Study on the Chemical Composition and Multidrug Resistance Reversal Activity of Euphorbia uralensis (Euphorbiaceae)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cytotoxicity Results of Total Extracts, Extraction Fractions
2.2. MDR Reversal Activity Evaluation of Total Extracts and Fractions
2.3. Research on the Chemical Composition of Fr-E-3 Fractions from Euphorbia uralensis
2.4. Structural Analysis of the New Compound
2.5. Structural Analysis of Known Compounds
2.6. GC-MS Analysis of Petroleum Ether Parts
2.7. Evaluation of MDR Reversing Activity of Some Compounds
2.7.1. Cytotoxicity of Compounds
2.7.2. MDR Reversal Activity of Compounds
2.7.3. Hoechst 33258 Nuclear Staining for Compounds on Cell Apoptosis
2.8. Study on the Mechanism of EUD-17 Reversing Tumor Cell MDR
2.8.1. Molecular Docking Result
2.8.2. Molecular Dynamics Simulation Results
2.8.3. Effect of Compound EUD-17 on Expression Level of ABCB1 Protein
2.8.4. Effects of Compound EUD-17 on Intracellular Accumulation of Rhodamine 123 (Rh123) in MCF-7/ADR
3. Materials and Methods
3.1. Drugs and Reagents
3.2. Plant Materials
3.3. Extraction of Herbs
3.4. Cell Culture
3.5. Cytotoxicity Detection
3.6. MDR Reversal Activity Detection
3.7. GC-MS Analysis of Fr-S in Euphorbia uralensis
3.8. Research on the Chemical Composition of Fr-E in Euphorbia uralensis
3.8.1. Separation and Purification of the Fr-E-1 Fraction
3.8.2. Separation and Purification of Fr-E-2 Fraction
3.8.3. Separation and Purification of Fr-E-3 Fraction
3.9. Hoechst 33258 Nuclear Staining for Apoptosis Detection
3.10. Study on the Mechanism of Action of EUD-17 in Reversing MDR in Tumor Cells
3.10.1. Molecular Docking
3.10.2. Molecular Dynamics (MD) Simulation
3.10.3. Effects of Compound EUD-17 on ABCB1 Protein Expression Levels
3.10.4. Effects of Compound EUD-17 on Intracellular Rh123 Accumulation
3.10.5. Data Statistics and Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watanabe, T.; Rikitake, R.; Kakuwa, T.; Ichinose, Y.; Niino, M.; Mizushima, Y.; Ota, M.; Fujishita, M.; Tsukada, Y.; Higashi, T. Time to treatment initiation for six cancer types: An analysis of data from a nationwide registry in japan. World J. Surg. 2023, 47, 877–886. [Google Scholar] [CrossRef]
- Tang, S.H.; Li, S.Y.; Shi, X.W.; Sheng, L.X.; Mu, Q.T.; Wang, Y.; Zhu, H.L.; Xu, K.H.; Zhou, M.; Xu, Z.J.; et al. CALCRL induces resistance to daunorubicin in acute myeloid leukemia cells through upregulation of XRCC5/TYK2/JAK1 pathway. Anti-Cancer Drugs 2024, 35, 163–176. [Google Scholar] [CrossRef]
- Ramirez, M.; Rajaram, S.; Steininger, R.J.; Osipchuk, D.; Roth, M.A.; Morinishi, L.S.; Evans, L.; Ji, W.Y.; Hsu, C.-H.; Thurley, K.; et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat. Commun. 2016, 7, 10690. [Google Scholar] [CrossRef]
- Shankaraiah, N.; Nekkanti, S.; Ommi, O.; PS, L.S. Diverse Targeted Approaches to Battle Multidrug Resistance in Cancer. Curr. Med. Chem. 2019, 26, 7059–7080. [Google Scholar] [CrossRef]
- Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 2013, 13, 714–726. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Cao, H.Y.; Qi, X.H.; Li, H.K.; Ye, P.Z.; Wang, Z.G.; Wang, D.Q.; Sun, M.Y. Research Progress in Reversal of Tumor Multi-drug Resistance via Natural Products. Anti-Cancer Agents Med. Chem. 2017, 17, 1466–1476. [Google Scholar] [CrossRef]
