Click Chemistry as an Efficient Toolbox for Coupling Sterically Hindered Molecular Systems to Obtain Advanced Materials for Nanomedicine
Abstract
:1. Introduction
2. Click Reactions for Functionalization of Polymeric Systems
2.1. Polymer–Biofunctionality Conjugates: Complexity in Scope and Size
2.1.1. Polymer–Drug Conjugates
2.1.2. Polymer and Peptides/Proteins
2.1.3. Polymer–Nucleic Acid Conjugates
2.1.4. Polymer–Aptamer Conjugates
3. Functionalization of Cyclodextrins
3.1. CD Functionalization/Conjugation with Dendritic Structures
3.2. CD-Based Nanosponges and Hydrogels
3.3. Star and Miktoarm CDs
3.4. CD–Biomacromolecule Conjugates
4. Functionalization of Fullerenes
4.1. Mono-Adducts of Fullerene
4.1.1. Identical Addends (A)
4.1.2. Different Addends (B)
5. Conclusions and Final Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. Engl. 2001, 40, 2004–2021. [Google Scholar] [CrossRef] [PubMed]
- Moses, J.E.; Moorhouse, A.D. The Growing Applications of Click Chemistry. Chem. Soc. Rev. 2007, 36, 1249–1262. [Google Scholar] [CrossRef] [PubMed]
- Huisgen, R.; Szeimies, G.; Möbius, L. 1.3-Dipolare Cycloadditionen, XXXII. Kinetik Der Additionen Organischer Azide an CC-Mehrfachbindungen. Chem. Ber. 1967, 100, 2494–2507. [Google Scholar] [CrossRef]
- Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599. [Google Scholar] [CrossRef]
- Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67, 3057–3064. [Google Scholar] [CrossRef]
- Kazybayeva, D.S.; Irmukhametova, G.S.; Khutoryanskiy, V.V. Thiol-Ene “Click Reactions” as a Promising Approach to Polymer Materials. Polym. Sci. Ser. B 2022, 64, 1–16. [Google Scholar] [CrossRef]
- Oliveira, B.L.; Guo, Z.; Bernardes, G.J.L. Inverse Electron Demand Diels–Alder Reactions in Chemical Biology. Chem. Soc. Rev. 2017, 46, 4895–4950. [Google Scholar] [CrossRef]
- Hong, V.; Steinmetz, N.F.; Manchester, M.; Finn, M.G. Labeling Live Cells by Copper-Catalyzed Alkyne−Azide Click Chemistry. Bioconjug Chem. 2010, 21, 1912–1916. [Google Scholar] [CrossRef]
- Geng, Z.; Shin, J.J.; Xi, Y.; Hawker, C.J. Click Chemistry Strategies for the Accelerated Synthesis of Functional Macromolecules. J. Polym. Sci. 2021, 59, 963–1042. [Google Scholar] [CrossRef]
- Luu, T.; Gristwood, K.; Knight, J.C.; Jörg, M. Click Chemistry: Reaction Rates and Their Suitability for Biomedical Applications. Bioconjug Chem. 2024, 35, 715–731. [Google Scholar] [CrossRef]
- Hu, J.; Peng, K.; Guo, J.; Shan, D.; Kim, G.B.; Li, Q.; Gerhard, E.; Zhu, L.; Tu, W.; Lv, W.; et al. Click Cross-Linking-Improved Waterborne Polymers for Environment-Friendly Coatings and Adhesives. ACS Appl. Mater. Interfaces 2016, 8, 17499–17510. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Sun, Y.; Gu, J.; Gao, Q.; Sun, D.; Zhang, X.; Pan, B.; Qian, J. Highly Efficient Photodegradation of Various Organic Pollutants in Water: Rational Structural Design of Photocatalyst via Thiol-Ene Click Reaction. Chem. Eng. J. 2020, 381, 122631. [Google Scholar] [CrossRef]
- Sha, J.; Sun, Y.; Yu, H.; Yang, Z.; Chu, H.; Wang, Y.; Yue, Q.; Yin, W.; Xu, S. Comparison of Nano-TiO2 Immobilization Approaches onto Biochar: Superiorities of Click Chemistry Strategy and Self-Acceleration of Pollutant Degradation. J. Environ. Chem. Eng. 2022, 10, 107544. [Google Scholar] [CrossRef]
- Yang, W.; Chen, J.; Yan, J.; Liu, S.; Yan, Y.; Zhang, Q. Advance of Click Chemistry in Anion Exchange Membranes for Energy Application. J. Polym. Sci. 2022, 60, 627–649. [Google Scholar] [CrossRef]
- Zhang, R.; Li, J.; Xu, Z.; Jerrams, S.; Hu, S.; Liu, L.; Wen, S.; Zhang, L. Achieving Strong Chemical Interface and Superior Energy-Saving Capability at the Crosslinks of Rubber Composites Containing Graphene Oxide Using Thiol-Vinyl Click Chemistry. Compos. Sci. Technol. 2023, 233, 109907. [Google Scholar] [CrossRef]
- Liu, X.; Astudillo Potes, M.D.; Serdiuk, V.; Dashtdar, B.; Schreiber, A.C.; Rezaei, A.; Miller, A.L.; Hamouda, A.M.; Shafi, M.; Elder, B.D.; et al. Bioactive Moldable Click Chemistry Polymer Cement with Nano-Hydroxyapatite and Growth Factor-Enhanced Posterolateral Spinal Fusion in a Rabbit Model. ACS Appl. Bio Mater. 2024, 7, 2450–2459. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Chen, X.; He, Y.; Peng, Z. Mucoadhesive Thiolated Hyaluronic Acid/Pluronic F127 Nanogel Formation via Thiol–Maleimide Click Reaction for Intravesical Drug Delivery. ACS Appl. Bio Mater. 2024, 7, 1976–1989. [Google Scholar] [CrossRef]
- Zhao, G.; Ge, T.; Yan, Y.; Shuai, Q.; Su, W.-K. Highly Efficient Modular Construction of Functional Drug Delivery Platform Based on Amphiphilic Biodegradable Polymers via Click Chemistry. Int. J. Mol. Sci. 2021, 22, 10407. [Google Scholar] [CrossRef]
- Amorim, A.C.; Burke, A.J. What Is the Future of Click Chemistry in Drug Discovery and Development? Expert. Opin. Drug Discov. 2024, 19, 267–280. [Google Scholar] [CrossRef]
- Kaur, J.; Saxena, M.; Rishi, N. An Overview of Recent Advances in Biomedical Applications of Click Chemistry. Bioconjug Chem. 2021, 32, 1455–1471. [Google Scholar] [CrossRef]
