Therapeutic Significance of NLRP3 Inflammasome in Cancer: Friend or Foe?
Abstract
:1. Introduction
2. NLRP3 in Melanoma
3. NLRP3 in Leukemia
4. NLRP3 in Breast Cancer
5. NLRP3 in Lung Cancer
6. NLRP3 in Colon Cancer
7. NLRP3 in Gastric and Pancreatic Cancers
8. NLRP3 in Pancreatic Cancer
9. NLRP3 in Prostate Cancer
10. NLRP3 in Gynecological Cancers
Cancer Type | Role of NLRP3 | Citations |
---|---|---|
Endometriosis |
| [209] |
| [209] | |
| [210] | |
| [211] | |
| [212] | |
| [213] | |
| [214] | |
| [215] | |
| [217] | |
Ovarian cancer |
| [220] |
| [221] | |
| [222] | |
| [226] | |
| [225] | |
| [225] | |
| [227] | |
Cervical cancer |
| [228] |
| [229] | |
| [230] | |
| [231] | |
| [232] | |
| [234] | |
| [236] |
11. NLRP3 in Head and Neck Cancer
12. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Shadab, A.; Mahjoor, M.; Abbasi-Kolli, M.; Afkhami, H.; Moeinian, P.; Safdarian, A.R. Divergent functions of NLRP3 inflammasomes in cancer: A review. Cell Commun. Signal. 2023, 21, 232. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Kombe Kombe, A.J.; Deng, S.; Zhang, H.; Wu, S.; Ruan, J.; Zhou, Y.; Jin, T. NLRP inflammasomes in health and disease. Mol. Biomed. 2024, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, I.E.; Tsironis, C.; Papadakos, S.P.; Tsitsilonis, O.E.; Dimopoulos, M.A.; Theocharis, S. Unraveling the role of the NLRP3 inflammasome in lymphoma: Implications in pathogenesis and therapeutic strategies. Int. J. Mol. Sci. 2024, 25, 2369. [Google Scholar] [CrossRef] [PubMed]
- Gouravani, M.; Khalili, N.; Razi, S.; Keshavarz-Fathi, M.; Khalili, N.; Rezaei, N. The NLRP3 inflammasome: A therapeutic target for inflammation-associated cancers. Expert Rev. Clin. Immunol. 2020, 16, 175–187. [Google Scholar] [CrossRef]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int. J. Mol. Sci. 2019, 20, 3328. [Google Scholar] [CrossRef]
- Blevins, H.M.; Xu, Y.; Biby, S.; Zhang, S. The NLRP3 inflammasome pathway: A review of mechanisms and inhibitors for the treatment of inflammatory diseases. Front. Aging Neurosci. 2022, 14, 879021. [Google Scholar] [CrossRef]
- Hamarsheh, S.; Zeiser, R. NLRP3 inflammasome activation in cancer: A double-edged sword. Front. Immunol. 2020, 11, 1444. [Google Scholar] [CrossRef]
- Abderrazak, A.; Syrovets, T.; Couchie, D.; El Hadri, K.; Friguet, B.; Simmet, T.; Rouis, M. NLRP3 inflammasome: From a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol. 2015, 4, 296–307. [Google Scholar] [CrossRef]
- Leemans, J.C.; Cassel, S.L.; Sutterwala, F.S. Sensing damage by the NLRP3 inflammasome. Immunol. Rev. 2011, 243, 152–162. [Google Scholar] [CrossRef]
