would provide a clearer understanding of
the stability and relevance of the markers under different physiological conditions, poten-
tially leading to more comprehensive marker panels with translational value for clinical
applications. Furthermore, this would help refine the identified clusters by accounting for
variability introduced by disease states, which is a key factor in achieving robust cell-type
classification. Importantly, recent studies have demonstrated that scRNA-seq profiling
of CD markers enhances immune cell classification and improves patient stratification
for immunotherapy. Sun et al. [29] showed that single-cell transcriptomics can identify
novel immune checkpoints and biomarkers that predict responses to immune checkpoint
inhibitors. This personalized approach allows for distinguishing between responders and
non-responders, improving treatment outcomes. Moreover, scRNA-seq has uncovered
immune escape mechanisms that guide the development of next-generation immune thera-
pies, reinforcing the relevance of CD marker profiling in clinical oncology. Additionally,
specific CD marker polymorphisms have been associated with prognostic outcomes in
hematological malignancies, emphasizing their utility in personalized treatments [4]. These
findings highlight the importance of validating our proposed gene signatures in clinical
settings. Expanding marker validation efforts through proteomic approaches or disease-
state datasets could strengthen diagnostic precision and improve therapeutic interventions
in diseases such as cancer, autoimmune disorders, and infectious diseases.

4. Materials and Methods
4.1. Single-Cell Data Collection

Three independent single-cell RNA sequencing datasets were collected containing
single-cell gene expression data from hematopoietic mononuclear cells (MNCs) from bone
marrow (BM) and peripheral blood (PB) obtained from healthy adult human donors. The
datasets are presented in Table 1, indicating the source [9–11], the public repository from
which they come, the platform used for the mRNA expression analyses, the number of
cells separated and tested in each case, and the number of samples used in each dataset. In
all cases, the cells were isolated using the 10x Genomics Chromium platform for single-
cell separation, and the transcriptomic sequencing (scRNA-seq) was performed using the
following platforms: Illumina HiSeq 3000, HiSeq 4000, and NovaSeq 6000.

The first dataset (Dataset 1) contains hematopoietic mononuclear cells from the bone
marrow (BM) and peripheral blood (PB) of 21 healthy adult donors. The data from this set
were supervised by analyzing the samples with FACS (fluorescence-activated cell sorting) to
provide 32 well-defined cell types. The expression count matrix from this dataset included
7643 cells and 19,813 gene transcripts, and was filtered to remove 122 low-quality cells,
using a cut-off threshold for the cells that presents less than 1000 detected protein-coding
genes. The dataset was obtained from the NCBI Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/GSE149938, accessed on 12 December 2024) corre-
sponding to accession number GSE149938. The second dataset (Dataset 2) was generated

https://www.ncbi.nlm.nih.gov/geo/GSE149938
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using bone marrow mononuclear cells (BMMCs) from 20 healthy donors (10 males and
10 females). This dataset was unsupervised, and the final count matrix has 76,684 cells and
33,660 transcripts. The filtering thresholds used with this dataset were at least 500 tran-
scripts per cell and less than 8% mitochondrial RNA content. This dataset corresponds to
accession GSE120221 in GEO (https://www.ncbi.nlm.nih.gov/geo/GSE120221, accessed
on 12 December 2024). The third dataset (Dataset 3) was generated with peripheral
blood mononuclear cells (PBMCs) from a healthy donor. This one was also unsuper-
vised, and the final count matrix has 9238 cells and 36,601 transcripts. The filtering
thresholds used in this case were more than three median absolute deviations (MADs)
to filter outlier cells and transcripts and filtering of cells with more than 10% mitochon-
drial RNA content. This dataset was obtained from the 10x Genomics data resource
(https://www.10xgenomics.com/resources/datasets/, accessed on 12 January 2022) and
corresponds to the set described in reference [11]. Finally, before starting the analysis of
these datasets the erythrocytes, if present, were filtered out.

4.2. Bioinformatic Analyses
4.2.1. Cell and Gene Filtering

The whole bioinformatic analysis developed in this work was produced with R Soft-
ware v4.0.3 (R Core Team 2017). R is a programming language and environment for
statistical computing used for the whole analyses done in this work (R Foundation for Sta-
tistical Computing, Vienna, Austria. URL https://www.R-project.org/). Once we obtained
the count matrix, the first step was the quality control to filter out and delete genes and
cells based on different criteria: less expressed genes, expression value outliers based on
MADs, and the percentage of mitochondrial RNA content. For these steps, we employed
the functions nexprs and isOutlier of scater package [30] and PercentageFeatureSet from
Seurat package [31] (2.1-Figure 1).