- Lima, A.L.; Gratieri, T.; Cunha-Filho, M.; Gelfuso, G.M. Polymeric Nanocapsules: A Review on Design and Production Methods for Pharmaceutical Purpose. Methods 2022, 199, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Hasannia, M.; Aliabadi, A.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Synthesis of Block Copolymers Used in Polymersome Fabrication: Application in Drug Delivery. J. Control. Release 2022, 341, 95–117. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; He, W.; Wang, F.; Yong, H.; Bo, T.; Yao, D.; Zhao, Y.; Pan, C.; Cao, Q.; Zhang, S.; et al. Recent Progress of Non-Linear Topological Structure Polymers: Synthesis, and Gene Delivery. J. Nanobiotechnol. 2024, 22, 40. [Google Scholar] [CrossRef]
- Hebels, E.R.; Bindt, F.; Walther, J.; van Geijn, M.; Weterings, J.; Hu, Q.; Colombo, C.; Liskamp, R.; Rijcken, C.; Hennink, W.E.; et al. Orthogonal Covalent Entrapment of Cargo into Biodegradable Polymeric Micelles via Native Chemical Ligation. Biomacromolecules 2023, 24, 4385–4396. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.Y.; Lee, D.; Lim, D.; Koo, H.; Kim, K. Copper-Free Click Chemistry: Applications in Drug Delivery, Cell Tracking, and Tissue Engineering. Adv. Mater. 2022, 34, 2107192. [Google Scholar] [CrossRef]
- Degirmenci, A.; Sanyal, R.; Sanyal, A. Metal-Free Click-Chemistry: A Powerful Tool for Fabricating Hydrogels for Biomedical Applications. Bioconjug Chem. 2024, 35, 433–452. [Google Scholar] [CrossRef]
- Ding, H.; Li, B.; Jiang, Y.; Liu, G.; Pu, S.; Feng, Y.; Jia, D.; Zhou, Y. PH-Responsive UV Crosslinkable Chitosan Hydrogel via “Thiol-Ene” Click Chemistry for Active Modulating Opposite Drug Release Behaviors. Carbohydr. Polym. 2021, 251, 117101. [Google Scholar] [CrossRef]
- Schwarz, W.H.E.; Schmidbaur, H. Observations and Descriptions versus Explanations—An Example: Does Nature, Does Theory Know About Steric Hindrance? Chem. A Eur. J. 2012, 18, 4470–4479. [Google Scholar] [CrossRef]
- Hassan, M.; Bhat, G.A.; Darensbourg, D.J. Post-Polymerization Functionalization of Aliphatic Polycarbonates Using Click Chemistry. Polym. Chem. 2024, 15, 1803–1820. [Google Scholar] [CrossRef]
- Kubo, T.; Easterling, C.P.; Olson, R.A.; Sumerlin, B.S. Synthesis of Multifunctional Homopolymers via Sequential Post-Polymerization Reactions. Polym. Chem. 2018, 9, 4605–4610. [Google Scholar] [CrossRef]
- Akar, E.; Luleburgaz, S.; Gunay, U.S.; Kumbaraci, V.; Tunca, U.; Durmaz, H. Amino-Yne Reaction: An Exquisite Method for Polymer-Polymer Conjugation and Post-Polymerization Modification. Eur. Polym. J. 2023, 199, 112470. [Google Scholar] [CrossRef]
- Li, Y.; Chang, R.; Chen, Y. Recent Advances in Post-polymerization Modifications on Polypeptides: Synthesis and Applications. Chem. Asian J. 2022, 17, e2022003182022. [Google Scholar] [CrossRef] [PubMed]
- Hema, K.; Sureshan, K.M. Topochemical Azide–Alkyne Cycloaddition Reaction. Acc. Chem. Res. 2019, 52, 3149–3163. [Google Scholar] [CrossRef] [PubMed]
- Binder, W.H.; Sachsenhofer, R. ‘Click’ Chemistry in Polymer and Materials Science. Macromol. Rapid Commun. 2007, 28, 15–54. [Google Scholar] [CrossRef]
- Fındık, V.; Degirmenci, I.; Çatak, Ş.; Aviyente, V. Theoretical Investigation of Thiol-Ene Click Reactions: A DFT Perspective. Eur. Polym. J. 2019, 110, 211–220. [Google Scholar] [CrossRef]
- Ganesh, V.; Sudhir, V.S.; Kundu, T.; Chandrasekaran, S. 10 Years of Click Chemistry: Synthesis and Applications of Ferrocene-Derived Triazoles. Chem. Asian J. 2011, 6, 2670–2694. [Google Scholar] [CrossRef]
- Liao, J.; Peng, H.; Wei, X.; Song, Y.; Liu, C.; Li, D.; Yin, Y.; Xiong, X.; Zheng, H.; Wang, Q. A Bio-Responsive 6-Mercaptopurine/Doxorubicin Based “Click Chemistry” Polymeric Prodrug for Cancer Therapy. Mater. Sci. Eng. C 2020, 108, 110461. [Google Scholar] [CrossRef]
- Nguyen, A.; Chao, P.-H.; Ong, C.Y.; Rouhollahi, E.; Fayez, N.A.L.; Lin, L.; Brown, J.I.; Böttger, R.; Page, B.; Wong, H.; et al. Chemically Engineering the Drug Release Rate of a PEG-Paclitaxel Conjugate Using Click and Steric Hindrance Chemistries for Optimal Efficacy. Biomaterials 2022, 289, 121735. [Google Scholar] [CrossRef]
- Xu, J.; Lin, S.; Hu, H.; Xing, Q.; Geng, J. Tumor-Targeting Polymer–Drug Conjugate for Liver Cancer Treatment In Vitro. Polymers 2022, 14, 4515. [Google Scholar] [CrossRef]
- Zhou, R.; Zhang, M.; He, J.; Liu, J.; Sun, X.; Ni, P. Functional CRGD-Conjugated Polymer Prodrug for Targeted Drug Delivery to Liver Cancer Cells. ACS Omega 2022, 7, 21325–21336. [Google Scholar] [CrossRef]
- Sun, H.; Yan, L.; Chang, M.Y.Z.; Carter, K.A.; Zhang, R.; Slyker, L.; Lovell, J.F.; Wu, Y.; Cheng, C. A Multifunctional Biodegradable Brush Polymer-Drug Conjugate for Paclitaxel/Gemcitabine Co-Delivery and Tumor Imaging. Nanoscale Adv. 2019, 1, 2761–2771. [Google Scholar] [CrossRef] [PubMed]
- Osuofa, J.; Husson, S.M. Preparation of Protein A Membranes Using Propargyl Methacrylate-Based Copolymers and Copper-Catalyzed Alkyne–Azide Click Chemistry. Polymers 2024, 16, 239. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.B.; Skrodzki, C.J.A.; Su, Q.; Lin, J.; Niu, J. “Click Handle”-Modified 2′-Deoxy-2′-Fluoroarabino Nucleic Acid as a Synthetic Genetic Polymer Capable of Post-Polymerization Functionalization. Chem. Sci. 2022, 13, 6873–6881. [Google Scholar] [CrossRef]
- Bakardzhiev, P.; Toncheva-Moncheva, N.; Mladenova, K.; Petrova, S.; Videv, P.; Moskova-Doumanova, V.; Topouzova-Hristova, T.; Doumanov, J.; Rangelov, S. Assembly of Amphiphilic Nucleic Acid-Polymer Conjugates into Complex Superaggregates: Preparation, Properties, and in Vitro Performance. Eur. Polym. J. 2020, 131, 109692. [Google Scholar] [CrossRef]