- Zou, J.Y.; Chen, Q.L.; Luo, X.C.; Damdinjav, D.; Abdelmohsen, U.R.; Li, H.Y.; Battulga, T.; Chen, H.B.; Wang, Y.Q.; Zhang, J.Y. Natural Products Reverse Cancer Multi drug Resistance. Front. Pharmacol. 2023, 15, 1348076. [Google Scholar] [CrossRef]
- Wei, J.; Liu, Z.; He, J.; Liu, Q.; Lu, Y.; He, S.; Yuan, B.; Zhang, J.; Ding, Y. Traditional Chinese medicine reverses cancer multidrug resistance and its mechanism. Clin. Transl. Oncol. Off. Publ. Fed. Span. Oncol. Soc. Natl. Cancer Inst. Mex. 2022, 24, 471–482. [Google Scholar] [CrossRef]
- Jiang, D.J.; Guo, S.J.; Kang, A.; Ju, Y.H.; Li, J.X.; Yu, S.; Bao, B.H.; Cao, Y.D.; Tang, Y.P.; Zhang, L.; et al. Comparison of the short-chain fatty acids in normal rat faeces after the treatment of Euphorbia kansui, a traditional Chinese medicine for edoema. Pharm. Biol. 2020, 58, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Ren, X.X.; Huang, Y.B.; Su, T.; Yang, L. Chemical Constituents of Euphorbia stracheyi Boiss (Euphorbiaceae). Metabolites 2023, 13, 852. [Google Scholar] [CrossRef]
- Benmerache, A.; Alabdul Magid, A.; Labed, A.; Kabouche, A.; Voutquenne-Nazabadioko, L.; Hubert, J.; Morjani, H.; Kabouche, Z. Isolation and characterisation of cytotoxic compounds from Euphorbia clementei Boiss. Nat. Prod. Res. 2017, 31, 2091–2098. [Google Scholar] [CrossRef] [PubMed]
- Grauso, L.; de Falco, B.; Lucariello, G.; Capasso, R.; Lanzotti, V. Diterpenes from Euphorbia myrsinites and their anti-inflammatory property. Planta Medica 2021, 87, 1018–1024. [Google Scholar] [CrossRef]
- Magozwi, D.K.; Dinala, M.; Mokwana, N.; Siwe-Noundou, X.; Krause, R.W.M.; Sonopo, M.; McGaw, L.J.; Augustyn, W.A.; Tembu, V.J. Flavonoids from the Genus Euphorbia: Isolation, Structure, Pharmacological Activities and Structure–Activity Relationships. Pharmaceuticals 2021, 4, 428. [Google Scholar] [CrossRef] [PubMed]
- Hamada, H.; Catherine, L.; Hassina, H.; Abdulmagid, A.M.; Laurence, M.; Mohammed, B. Diterpenoids and triterpenoids from Euphorbia guyoniana. Phytochemistry 2007, 68, 1255–1260. [Google Scholar] [CrossRef]
- Rojas-Jiménez, S.; Valladares-Cisneros, M.G.; Salinas-Sánchez, D.O.; Pérez-Ramos, J.; Sánchez-Pérez, L.; Pérez-Gutiérrez, S.; Campos-Xolalpa, N. Anti-Inflammatory and Cytotoxic Compounds Isolated from Plants of Euphorbia Genus. Molecules 2024, 29, 1083. [Google Scholar] [CrossRef]
- Gao, J.; Aisa, H.A. Terpenoids from Euphorbia soongarica and Their Multidrug Resi stance Reversal Activity. J. Nat. Prod. 2017, 80, 1767–1775. [Google Scholar] [CrossRef]
- Zeng, R.; Wang, X.X.; Cui, X.H.; Yang, Q.; Zhu, X.X.; Wang, Y.J. Stellera chamaejasme against multidrug resistance of triple-negative breast cancer MDA-MB-231 cell through Nrf2. China J. Chin. Mater. Medica 2024, 49, 2222–2229. [Google Scholar] [CrossRef]
- Bawazeer, S.; Rauf, A.; Mabkhot, Y.N.; Al-Showiman, S.S.; Patel, S.; Gul, S.; Raza, M.; Molnar, J.; Szabo, D.; Csonka, A.; et al. Isolation of Bioactive Compounds from Pistacia integerrima with Promising Effects on Reverse Cancer Multidrug Resistance. Russ. J. Bioorganic Chem. 2021, 47, 997–1003. [Google Scholar] [CrossRef]