- Shi, F.; Wei, B.; Lan, T.; Xiao, Y.; Quan, X.; Chen, J.; Zhao, C.; Gao, J. Low NLRP3 expression predicts a better prognosis of colorectal cancer. Biosci. Rep. 2021, 41, BSR20210280. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, J.; Zhong, Y.; He, S.; Hao, Z.; Zhang, B.; Liu, Z.; Zhou, X. Mammary hydroxylated oestrogen activates the NLRP3 inflammasome in tumor-associated macrophages to promote breast cancer progression and metastasis. Int. Immunopharmacol. 2024, 142 Pt. A, 113034. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Xu, Y.; Peng, T.; Meng, X.; Zou, F. NLRP3 induces the autocrine secretion of IL-1β to promote epithelial-mesenchymal transition and metastasis in breast cancer. Biochem. Biophys. Res. Commun. 2021, 560, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Marandi, Y.; Hashemzade, S.; Tayebinia, H.; Karimi, J.; Zamani, A.; Khodadadi, I. NLRP3-inflammasome activation is associated with epithelial-mesenchymal transition and progression of colorectal cancer. Iran. J. Basic. Med. Sci. 2021, 24, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Di, Y.; Wang, Z.; Xiao, J.; Zhang, X.; Ye, L.; Wen, X.; Qin, J.; Lu, L.; Wang, X.; He, W. ACSL6-activated IL-18R1-NF-κB promotes IL-18-mediated tumor immune evasion and tumor progression. Sci. Adv. 2024, 10, eadp0719. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wei, C.; Li, Y.; Yang, X.; Zhou, S. Pyroptosis, a new breakthrough in cancer treatment. Front. Oncol. 2021, 11, 698811. [Google Scholar] [CrossRef]
- Lin, T.Y.; Tsai, M.C.; Tu, W.; Yeh, H.C.; Wang, S.C.; Huang, S.P.; Li, C.Y. Role of the NLRP3 inflammasome: Insights into cancer hallmarks. Front. Immunol. 2021, 11, 610492. [Google Scholar] [CrossRef]
- Moossavi, M.; Parsamanesh, N.; Bahrami, A.; Atkin, S.L.; Sahebkar, A. Role of the NLRP3 inflammasome in cancer. Mol. Cancer. 2018, 17, 158. [Google Scholar] [CrossRef]
- Sun, Y.; Shen, Y.; Liu, Q.; Zhang, H.; Jia, L.; Chai, Y.; Jiang, H.; Wu, M.; Li, Y. Global trends in melanoma burden: A comprehensive analysis from the Global Burden of Disease Study, 1990–2021. J. Am. Acad. Dermatol. 2024, 92, 100–107. [Google Scholar] [CrossRef]
- Colombino, M.; Casula, M.; Paliogiannis, P.; Manca, A.; Sini, M.C.; Pisano, M.; Santeufemia, D.A.; Cossu, A.; Palmieri, G. Heterogeneous pathogenesis of melanoma: BRAF mutations and beyond. Crit. Rev. Oncol. Hematol. 2024, 201, 104435. [Google Scholar] [CrossRef]
- Shebrain, A.; Idris, O.A.; Jawad, A.; Zhang, T.; Xing, Y. Advancements and challenges in personalized therapy for BRAF-mutant melanoma: A comprehensive review. J. Clin. Med. 2024, 13, 5409. [Google Scholar] [CrossRef]
- Mirek, J.; Bal, W.; Olbryt, M. Melanoma genomics—Will we go beyond BRAF in clinics? J. Cancer Res. Clin. Oncol. 2024, 150, 433. [Google Scholar] [CrossRef] [PubMed]
- Kainulainen, K.; Takabe, P.; Heikkinen, S.; Aaltonen, N.; de la Motte, C.; Rauhala, L.; Durst, F.C.; Oikari, S.; Hukkanen, T.; Rahunen, E.; et al. M1 macrophages induce protumor inflammation in melanoma cells through TNFR-NF-κB signaling. J. Investig. Dermatol. 2022, 142, 3041–3051.e10. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, H.; Pourhanifeh, M.H.; Derakhshan, M.; Mahjoubin-Tehran, M.; Ghasemi, F.; Mousavi, S.; Rafiei, R.; Abbaszadeh-Goudarzi, K.; Mirzaei, H.R.; Mirzaei, H. CXCL-10: A new candidate for melanoma therapy? Cell. Oncol. 2020, 43, 353–365. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Lu, J.; Feng, J.; Lu, Z.; Shen, K.; Xu, K.; Luo, H.; Yang, G.; Chi, H.; Huang, S. Advancing immunotherapy for melanoma: The critical role of single-cell analysis in identifying predictive biomarkers. Front. Immunol. 2024, 15, 1435187. [Google Scholar] [CrossRef]