- Saxer, S.; Erdogan, O.; Paniagua, C.; Chavanieu, A.; Garric, X.; Darcos, V. Protein-Polymer Bioconjugates Prepared by Post-Polymerization Modification of Alternating Copolymers. Eur. J. Org. Chem. 2022, 2022, e202100576. [Google Scholar] [CrossRef]
- Hironaka, K.; Yoshihara, E.; Nabil, A.; Lai, J.J.; Kikuchi, A.; Ebara, M. Conjugation of Antibody with Temperature-Responsive Polymer via in Situ Click Reaction to Enable Biomarker Enrichment for Increased Diagnostic Sensitivity. Biomater. Sci. 2021, 9, 4870–4879. [Google Scholar] [CrossRef]
- Dimitrov, E.; Toncheva-Moncheva, N.; Doumanov, J.A.; Mladenova, K.; Petrova, S.; Pispas, S.; Rangelov, S. Three-Dimensional Nucleic Acid Nanostructures Based on Self-Assembled Polymer-Oligonucleotide Conjugates of Comblike and Coil-Comb Chain Architectures. Biomacromolecules 2023, 24, 2213–2224. [Google Scholar] [CrossRef]
- Ozer, I.; Pitoc, G.A.; Layzer, J.M.; Moreno, A.; Olson, L.B.; Layzer, K.D.; Hucknall, A.M.; Sullenger, B.A.; Chilkoti, A. PEG-Like Brush Polymer Conjugate of RNA Aptamer That Shows Reversible Anticoagulant Activity and Minimal Immune Response. Adv. Mater. 2022, 34, 2107852. [Google Scholar] [CrossRef]
- Fabre, L.; Rousset, C.; Monier, K.; Da Cruz-Boisson, F.; Bouvet, P.; Charreyre, M.-T.; Delair, T.; Fleury, E.; Favier, A. Fluorescent Polymer-AS1411-Aptamer Probe for DSTORM Super-Resolution Imaging of Endogenous Nucleolin. Biomacromolecules 2022, 23, 2302–2314. [Google Scholar] [CrossRef]
- Deng, Z.; Yang, Q.; Peng, Y.; He, J.; Xu, S.; Wang, D.; Peng, T.; Wang, R.; Wang, X.-Q.; Tan, W. Polymeric Engineering of Aptamer–Drug Conjugates for Targeted Cancer Therapy. Bioconjug Chem. 2020, 31, 37–42. [Google Scholar] [CrossRef]
- Sharick, J.T.; Atieh, A.J.; Gooch, K.J.; Leight, J.L. Click Chemistry Functionalization of self-assembling Peptide Hydrogels. J. Biomed. Mater. Res. A 2023, 111, 389–403. [Google Scholar] [CrossRef]
- Cadamuro, F.; Sampaolesi, S.; Bertolini, G.; Roz, L.; Nicotra, F.; Russo, L. Click Chemistry Protocol for 3D Bioprintable Elastin−Hyaluronic Acid Hydrogels. Chem. Nano Mat. 2023, 9, 726–745. [Google Scholar] [CrossRef]
- Paioti, P.H.S.; Lounsbury, K.E.; Romiti, F.; Formica, M.; Bauer, V.; Zandonella, C.; Hackey, M.E.; del Pozo, J.; Hoveyda, A.H. Click Processes Orthogonal to CuAAC and SuFEx Forge Selectively Modifiable Fluorescent Linkers. Nat. Chem. 2024, 16, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.S.; Pandey, A.; Jha, A.K.; Badwaik, H.K.R.; Alexander, A. Ajazuddin Polyethylene Glycol–Based Polymer-Drug Conjugates: Novel Design and Synthesis Strategies for Enhanced Therapeutic Efficacy and Targeted Drug Delivery. Appl. Biochem. Biotechnol. 2024, 196, 7325–7361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.S.; Khademhosseini, A. Advances in Engineering Hydrogels. Science 2017, 356, eaaf3627. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, X.; Han, Y.; Sun, H.-Y.; Hilborn, J.; Shi, L. Click Chemistry-Based Biopolymeric Hydrogels for Regenerative Medicine. Biomed. Mater. 2021, 16, 022003. [Google Scholar] [CrossRef]
- Li, X.; Xiong, Y. Application of “Click” Chemistry in Biomedical Hydrogels. ACS Omega 2022, 7, 36918–36928. [Google Scholar] [CrossRef]
- Nerantzaki, M.; Loth, C.; Lutz, J.-F. Chemical Conjugation of Nucleic Acid Aptamers and Synthetic Polymers. Polym. Chem. 2021, 12, 3498–3509. [Google Scholar] [CrossRef]
- Perrone, D.; Marchesi, E.; Preti, L.; Navacchia, M.L. Modified Nucleosides, Nucleotides and Nucleic Acids via Click Azide-Alkyne Cycloaddition for Pharmacological Applications. Molecules 2021, 26, 3100. [Google Scholar] [CrossRef]
- Ando, T.; Takamori, Y.; Yokoyama, T.; Yamamoto, M.; Kawakami, T. Directed Evolution of Dibenzocyclooctyne-Reactive Peptide Tags for Protein Labeling. Biochem. Biophys. Res. Commun. 2021, 534, 27–33. [Google Scholar] [CrossRef]
- Vikas, Y.; Sandeep, K.; Braham, D.; Manjusha, C.; Budhwar, V. Cyclodextrin Complexes: An Approach to Improve the Physicochemical Properties of Drugs and Applications of Cyclodextrin Complexes. Asian J. Pharm. 2018, 12, S394–S4092018. [Google Scholar] [CrossRef]
- Crini, G.; Fourmentinn, S.; Lichtfouse, E. Environmental Chemistry for a Sustainable World. In Cyclodextrin Fundamentals, Reactivity and Analysis; Fourmentin, S., Crini, G., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 16, ISBN 978-3-319-76158-9. [Google Scholar]
- Liu, Z.; Ye, L.; Xi, J.; Wang, J.; Feng, Z. Cyclodextrin Polymers: Structure, Synthesis, and Use as Drug Carriers. Prog. Polym. Sci. 2021, 118, 101408. [Google Scholar] [CrossRef]
- Khan, A.R.; Forgo, P.; Stine, K.J.; D’Souza, V.T. Methods for Selective Modifications of Cyclodextrins. Chem. Rev. 1998, 98, 1977–1996. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.-Y. Cyclodextrin Chemistry: Preparation and Application; World Scientific/Chemical Industry Press: Beijing, China, 2013; Volume 1, ISBN 978-981-4436-79-3. [Google Scholar]
- Miljković, M. Relative Reactivity of Hydroxyl Groups in Monosaccharides; Springer: New York, NY, USA, 2010. [Google Scholar]