- Zhang, W.K.; Zhang, X.Q.; Ye, W.C. Chemical constituents of the aerial parts of Euphorbia sororia. J. China Pharm. Univ. 2007, 38, 315–319. [Google Scholar] [CrossRef]
- Hasan, A.; Tang, D.; Nijat, D.; Yang, H.Q.; Aisa, H.A. Diterpenoids from Euphorbia glomerulans with potential reversal activities against P-glycoprotein-mediated multidrug resistance. Bioorganic Chem. 2021, 117, 105442. [Google Scholar] [CrossRef]
- Gao, J.; Chen, Q.B.; Liu, Y.Q.; Xin, X.L.; Yili, A.; Aisa, H.A. Diterpenoid constituents of Euphorbia macrorrhiza. Phytochemistry 2016, 122, 246–253. [Google Scholar] [CrossRef]
- Yang, H.Q.; Mamatjan, A.; Tang, D.; Aisa, H.A. Jatrophane diterpenoids as multidrug resistance modulators from Euphorbia sororia. Bioorganic Chem. 2021, 112, 104989. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.X.; Yang, J.; Xiao, W.L.; Zhu, Y.L.; Li, R.T.; Li, L.M.; Pu, J.X.; Li, X.; Li, S.H.; Sun, H.D. Three Novel Terpenoids from Schisandra pubescens var. Pubinervis. Helv. Chim. Acta 2006, 89, 1169–1175. [Google Scholar] [CrossRef]
- Richter, R.; Basar, S.; Koch, A.; König, W.A. Three sesquiterpene hydrocarbons from the roots of Panax ginseng C. A. Meyer (Araliaceae). Phytochemistry 2005, 66, 2708–2713. [Google Scholar] [CrossRef] [PubMed]
- Tijjani, A.; Ndukwe, I.G.; Ayo, R.G. Isolation and characterization of lup-20 (29)-ene-3, 28-diol (Betulin) from the stem-bark of Adenium obesum (Apocynaceae). Trop. J. Pharm. Res. 2012, 11, 259–262. [Google Scholar] [CrossRef]
- Ma, M.; Shang, X.Y.; Wang, S.J.; Li, S.; Yang, Y.C.; Shi, J.G. Chemical constituents from branch of Macaranga adenantha and their TNF-α inhibitory activity. China J. Chin. Mater. Medica 2007, 32, 1175–1179. [Google Scholar] [CrossRef]
- Jiao, X.Y.; Li, J.; Sun, L.Q.; Shi, Z.C.; Wang, J.L.; Zhao, M.; Zhang, S.J. Chemical constituents from leaves of Zanthoxylum bungeanum Maxim. J. Qiqihar Univ. (Nat. Sci. Ed.) 2022, 38, 60–62+66. [Google Scholar] [CrossRef]
- Wansi, J.D.; Chiozem, D.D.; Tcho, A.T.; Toze, F.A.A.; Devkota, K.P.; Ndjakou, B.L.; Wandji, J.; Sewald, N. Antimicrobial and antioxidant effects of phenolic constituents from Klainedoxa gabonensis. Pharm. Biol. 2010, 48, 1124–1129. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Yang, X.X.; Wang, G.C.; Wu, X.; Yang, Y.T.; Luo, H.J.; Li, Y.L. Study on the chemical constituents of Elephantopus mollis. J. Chin. Med. Mater. 2012, 35, 1775–1778. [Google Scholar]
- Meng, W.T.; Meng, X.; Niu, L.T.; Zhang, S.S.; Ouyang, C.J.; Ding, C.H.; Zhu, L.J.; Zhang, X. A new bibenzyl derivative from stems of Dendrobium officinale. Chin. Med. Mag. China 2023, 48, 700–706. [Google Scholar] [CrossRef]
- Xu, F.; Wu, Z.H.; Yi, Q.Q.; Zhang, T.L.; Zhao, L.; Wang, H.Q. Chemical constituents from ethyl acetate fraction of Callicarpa giraldii and their anti-inflammatory activities. Chin. Tradit. Pat. Med. 2021, 43, 2718–2723. [Google Scholar] [CrossRef]
- Huang, X.F.; Luo, J.; Zhang, Y.; Kong, L.Y. Chemical Constituents of Asparagus officinalis. Chin. J. Nat. Med. 2006, 4, 181–184. [Google Scholar]