4.2.2. Normalization

From this point, all the functions mentioned below are from Seurat package (ver-
sion 4.0) [31]. For normalization, we employed the function NormalizeData in all datasets
(2.2-Figure 1), and we specifically performed log normalization using 10,000 as the
scale factor.

4.2.3. Scaling and Linear Dimensionality Reduction

We performed the scaling and the linear dimensionality reduction of the data em-
ploying principal component analysis (PCA). The functions that we used were ScaleData
(scale.max = 10) and RunPCA (2.3-Figure 1). To determine the dimensionality of all datasets,
we represented a dot chart that indicated the percentage of the variability explained by
each principal component (2.4-Figure 1).

4.2.4. Clustering

The clustering was performed with the functions FindNeighbors and FindClusters,
using the shared nearest neighbor (SNN) algorithm [32] with PCA as dimensionality reduc-
tion and the original Louvain method [33] as modularity optimization tool, respectively
(2.5-Figure 1). The following parameters were used for these clustering analyses: 10 random
starts, 10 maximum iterations per start, and 1.2, 0.6, and 0.6 as the specific resolutions
applied over all gene signatures for each of the three datasets, respectively. The clustering
visualization and the checking of the grouping of cells were performed using non-linear
dimensionality reductions. Specifically, we employed two different methods: UMAP [34]
and t-SNE [35] (2.6-Figure 1).

https://www.ncbi.nlm.nih.gov/geo/GSE120221
https://www.10xgenomics.com/resources/datasets/
https://www.R-project.org/
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4.2.5. Marker Genes Selection

The identification of the most differentially expressed genes (DEGs) in each cell
population or cluster was determined by FindAllMarkers function employing the
Wilcoxon rank sum test. The parameters used were min.pct = 0.25; logfc.threshold = 0.25;
only.pos = TRUE (2.7-Figure 1).

4.2.6. Trajectory Analysis

For the trajectory analysis, we used the algorithms of TSCAN package [14]: create-
ClusterMST, reportEdges, mapCellsToEdges, orderCells, and testPseudotime functions.
We represented and calculated the minimum spanning tree (MSS) on cluster centroids, we
calculated the distances and edges between the different clusters, and finally, we obtained
significant differences concerning the pseudotime hyperparameter, illustrating the cellular
progression across time.

4.2.7. Evaluation of Cell-Type Assignment

Random Forest [36] is a machine learning technique or classification algorithm based
on the construction of many decision trees. We used it for the evaluation of the classifica-
tion power of the different genomic signatures (employing the following as parameters:
importance = TRUE and nt = 10,000). We selected a random 30% of cells of each cell popu-
lation for the training and a random 30% of each cell type (not including the 30% of the
training set) for the validation. Furthermore, we carried out cross-validation by performing
the same analysis 10 times.

4.2.8. Evaluation of Cell Clustering

Silhouette [37] is an algorithm employed for the interpretation and validation of
a cluster analysis. We employed it to evaluate which gene signature was able to discern
or distinguish cell types in a better way in the non-linear dimensionality reduction space.
Specifically, the function that we employed for this clustering evaluation was silhouette
from cluster package [38], and its output value depends on the tightness and separation of
the found populations.

4.2.9. Cell-Type Annotation

The annotation of cell types was performed semi-automatically using multiple ap-
proaches to ensure accuracy and biological relevance. Specifically, we used tools such
as the HumanPrimaryCellAtlas from celldex library [39], as well as databases like the
Human Protein Atlas [19] to validate key markers. Additionally, we consulted the orig-
inal research articles and dataset analyses where cell-type annotations were previously
conducted, ensuring consistency between our work and previously established annotations.

5. Conclusions
As a general conclusion of this work, we would like to emphasize the scope of the

study we conducted, which aimed to elucidate and differentiate various hematological
and immune cell types using single-cell markers and to establish robust gene signatures
for the cell populations studied. This approach has significant potential to enable more
precise and functional cell-specific isolation in various research studies and clinical trials
involving hematological and immune cells. Indeed, the cell-type-specific signatures that
we have found and included in this article provide a valuable resource for further research
in this area. In addition, our results may prove valuable in the diagnosis of hematological
malignancies [4] as well as solid tumors, particularly when investigating the complex
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cellular composition of the tumor microenvironment and the gene signatures of infiltrating
leukocytes [40] present in the disease niche.
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