- Faugeras, P.-A.; Boëns, B.; Elchinger, P.-H.; Brouillette, F.; Montplaisir, D.; Zerrouki, R.; Lucas, R. When Cyclodextrins Meet Click Chemistry. Eur. J. Org. Chem. 2012, 2012, 4087–4105. [Google Scholar] [CrossRef]
- Toomari, Y.; Namazi, H.; Akbar, E.A. Synthesis of the Dendritic Type β-Cyclodextrin on Primary Face via Click Reaction Applicable as Drug Nanocarrier. Carbohydr. Polym. 2015, 132, 205–213. [Google Scholar] [CrossRef]
- Toomari, Y.; Namazi, H.; Entezami, A.A. Fabrication of Biodendrimeric β-Cyclodextrin via Click Reaction with Potency of Anticancer Drug Delivery Agent. Int. J. Biol. Macromol. 2015, 79, 883–893. [Google Scholar] [CrossRef]
- Chen, P.-G.; Huang, Z.-H.; Sun, Z.-Y.; Li, Q.-Q.; Chen, Y.-X.; Zhao, Y.-F.; Li, Y.-M. Synthesis of an MUC1 Glycopeptide Dendrimer Based on β-Cyclodextrin by Click Chemistry. Synlett 2017, 28, 1961–1965. [Google Scholar] [CrossRef]
- Sorroza-Martínez, K.; González-Méndez, I.; Martínez-Serrano, R.D.; Solano, J.D.; Ruiu, A.; Illescas, J.; Zhu, X.X.; Rivera, E. Efficient Modification of PAMAM G1 Dendrimer Surface with β-Cyclodextrin Units by CuAAC: Impact on the Water Solubility and Cytotoxicity. RSC Adv. 2020, 10, 25557–25566. [Google Scholar] [CrossRef]
- López-Méndez, L.J.; Cuéllar-Ramírez, E.E.; Cabrera-Quiñones, N.C.; Rojas-Aguirre, Y.; Guadarrama, P. Convergent Click Synthesis of Macromolecular Dendritic β-Cyclodextrin Derivatives as Non-Conventional Drug Carriers: Albendazole as Guest Model. Int. J. Biol. Macromol. 2020, 164, 1704–1714. [Google Scholar] [CrossRef]
- Lo Meo, P.; Lazzara, G.; Liotta, L.; Riela, S.; Noto, R. Cyclodextrin–Calixarene Co-Polymers as a New Class of Nanosponges. Polym. Chem. 2014, 5, 4499–4510. [Google Scholar] [CrossRef]
- Degirmenci, A.; Ipek, H.; Sanyal, R.; Sanyal, A. Cyclodextrin-Containing Redox-Responsive Nanogels: Fabrication of a Modular Targeted Drug Delivery System. Eur. Polym. J. 2022, 181, 111645. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Liang, J.; Zou, M. A Cyclodextrin-Core Star Copolymer with Y-Shaped ABC Miktoarms and Its Unimolecular Micelles. RSC Adv. 2017, 7, 11691–11700. [Google Scholar] [CrossRef]
- Gou, P.F.; Zhu, W.P.; Shen, Z.Q. Synthesis, Self-Assembly, and Drug-Loading Capacity of Well-Defined Cyclodextrin-Centered Drug-Conjugated Amphiphilic A14B7 Miktoarm Star Copolymers Based on Poly(ε-Caprolactone) and Poly(Ethylene Glycol). Biomacromolecules 2010, 11, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qian, Y.; Liu, T.; Zhang, G.; Hu, J.; Liu, S. Asymmetrically Functionalized β-Cyclodextrin-Based Star Copolymers for Integrated Gene Delivery and Magnetic Resonance Imaging Contrast Enhancement. Polym. Chem. 2014, 5, 1743–1750. [Google Scholar] [CrossRef]
- Rojas-Aguirre, Y.; Torres-Mena, M.A.; López-Méndez, L.J.; Alcaraz-Estrada, S.L.; Guadarrama, P.; Urucha-Ortíz, J.M. PEGylated β-Cyclodextrins: Click Synthesis and in Vitro Biological Insights. Carbohydr. Polym. 2019, 223, 115113. [Google Scholar] [CrossRef]
- Joshi, A.; Kate, S.; Poon, V.; Mondal, D.; Boggara, M.B.; Saraph, A.; Martin, J.T.; McAlpine, R.; Day, R.; Garcia, A.E.; et al. Structure-Based Design of a Heptavalent Anthrax Toxin Inhibitor. Biomacromolecules 2011, 12, 791–796. [Google Scholar] [CrossRef]
- Christoffersen, H.F.; Andreasen, M.; Zhang, S.; Nielsen, E.H.; Christiansen, G.; Dong, M.; Skrydstrup, T.; Otzen, D.E. Scaffolded Multimers of HIAPP20–29 Peptide Fragments Fibrillate Faster and Lead to Different Fibrils Compared to the Free HIAPP20–29 Peptide Fragment. Biochim. Biophys. Acta Proteins Proteom. 2015, 1854, 1890–1897. [Google Scholar] [CrossRef]
- Kwon, C.; Kang, Y.J.; Jeon, S.; Jung, S.; Hong, S.Y.; Kang, S. Development of Protein-Cage-Based Delivery Nanoplatforms by Polyvalently Displaying β-Cyclodextrins on the Surface of Ferritins Through Copper(I)-Catalyzed Azide/Alkyne Cycloaddition. Macromol. Biosci. 2012, 12, 1452–1458. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, K.; Shukla, S.; Sampathkumar, S.-G.; Roy, R.P. Sortase-Click Strategy for Defined Protein Conjugation on a Heptavalent Cyclodextrin Scaffold. PLoS ONE 2019, 14, e0217369. [Google Scholar] [CrossRef]
- Plumet, C.; Mohamed, A.S.; Vendeuvre, T.; Renoux, B.; Clarhaut, J.; Papot, S. Cell–Cell Interactions via Non-Covalent Click Chemistry. Chem. Sci. 2021, 12, 9017–9021. [Google Scholar] [CrossRef]
- Arslan, M.; Gevrek, T.N.; Sanyal, A.; Sanyal, R. Cyclodextrin Mediated Polymer Coupling via Thiol–Maleimide Conjugation: Facile Access to Functionalizable Hydrogels. RSC Adv. 2014, 4, 57834–57841. [Google Scholar] [CrossRef]
- Arslan, M.; Gevrek, T.N.; Sanyal, R.; Sanyal, A. Fabrication of Poly(Ethylene Glycol)-Based Cyclodextrin Containing Hydrogels via Thiol-Ene Click Reaction. Eur. Polym. J. 2015, 62, 426–434. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, X.; Xu, X.; Jin, Z.; Wang, J. Synthesis and Characterization of Water-Soluble β-Cyclodextrin Polymers via Thiol-Maleimide ‘Click’ Chemistry. Eur. Polym. J. 2020, 128, 109603. [Google Scholar] [CrossRef]
- Yi, Y. Multiarm Star Polymers Based on Thiol–Ene Photoclick Cyclodextrin Cores. Polym. Chem. 2020, 11, 659–663. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Jin, Z. Supramolecular Hydrogel Formation between Chitosan and Hydroxypropyl β-Cyclodextrin via Diels-Alder Reaction and Its Drug Delivery. Int. J. Biol. Macromol. 2018, 114, 381–391. [Google Scholar] [CrossRef]