- Chung, I.M.; Ali, M.; Chun, S.C.; Jin, C.W.; Cho, D.H.; Hong, S.B.; Ahmad, A. New Aliphatic Alcohol and Ester Constituents from Rice Hulls of Oryza sativa. Chin. J. Chem. 2007, 25, 843–848. [Google Scholar] [CrossRef]
- Wang, X.B. Study on the Chemical Constituents of the Tropical Seagrass Enhalus acoroides. J. Hainan Norm. Univ. (Nat. Sci.) 2018, 31, 383–386. [Google Scholar] [CrossRef]
- Lin, L.L.; Huang, F.; Chen, S.B.; Yang, D.J.; Chen, S.L.; Yang, J.S.; Xiao, P.G. Chemical constituents in roots of Polygala fallax and their anti-oxidation activities in vitro. China J. Chin. Mater. Medica 2005, 30, 827–830. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Wang, J.H.; Xue, Y.F.; Xu, H.; Chou, G.X.; Wang, Z.T. Study on chemical constituents from active ethyl acetate fraction of Dendrobium officinale. Chin. Tradit. Herb. Drugs 2021, 52, 5218–5225. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Yan, Y.; He, J.; Yang, T.; Li, X.X.; Zhang, W.K.; Xu, J.K. Study on the Chemical Constituents of Roots from Euphorbia ebracteolata Hayata. Chin. Pharm. J. 2023, 58, 668–674. [Google Scholar] [CrossRef]
- Rafiq, Z.; Narasimhan, S.; Vennila, R.; Vaidyanathan, R. Punigratane, a novel pyrrolidine alkaloid from Punica granatum rind with putative efflux inhibition activity. Nat. Prod. Res. 2016, 30, 2682–2687. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.X.; Ma, H.M.; He, W.J.; Sun, Y.; Lan, W. Phytochemical Constituents Isolated from Euphorbia rapulum. Chem. Nat. Compd. 2018, 54, 910–912. [Google Scholar] [CrossRef]
- Hasan, A.; Liu, G.Y.; Hu, R.; Aisa, H.A. Jatrophane Diterpenoids from Euphorbia glomerulans. J. Nat. Prod. 2019, 82, 724–734. [Google Scholar] [CrossRef]
- Rouzimaimaiti, R.; Maimaitijiang, A.; Yang, H.Q.; Aisa, H.A. Jatrophane diterpenoids from Euphorbia microcarpa (prokh.) krylov with multidrug resistance modulating activity. Phytochemistry 2022, 204, 113444–113450. [Google Scholar] [CrossRef] [PubMed]
- Li, G.H.; Pan, C.Y.; Sun, F.J.; Wang, X.R.; Yin, G.P. Reversal effect of 4 alkaloids on apoptosis of being obtained multi-drug resistance to tumour cell. Chin. Tradit. Pat. Med. 2006, 28, 1001–1004. [Google Scholar] [CrossRef]
- Qiu, W.L.; Sun, Q.Q.; Qiu, B. Action Mechanism Progress of Chinese Medicinal and Its Active Ingredients in Treatment of Hepatic Carcinoma. Inf. Tradit. Chin. Med. 2022, 39, 79–84. [Google Scholar] [CrossRef]
- Ding, L.; Görls, H.; Hertweck, C. Plant-like cadinane sesquiterpenes from an actinobacterial mangrove endophyte. Magn. Reson. Chem. MRC 2021, 59, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.M.; Tan, T.; Zhang, T.Y.; Xiao, X.F.; Gu, H. miR-1 reverses multidrug resistance in gastric cancer cells via downregulation of sorcin through promoting the accumulation of in tracellular drugs and apoptosis of cells. Int. J. Oncol. 2019, 55, 451–461. [Google Scholar] [CrossRef]
- Huang, B.Y.; Zeng, Y.; Li, Y.J.; Huang, X.J.; Hu, N.; Nan, Y.; Chen, M.F.; Yang, Z.G.; Chen, Z.S.; Zhang, D.M. Uncaria alkaloids reverse ABCB1-mediated cancer multidrug resistance. Int. J. Oncol. 2017, 51, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Qin, X.L.; Zhong, J.F. Effect of temperature on the stability of lactoglobulin: A molecular dynamics simulation. Food Ferment. Ind. 2020, 46, 89–96. [Google Scholar] [CrossRef]