- Wang, H.; Shao, N.; Qiao, S.; Cheng, Y. Host-Guest Chemistry of Dendrimer-Cyclodextrin Conjugates: Selective Encapsulations of Guests within Dendrimer or Cyclodextrin Cavities Revealed by NOE NMR Techniques. J. Phys. Chem. B 2012, 116, 11217–11224. [Google Scholar] [CrossRef]
- Arima, H.; Yamashita, S.; Mori, Y.; Hayashi, Y.; Motoyama, K.; Hattori, K.; Takeuchi, T.; Jono, H.; Ando, Y.; Hirayama, F.; et al. In Vitro and In Vivo Gene Delivery Mediated by Lactosylated Dendrimer/α-Cyclodextrin Conjugates (G2) into Hepatocytes. J. Control. Release 2010, 146, 106–117. [Google Scholar] [CrossRef]
- Arima, H.; Kihara, F.; Hirayama, F.; Uekama, K. Enhancement of Gene Expression by Polyamidoamine Dendrimer Conjugates with α-, β-, and γ-Cyclodextrins. Bioconjug Chem. 2001, 12, 476–484. [Google Scholar] [CrossRef]
- Arima, H. Twenty Years of Research on Cyclodextrin Conjugates with PAMAM Dendrimers. Pharmaceutics 2021, 13, 697. [Google Scholar] [CrossRef]
- Namazi, H.; Heydari, A. Synthesis of β-Cyclodextrin-Based Dendrimer as a Novel Encapsulation Agent. Polym. Int. 2014, 63, 1447–1455. [Google Scholar] [CrossRef]
- Yousef, T.; Hassan, N. Supramolecular Encapsulation of Doxorubicin with β-Cyclodextrin Dendrimer: In Vitro Evaluation of Controlled Release and Cytotoxicity. J. Incl. Phenom. Macrocycl. Chem. 2017, 87, 105–115. [Google Scholar] [CrossRef]
- López-Méndez, L.J.; Palomares-Alonso, F.; González-Hernández, I.; Jung-Cook, H.; Cabrera-Quiñones, N.C.; Guadarrama, P. β-Cyclodextrin Dendritic Derivatives as Permeation Mediators to Enhance the in Vitro Albendazole Cysticidal Activity by the Improvement of the Diffusion Component. RSC Adv. 2022, 12, 23153–23161. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tian, B.; Liu, Y.; Wan, J.-B. Cyclodextrin-Containing Hydrogels: A Review of Preparation Method, Drug Delivery, and Degradation Behavior. Int. J. Mol. Sci. 2021, 22, 13516. [Google Scholar] [CrossRef] [PubMed]
- Utzeri, G.; Matias, P.M.C.; Murtinho, D.; Valente, A.J.M. Cyclodextrin-Based Nanosponges: Overview and Opportunities. Front. Chem. 2022, 10, 859406. [Google Scholar] [CrossRef]
- Ansari, K.A.; Vavia, P.R.; Trotta, F.; Cavalli, R. Cyclodextrin-Based Nanosponges for Delivery of Resveratrol: In Vitro Characterisation, Stability, Cytotoxicity and Permeation Study. AAPS Pharm. Sci. Tech. 2011, 12, 279–286. [Google Scholar] [CrossRef]
- Allahyari, S.; Valizadeh, H.; Roshangar, L.; Mahmoudian, M.; Trotta, F.; Caldera, F.; Jelvehgari, M.; Zakeri-Milani, P. Preparation and Characterization of Cyclodextrin Nanosponges for Bortezomib Delivery. Expert. Opin. Drug. Deliv. 2020, 17, 1807–1816. [Google Scholar] [CrossRef]
- Di Vincenzo, A.; Russo, M.; Cataldo, S.; Milea, D.; Pettignano, A.; Lo Meo, P. Effect of PH Variations on the Properties of Cyclodextrin-Calixarene Nanosponges. Chem. Sel. 2019, 4, 6155–6161. [Google Scholar] [CrossRef]
- Cook-Chennault, K.; Anaokar, S.; Medina Vázquez, A.M.; Chennault, M. Influence of High Strain Dynamic Loading on HEMA–DMAEMA Hydrogel Storage Modulus and Time Dependence. Polymers 2024, 16, 1797. [Google Scholar] [CrossRef]
- Hermans, J.; Bierma-Zeinstra, S.M.A.; Bos, P.K.; Niesten, D.D.; Verhaar, J.A.N.; Reijman, M. The Effectiveness of High Molecular Weight Hyaluronic Acid for Knee Osteoarthritis in Patients in the Working Age: A Randomised Controlled Trial. BMC Musculoskelet. Disord. 2019, 20, 196. [Google Scholar] [CrossRef]
- Aghajanzadeh, M.; Zamani, M.; Rostamizadeh, K.; Sharafi, A.; Danafar, H. The Role of Miktoarm Star Copolymers in Drug Delivery Systems. J. Macromol. Sci. Part A 2018, 55, 559–571. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, G.Z.; Becer, C.R.; Haddleton, D.M. Cyclodextrin-Centred Star Polymers Synthesized via a Combination of Thiol-Ene Click and Ring Opening Polymerization. Chem. Commun. 2012, 48, 8063–8065. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Blankenship, J.R.; Levi, A.E.; Fu, Q.; Hudson, Z.M.; Bates, C.M. Miktoarm Star Polymers: Synthesis and Applications. Chem. Mater. 2022, 34, 6188–6209. [Google Scholar] [CrossRef]
- Nafee, N.; Hirosue, M.; Loretz, B.; Wenz, G.; Lehr, C.M. Cyclodextrin-Based Star Polymers as a Versatile Platform for Nanochemotherapeutics: Enhanced Entrapment and Uptake of Idarubicin. Colloids Surf. B Biointerfaces 2015, 129, 30–38. [Google Scholar] [CrossRef]
- Plamper, F.A.; Becker, H.; Lanzendörfer, M.; Patel, M.; Wittemann, A.; Ballauff, M.; Müller, A.H.E. Synthesis, Characterization and Behavior in Aqueous Solution of Star-Shaped Poly(Acrylic Acid). Macromol. Chem. Phys. 2005, 206, 1813–1825. [Google Scholar] [CrossRef]
- Ohno, K.; Wong, B.; Haddleton, D.M. Synthesis of Well-defined Cyclodextrin-core Star Polymers. J. Polym. Sci. A Polym. Chem. 2001, 39, 2206–2214. [Google Scholar] [CrossRef]
- Xu, J.; Liu, S. Synthesis of Well-defined 7-arm and 21-arm Poly( N-isopropylacrylamide) Star Polymers with β-cyclodextrin Cores via Click Chemistry and Their Thermal Phase Transition Behavior in Aqueous Solution. J. Polym. Sci. A Polym. Chem. 2009, 47, 404–419. [Google Scholar] [CrossRef]
- Nagase, K. Thermoresponsive Interfaces Obtained Using Poly(N-Isopropylacrylamide)-Based Copolymer for Bioseparation and Tissue Engineering Applications. Adv. Colloid. Interface Sci. 2021, 295, 102487. [Google Scholar] [CrossRef]
- Łagiewka, J.; Girek, T.; Ciesielski, W. Cyclodextrins-Peptides/Proteins Conjugates: Synthesis, Properties and Applications. Polymers 2021, 13, 1759. [Google Scholar] [CrossRef]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Troshin, P.A.; Lyubovskaya, R.N. Organic Chemistry of Fullerenes: The Major Reactions, Types of Fullerene Derivatives and Prospects for Practical Use. Russ. Chem. Rev. 2008, 77, 323–369. [Google Scholar] [CrossRef]
- Yan, W.; Seifermann, S.M.; Pierrat, P.; Bräse, S. Synthesis of Highly Functionalized C 60 Fullerene Derivatives and Their Applications in Material and Life Sciences. Org. Biomol. Chem. 2015, 13, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Wudl, F.; Hirsch, A.; Khemani, K.C.; Suzuki, T.; Allemand, P.-M.; Koch, A.; Eckert, H.; Srdanov, G.; Webb, H.M. Survey of Chemical Reactivity of C60, Electrophile and Dieno—Polarophile Par Excellence. In Fullerenes; American Chemical Society: Washington, WA, USA, 1992; pp. 161–175. [Google Scholar]
- Montellano López, A.; Mateo-Alonso, A.; Prato, M. Materials Chemistry of Fullerene C 60 Derivatives. J. Mater. Chem. 2011, 21, 1305–1318. [Google Scholar] [CrossRef]
- Biglova, Y.N.; Mustafin, A.G. Nucleophilic Cyclopropanation of [60] Fullerene by the Addition–Elimination Mechanism. RSC Adv. 2019, 9, 22428–22498. [Google Scholar] [CrossRef] [PubMed]
- Bingel, C. Cyclopropanierung von Fullerenen. Chem. Ber. 1993, 126, 1957–1959. [Google Scholar] [CrossRef]
- Kumar, M.; Raza, K. C60-Fullerenes as Drug Delivery Carriers for Anticancer Agents: Promises and Hurdles. Pharm. Nanotechnol. 2018, 5, 169–179. [Google Scholar] [CrossRef]
- Prylutska, S.; Panchuk, R.; Gołuński, G.; Skivka, L.; Prylutskyy, Y.; Hurmach, V.; Skorohyd, N.; Borowik, A.; Woziwodzka, A.; Piosik, J.; et al. C60 Fullerene Enhances Cisplatin Anticancer Activity and Overcomes Tumor Cell Drug Resistance. Nano Res. 2017, 10, 652–671. [Google Scholar] [CrossRef]
- Gonzalez Lopez, E.J.; Sarotti, A.M.; Martínez, S.R.; Macor, L.P.; Durantini, J.E.; Renfige, M.; Gervaldo, M.A.; Otero, L.A.; Durantini, A.M.; Durantini, E.N.; et al. BOPHY-Fullerene C60 Dyad as a Photosensitizer for Antimicrobial Photodynamic Therapy. Chem. A Eur. J. 2022, 28, e202103884. [Google Scholar] [CrossRef]
- Agazzi, M.L.; Durantini, J.E.; Gsponer, N.S.; Durantini, A.M.; Bertolotti, S.G.; Durantini, E.N. Light-Harvesting Antenna and Proton-Activated Photodynamic Effect of a Novel BODIPY−Fullerene C60 Dyad as Potential Antimicrobial Agent. Chem. Phys. Chem. 2019, 20, 1110–1125. [Google Scholar] [CrossRef]
- Hou, W.; Shi, G.; Wu, S.; Mo, J.; Shen, L.; Zhang, X.; Zhu, Y. Application of Fullerenes as Photosensitizers for Antimicrobial Photodynamic Inactivation: A Review. Front. Microbiol. 2022, 13, 957698. [Google Scholar] [CrossRef]
- Marchesan, S.; Da Ros, T.; Spalluto, G.; Balzarini, J.; Prato, M. Anti-HIV Properties of Cationic Fullerene Derivatives. Bioorg. Med. Chem. Lett. 2005, 15, 3615–3618. [Google Scholar] [CrossRef]
- Marforio, T.D.; Mattioli, E.J.; Zerbetto, F.; Calvaresi, M. Fullerenes against COVID-19: Repurposing C60 and C70 to Clog the Active Site of SARS-CoV-2 Protease. Molecules 2022, 27, 1916. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Herrera, M.; Figueroa-Gerstenmaier, S.; López-Camacho, P.Y.; Millan-Pacheco, C.; Balderas-Altamirano, M.A.; Mendoza-Franco, G.; García-Sierra, F.; Zavala-Ocampo, L.M.; Basurto-Islas, G. Multiadducts of C60 Modulate Amyloid-β Fibrillation with Dual Acetylcholinesterase Inhibition and Antioxidant Properties: In Vitro and In Silico Studies. J. Alzheimer’s Dis. 2022, 87, 741–759. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, E.; Isobe, H. Functionalized Fullerenes in Water. The First 10 Years of Their Chemistry, Biology, and Nanoscience. Acc. Chem. Res. 2003, 36, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Johnson-Lyles, D.N.; Peifley, K.; Lockett, S.; Neun, B.W.; Hansen, M.; Clogston, J.; Stern, S.T.; McNeil, S.E. Fullerenol Cytotoxicity in Kidney Cells Is Associated with Cytoskeleton Disruption, Autophagic Vacuole Accumulation, and Mitochondrial Dysfunction. Toxicol. Appl. Pharmacol. 2010, 248, 249–258. [Google Scholar] [CrossRef]
- Haldón, E.; Nicasio, M.C.; Pérez, P.J. Copper-Catalysed Azide–Alkyne Cycloadditions (CuAAC): An Update. Org. Biomol. Chem. 2015, 13, 9528–9550. [Google Scholar] [CrossRef]
- González, S.; Martín, N.; Swartz, A.; Guldi, D.M. Addition Reaction of Azido-ExTTFs to C60: Synthesis of Fullerotriazoline and Azafulleroid Electroactive Dyads. Org. Lett. 2003, 5, 557–560. [Google Scholar] [CrossRef]
- Gulumkar, V.; Tähtinen, V.; Ali, A.; Rahkila, J.; Valle-Delgado, J.J.; Äärelä, A.; Österberg, M.; Yliperttula, M.; Virta, P. Synthesis of an Azide- and Tetrazine-Functionalized [60]Fullerene and Its Controlled Decoration with Biomolecules. ACS Omega 2022, 7, 1329–1336. [Google Scholar] [CrossRef]
- Ramos-Soriano, J.; Reina, J.J.; Illescas, B.M.; Rojo, J.; Martín, N. Maleimide and Cyclooctyne-Based Hexakis-Adducts of Fullerene: Multivalent Scaffolds for Copper-Free Click Chemistry on Fullerenes. J. Org. Chem. 2018, 83, 1727–1736. [Google Scholar] [CrossRef]