- Sun, W.; Jiao, K. Interactions of Small Molecules with Protein and Its Application to Determination of Proteins. J. Qingdao Inst. Chem. Technol. 2001, 299–301. [Google Scholar] [CrossRef]
- Liang, P.P.; Wang, Y.L.; Huang, H.; Li, G.Y.; Wu, H.Y. Identification of immune-related biomarkers of Alzheimer’s disease and prediction of medicine-food homology traditional Chinese medicines based on bioinformatics analysis and dynamic simulation. Chin. Tradit. Herb. Drugs 2024, 55, 2667–2683. [Google Scholar]
- Kumju, Y.; Mira, J. Determination of Potential Lead Compound from Magnolia officinalis for Alzheimer’s Disease through Pharmacokinetic Prediction, Molecular Docking, Dynamic Simulation, and Experimental Validation. Int. J. Mol. Sci. 2024, 25, 10507. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.F.; Liu, J.D.; Xu, J.F.; Tariq, A.; Wu, Y.N.; Li, L. Molecular mechanism of Yi-Qi-Yang-Yin-Ye against obesity in rats using network pharmacology, molecular docking, and molecular dynamics simulations. Arab. J. Chem. 2024, 17, 105390. [Google Scholar] [CrossRef]
- Jia, H.; Yang, Q.; Wang, T.; Cao, Y.; Jiang, Q.Y.; Ma, H.D.; Sun, H.W.; Hou, M.X.; Yang, Y.P.; Feng, F. Rhamnetin induces sensitization of hepatocellular carcinoma cells to a small molecular kinase inhibitor or chemotherapeutic agents. BBA-Gen. Subjects. Gen. Subj. 2016, 1860, 1417–1430. [Google Scholar] [CrossRef]
- Moradzadeh, M.; Tabarraei, A.; Sadeghnia, H.R.; Ghorbani, A.; Mohamadkhani, A.; Erfanian, S.; Sahebkar, A. Kaempferol increases apoptosi s in human acute promyelocytic leukemia cells and inhibits multidrug resistance genes. J. Cell. Biochem. 2018, 119, 2288–2297. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Lu, Y.Y.; Li, X.Y.; Zhang, Z.R.; Sun, L.Z.; Wang, Y.; He, Z.R.; Liu, Z.Q.; Zhu, L.J.; Fu, L. Kaempferol suppression of acute colitis is regulated by the efflux transporters BCRP and MRP2. Eur. J. Pharm. Sci. 2022, 179, 106303. [Google Scholar] [CrossRef] [PubMed]
- Noriyoshi, N.; Momoyo, I.; Masataka, M.; Atsushi, K. Induction of Apoptosis in Human Promyelocytic Leukemia Cell Line HL-60 by C-Benzylated Dihydrochalcones, Uvaretin, Isouvaretin and Diuvaretin (Medicinal Chemistry). Biol. Pharm. Bull. 2005, 28, 83–86. [Google Scholar] [CrossRef]
- Piehl, D.W.; Burley, S.K. Parallel delivery of experimentally determined structures and computed structure models at RCSB protein data bank (RCSB PDB, RCSB. ORG). Biophys. J. 2024, 123, 280a. [Google Scholar] [CrossRef]
Extraction Site | Drug Concentration (μg/mL) | IC50 (Mean ± SD/µM) | RF |
---|---|---|---|
Control (DOX) | - | 65.62 ± 5.54 | 1.0 |
Verapamil + DOX | 55 µM | 8.34 ± 1.35 | 7.9 |
Fr-S + DOX | 6.25 | 30.57 ± 5.48 | 2.1 |
Fr-Y + DOX | 12.5 | 57.74 ± 2.90 | 1.1 |
Fr-J + DOX | 25 | 64.23 ± 5.83 | 1.0 |
Fr-E + DOX | 12.5 | 21.99 ± 1.94 | 3.0 |
Fr-Z + DOX | 12.5 | 56.74 ± 6.72 | 1.2 |
Fr-E-1 + DOX | 12.5 | 31.86 ± 10.61 | 2.2 |
Fr-E-2 + DOX | 12.5 | 33.96 ± 13.36 | 2.0 |
Fr-E-3 + DOX | 12.5 | 25.60 ± 12.50 | 2.7 |