- Steinmetz, N.F.; Hong, V.; Spoerke, E.D.; Lu, P.; Breitenkamp, K.; Finn, M.G.; Manchester, M. Buckyballs Meet Viral Nanoparticles: Candidates for Biomedicine. J. Am. Chem. Soc. 2009, 131, 17093–17095. [Google Scholar] [CrossRef]
- Durka, M.; Buffet, K.; Iehl, J.; Holler, M.; Nierengarten, J.-F.; Taganna, J.; Bouckaert, J.; Vincent, S.P. The Functional Valency of Dodecamannosylated Fullerenes with Escherichia Coli FimH—Towards Novel Bacterial Antiadhesives. Chem. Commun. 2011, 47, 1321–1323. [Google Scholar] [CrossRef]
- Cecioni, S.; Oerthel, V.; Iehl, J.; Holler, M.; Goyard, D.; Praly, J.; Imberty, A.; Nierengarten, J.; Vidal, S. Synthesis of Dodecavalent Fullerene-Based Glycoclusters and Evaluation of Their Binding Properties towards a Bacterial Lectin. Chem. A Eur. J. 2011, 17, 3252–3261. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Santaquiteria, M.; Illescas, B.M.; Abdelnabi, R.; Boonen, A.; Mills, A.; Martí-Marí, O.; Noppen, S.; Neyts, J.; Schols, D.; Gago, F.; et al. Multivalent Tryptophan- and Tyrosine-Containing [60] Fullerene Hexa-Adducts as Dual HIV and Enterovirus A71 Entry Inhibitors. Chem. A Eur. J. 2021, 27, 10700–10710. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, A.; Sigwalt, D.; Illescas, B.M.; Luczkowiak, J.; Rodríguez-Pérez, L.; Nierengarten, I.; Holler, M.; Remy, J.S.; Buffet, K.; Vincent, S.P.; et al. Synthesis of Giant Globular Multivalent Glycofullerenes as Potent Inhibitors in a Model of Ebola Virus Infection. Nat. Chem. 2016, 8, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Luczkowiak, J.; Muñoz, A.; Sánchez-Navarro, M.; Ribeiro-Viana, R.; Ginieis, A.; Illescas, B.M.; Martín, N.; Delgado, R.; Rojo, J. Glycofullerenes Inhibit Viral Infection. Biomacromolecules 2013, 14, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Illescas, B.M.; Rojo, J.; Delgado, R.; Martín, N. Multivalent Glycosylated Nanostructures To Inhibit Ebola Virus Infection. J. Am. Chem. Soc. 2017, 139, 6018–6025. [Google Scholar] [CrossRef]
- Sigwalt, D.; Caballero, R.; Holler, M.; Strub, J.; Van Dorsselaer, A.; Nierengarten, J. Ultra-Fast Dendritic Growth Based on the Grafting of Fullerene Hexa-Adduct Macromonomers onto a Fullerene Core. Eur. J. Org. Chem. 2016, 2016, 2882–2887. [Google Scholar] [CrossRef]
- Abellán Flos, M.; García Moreno, M.I.; Ortiz Mellet, C.; García Fernández, J.M.; Nierengarten, J.; Vincent, S.P. Potent Glycosidase Inhibition with Heterovalent Fullerenes: Unveiling the Binding Modes Triggering Multivalent Inhibition. Chem. A Eur. J. 2016, 22, 11450–11460. [Google Scholar] [CrossRef]
- Yin, G.; Wei, J.; Shao, Y.; Wu, W.-H.; Xu, L.; Zhang, W.-B. Native Conjugation between Proteins and [60] Fullerene Derivatives Using SpyTag as a Reactive Handle. Chin. Chem. Lett. 2021, 32, 353–356. [Google Scholar] [CrossRef]
- Ramos-Soriano, J.; Reina, J.J.; Pérez-Sánchez, A.; Illescas, B.M.; Rojo, J.; Martín, N. Cyclooctyne [60] Fullerene Hexakis Adducts: A Globular Scaffold for Copper-Free Click Chemistry. Chem. Commun. 2016, 52, 10544–10546. [Google Scholar] [CrossRef]
- Ramos-Soriano, J.; Reina, J.J.; Illescas, B.M.; de la Cruz, N.; Rodríguez-Pérez, L.; Lasala, F.; Rojo, J.; Delgado, R.; Martín, N. Synthesis of Highly Efficient Multivalent Disaccharide/[60]Fullerene Nanoballs for Emergent Viruses. J. Am. Chem. Soc. 2019, 141, 15403–15412. [Google Scholar] [CrossRef]
- Gulumkar, V.; Äärelä, A.; Moisio, O.; Rahkila, J.; Tähtinen, V.; Leimu, L.; Korsoff, N.; Korhonen, H.; Poijärvi-Virta, P.; Mikkola, S.; et al. Controlled Monofunctionalization of Molecular Spherical Nucleic Acids on a Buckminster Fullerene Core. Bioconjug Chem. 2021, 32, 1130–1138. [Google Scholar] [CrossRef] [PubMed]
- Kroto, H.W.; Taylor, R.; Walton, D.R.M. The Structure and Reactivity of C60. Pure Appl. Chem. 1994, 66, 2091–2094. [Google Scholar] [CrossRef]
- Iehl, J.; Pereira de Freitas, R.; Delavaux-Nicot, B.; Nierengarten, J.-F. Click Chemistry for the Efficient Preparation of Functionalized [60] Fullerene Hexakis-Adducts. Chem. Commun. 2008, 21, 2450–2452. [Google Scholar] [CrossRef]
- Iehl, J.; Nierengarten, J. A Click–Click Approach for the Preparation of Functionalized [5:1]-Hexaadducts of C60. Chem. A Eur. J. 2009, 15, 7306–7309. [Google Scholar] [CrossRef]
- Nierengarten, I.; Nierengarten, J. Fullerene Sugar Balls: A New Class of Biologically Active Fullerene Derivatives. Chem. Asian J. 2014, 9, 1436–1444. [Google Scholar] [CrossRef]
- Nierengarten, J.-F.; Iehl, J.; Oerthel, V.; Holler, M.; Illescas, B.M.; Muñoz, A.; Martín, N.; Rojo, J.; Sánchez-Navarro, M.; Cecioni, S.; et al. Fullerene Sugar Balls. Chem. Commun. 2010, 46, 3860. [Google Scholar] [CrossRef]
- Tanzi, L.; Terreni, M.; Zhang, Y. Synthesis and Biological Application of Glyco- and Peptide Derivatives of Fullerene C60. Eur. J. Med. Chem. 2022, 230, 114104. [Google Scholar] [CrossRef]
- Compain, P.; Decroocq, C.; Iehl, J.; Holler, M.; Hazelard, D.; Mena Barragán, T.; Ortiz Mellet, C.; Nierengarten, J. Glycosidase Inhibition with Fullerene Iminosugar Balls: A Dramatic Multivalent Effect. Angew. Chem. Int. Ed. 2010, 49, 5753–5756. [Google Scholar] [CrossRef]
- Cruz-Hernández, C.; López-Méndez, L.J.; Guadarrama, P. Dendronization: A Practical Strategy to Improve the Performance of Molecular Systems Used in Biomedical Applications. Eur. J. Med. Chem. 2022, 229, 113988. [Google Scholar] [CrossRef]
- Sigwalt, D.; Holler, M.; Iehl, J.; Nierengarten, J.-F.; Nothisen, M.; Morin, E.; Remy, J.-S. Gene Delivery with Polycationic Fullerene Hexakis-Adducts. Chem. Commun. 2011, 47, 4640. [Google Scholar] [CrossRef]
- Moheteer, A.; Li, J.; Abulikemu, X.; Lakho, S.A.; Meng, Y.; Zhang, J.; Khand, F.M.; Leghari, A.; Abula, S.; Guo, Q.; et al. Preparation and Activity Study of Ruoqiang Jujube Polysaccharide Copper Chelate. Front. Pharmacol. 2024, 14, 1663–9812. [Google Scholar] [CrossRef] [PubMed]
- Gyurcsik, B.; Nagy, L. Carbohydrates as Ligands: Coordination Equilibria and Structure of the Metal Complexes. Coord. Chem. Rev. 2000, 203, 81–149. [Google Scholar] [CrossRef]
- Ornelas, C.; Broichhagen, J.; Weck, M. Strain-Promoted Alkyne Azide Cycloaddition for the Functionalization of Poly(Amide)-Based Dendrons and Dendrimers. J. Am. Chem. Soc. 2010, 132, 3923–3931. [Google Scholar] [CrossRef]
- Iehl, J.; Nierengarten, J.-F. Sequential Copper Catalyzed Alkyne–Azide and Thiol–Ene Click Reactions for the Multiple Functionalization of Fullerene Hexaadducts. Chem. Commun. 2010, 46, 4160. [Google Scholar] [CrossRef]
Click Reaction | Application | System Type | Reference |
---|---|---|---|
CuAAC | Co-delivery system | 2.1 A | [37] |
Controlled release system | 2.1 A | [38] | |
Controlled release system and tumor-targeting | 2.1 A | [39] | |
Targeted drug delivery | 2.1 A and 2.1 B | [40] | |
Co-delivery system and tumor imaging agent | 2.1 A | [41] | |
Antibody purification to diagnosis | 2.1 B | [42] | |
Genetic polymer capable of post-functionalization | 2.1 C | [43] | |
Drug and gene delivery | 2.1 C | [44] | |
SPAAC | Drug delivery and diagnosis | 2.1 B | [45] |
Biomarker to infectious diseases diagnostic | 2.1 B | [46] | |
Drug delivery, molecular diagnostics, and gene regulation | 2.1 C | [47] | |
Reversible anticoagulant activity | 2.1 D | [48] | |
Detection of cell surface nucleolin | 2.1 D | [49] | |
Targeted cancer therapy | 2.1 D | [50] | |
Thiol–ene | Tissue remodeling | 2.1 B | [51] |
3D bioprinting | 2.1 B | [52] |
Click Reaction | Application | System Type | Reference |
CuAAC | Controlled drug delivery system | 3.1 A | [68] |
Controlled drug delivery system | 3.1 A | [69] | |
Antibody detection, serum analysis, and diagnosis | 3.1 C | [70] | |
Drug delivery system | 3.1 B | [71] | |
Drug delivery system | 3.1 C | [72] | |
Drug delivery system | 3.2 D | [73] | |
Controlled drug delivery system | 3.2 F | [74] | |
Controlled drug delivery systems | 3.3 H | [75] | |
Drug delivery system | 3.3 H | [76] | |
MRI Contrast agent | 3.3 H | [77] | |
Drug delivery system | 3.3 G | [78] | |
Antibiotic therapy | 3.3 G | [79] | |
Development of therapies for amyloid-related diseases | 3.3 G | [80] | |
Drug delivery and diagnostics | 3.4 J | [81] | |
Controlled drug delivery system | 3.4 I | [82] | |
SPAAC | Cell-based therapies | 3.4 J | [83] |
Thiol–ene | Tissue engineering | 3.2 E | [84] |
Controlled drug delivery system | 3.2 E | [85] | |
Implants or controlled drug delivery systems | 3.2 F | [86] | |
Controlled drug delivery system | 3.3 H | [87] | |
Diels–Alder | Controlled drug delivery system | 3.2 F | [88] |
Click Reaction | Application | System Type | Reference |
CuAAC | Tumor therapies and delivery system | 4.1 | [133] |
Bacterial infection inhibitor | 4.2A | [134] | |
Bacterial infection inhibitor | 4.2A | [135] | |
Antiviral agent against HIV and EV71 | 4.2 A | [136] | |
Antiviral agent against EBOV-GP | 4.2 A | [137] | |
Antiviral agent against EBOV-GP | 4.2A | [138] | |
Antiviral agent against EBOV-GP | 4.2A | [139] | |
Solubility enhancement | 4.2 A | [140] | |
Enzyme inhibition | 4.2 A and 4.2 B | [141] | |
Enhancement cell penetration | 4.2 B | [142] | |
SPAAC | Bioconjugation | 4.2 A | [143] |
Antiviral agent against Zika virus | 4.2A | [144] | |
Bioconjugation | 4.2B | [145] | |
Thiol–ene | Bioconjugation | 4.2B | [145] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabrera-Quiñones, N.C.; López-Méndez, L.J.; Cruz-Hernández, C.; Guadarrama, P. Click Chemistry as an Efficient Toolbox for Coupling Sterically Hindered Molecular Systems to Obtain Advanced Materials for Nanomedicine. Int. J. Mol. Sci. 2025, 26, 36. https://doi.org/10.3390/ijms26010036
Cabrera-Quiñones NC, López-Méndez LJ, Cruz-Hernández C, Guadarrama P. Click Chemistry as an Efficient Toolbox for Coupling Sterically Hindered Molecular Systems to Obtain Advanced Materials for Nanomedicine. International Journal of Molecular Sciences. 2025; 26(1):36. https://doi.org/10.3390/ijms26010036
Chicago/Turabian StyleCabrera-Quiñones, Neyra Citlali, Luis José López-Méndez, Carlos Cruz-Hernández, and Patricia Guadarrama. 2025. "Click Chemistry as an Efficient Toolbox for Coupling Sterically Hindered Molecular Systems to Obtain Advanced Materials for Nanomedicine" International Journal of Molecular Sciences 26, no. 1: 36. https://doi.org/10.3390/ijms26010036
APA StyleCabrera-Quiñones, N. C., López-Méndez, L. J., Cruz-Hernández, C., & Guadarrama, P. (2025). Click Chemistry as an Efficient Toolbox for Coupling Sterically Hindered Molecular Systems to Obtain Advanced Materials for Nanomedicine. International Journal of Molecular Sciences, 26(1), 36. https://doi.org/10.3390/ijms26010036