Control (DOX) | - | 68.88 ± 14.75 | 1.0 |
Verapamil + DOX | 55 µM | 12.03 ± 2.19 | 5.7 |
Number | 13C | 1H |
---|---|---|
1 | 39.1 | 1.85, m, 1H; 1.07, m, 1H |
2 | 29.2 | 1.91, m, J = 5.6, 3.5, 1Hα; 1.63, m, 1Hβ |
3 | 77.9 | 3.56, m, 1H |
4 | 35.7 | 2.12, m, 1H; 2.27, m, 1H |
5 | 139.3 | - |
6 | 119.0 | 5.37, d, J = 4.8, 1H |
7 | 38.8 | 2.32, m, 2H |
8 | 73.9 | - |
9 | 44.5 | 1.49, dd, J = 13.0, 3.3, 1H |
10 | 37.4 | - |
11 | 24.2 | 2.03, m, H; 1.65, m, 1H |
12 | 74.9 | 4.70, dd, J = 12.0, 4.0, 1H |
13 | 54.1 | - |
14 | 86.4 | - |
15 | 37.1 | 1.4, m, 1H; 2.06, m, 1H |
16 | 24.8 | 1.83, m, 2H |
17 | 57.2 | 3.14, m, 2H |
18 | 12.1 | 1.19, s, 3H |
19 | 18.3 | 1.18, s, 3H |
20 | 217.8 | - |
21 | 33.1 | 2.21, s, 3H |
1′ | 167.2 | - |
2′ | 113.5 | 5.72, brs, 1H |
3′ | 167.2 | - |
4′ | 38.5 | 2.32, m, 1H |
5′ | 21.0 | 1.08, d, J = 6.8, 3H |
6′ | 21.0 | 1.08, d, J = 6.8, 3H |
7′ | 16.6 | 2.17, s, 3H |
1″ | 95.6 | 4.78, dd, J = 9.6, 1.6, 1H |
2″ | 39.2 | 2.19, m, 1Hα; 1.58, m, 1Hβ |
3″ | 77.6 | 3.63, m, 1H |
4″ | 72.6 | 3.21, dd, J = 9.2, 3.2, 1H |
5″ | 70.9 | 3.58, m, 1H |
6″ | 18.4 | 1.28, d, J = 6.2, 3H |
7″ | 57.4 | 3.43, s, 3H |
8-OH | - | 5.19, brs, 1H |
14-OH | - | 5.21, brs, 1H |
4″-OH | - | 3.61, dd, 1H |
Compound | Dose Concentration (µM) | IC50 (Mean ± SD/μM) | RF |
---|---|---|---|
Control (DOX) | - | 57.08 ± 7.83 | 1.00 |
Verapamil + DOX | 55.00 | 8.88 ± 0.84 | 6.40 |
EUD-1 + DOX | 40.00 | 29.04 ± 1.61 | 2.00 |
EUD-2 + DOX | 0.80 | 31.83 ± 4.15 | 1.80 |
EUD-3 + DOX | 0.125 | 51.31 ± 7.47 | 1.10 |
EUD-4 + DOX | 40.00 | 41.55 ± 7.86 | 1.40 |
EUD-5 + DOX | 160.00 | 44.35 ± 5.50 | 1.30 |
EUD-6 + DOX | 40.00 | 47.32 ± 4.36 | 1.20 |
EUD-7 + DOX | 10.00 | 46.21 ± 5.83 | 1.20 |
EUD-15 + DOX | 0.20 | 27.88 ± 3.17 | 2.00 |
EUD-16 + DOX | 0.20 | 43.77 ± 5.27 | 1.30 |
EUD-17 + DOX | 0.16 | 16.52 ± 1.93 | 3.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Liu, Y.; Dang, Q.; Akram, Z.; Arshad, A.; Zhu, H.; Zhang, J.; Han, B.; Turghun, C. Study on the Chemical Composition and Multidrug Resistance Reversal Activity of Euphorbia uralensis (Euphorbiaceae). Int. J. Mol. Sci. 2025, 26, 412. https://doi.org/10.3390/ijms26010412
Ding Y, Liu Y, Dang Q, Akram Z, Arshad A, Zhu H, Zhang J, Han B, Turghun C. Study on the Chemical Composition and Multidrug Resistance Reversal Activity of Euphorbia uralensis (Euphorbiaceae). International Journal of Molecular Sciences. 2025; 26(1):412. https://doi.org/10.3390/ijms26010412
Chicago/Turabian StyleDing, Yina, Yuhao Liu, Qianru Dang, Zubair Akram, Anam Arshad, Haochan Zhu, Jianxiang Zhang, Bo Han, and Chimengul Turghun. 2025. "Study on the Chemical Composition and Multidrug Resistance Reversal Activity of Euphorbia uralensis (Euphorbiaceae)" International Journal of Molecular Sciences 26, no. 1: 412. https://doi.org/10.3390/ijms26010412
APA StyleDing, Y., Liu, Y., Dang, Q., Akram, Z., Arshad, A., Zhu, H., Zhang, J., Han, B., & Turghun, C. (2025). Study on the Chemical Composition and Multidrug Resistance Reversal Activity of Euphorbia uralensis (Euphorbiaceae). International Journal of Molecular Sciences, 26(1), 412. https://doi.org/10.3390/ijms26010412