- Reschke, R.; Deitert, B.; Enk, A.H.; Hassel, J.C. The role of tissue-resident memory T cells as mediators for response and toxicity in immunotherapy-treated melanoma—Two sides of the same coin? Front. Immunol. 2024, 15, 1385781. [Google Scholar] [CrossRef]
- Habib, S.; Osborn, G.; Willsmore, Z.; Chew, M.W.; Jakubow, S.; Fitzpatrick, A.; Wu, Y.; Sinha, K.; Lloyd-Hughes, H.; Geh, J.L.C.; et al. Tumor-associated macrophages as key contributors and targets in current and future therapies for melanoma. Expert Rev. Clin. Immunol. 2024, 20, 895–911. [Google Scholar] [CrossRef]
- Pieniazek, M.; Matkowski, R.; Donizy, P. Macrophages in skin melanoma—The key element in melanomagenesis. Oncol. Lett. 2018, 15, 5399–5404. [Google Scholar] [CrossRef]
- Bønnelykke-Behrndtz, M.L.; Steiniche, T.; Damsgaard, T.E.; Georgsen, J.B.; Danielsen, A.; Bastholt, L.; Møller, H.J.; Nørgaard, P.H.; Schmidt, H. MelanA-negative spindle-cell associated melanoma, a distinct inflammatory phenotype correlated with dense infiltration of CD163 macrophages and loss of E-cadherin. Melanoma Res. 2015, 25, 113–118. [Google Scholar] [CrossRef]
- Nabizadeh, J.A.; Manthey, H.D.; Steyn, F.J.; Chen, W.; Widiapradja, A.; Md Akhir, F.N.; Boyle, G.M.; Taylor, S.M.; Woodruff, T.M.; Rolfe, B.E. The complement C3a receptor contributes to melanoma tumorigenesis by inhibiting neutrophil and CD4+ T cell responses. J. Immunol. 2016, 196, 4783–4792. [Google Scholar] [CrossRef]
- Gerlini, G.; Susini, P.; Sestini, S.; Brandani, P.; Giannotti, V.; Borgognoni, L. Langerhans cells in sentinel lymph nodes from melanoma patients. Cancers 2024, 16, 1890. [Google Scholar] [CrossRef]
- Alvarez-Dominguez, C.; Calderón-Gonzalez, R.; Terán-Navarro, H.; Salcines-Cuevas, D.; Garcia-Castaño, A.; Freire, J.; Gomez-Roman, J.; Rivera, F. Dendritic cell therapy in melanoma. Ann. Transl. Med. 2017, 5, 386. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Montoyo-Pujol, Y.G.; Bermudez, S.; Corpas, G.; Martin, A.; Almazan, F.; Cabrera, T.; López-Nevot, M.A. Serum cytokine profiles of melanoma patients and their association with tumor progression and metastasis. J. Oncol. 2021, 2021, 6610769. [Google Scholar] [CrossRef] [PubMed]
- Chow, M.T.; Sceneay, J.; Paget, C.; Wong, C.S.; Duret, H.; Tschopp, J.; Möller, A.; Smyth, M.J. NLRP3 suppresses NK cell-mediated responses to carcinogen-induced tumors and metastases. Cancer Res. 2012, 72, 5721–5732. [Google Scholar] [CrossRef] [PubMed]
- Drexler, S.K.; Bonsignore, L.; Masin, M.; Tardivel, A.; Jackstadt, R.; Hermeking, H.; Schneider, P.; Gross, O.; Tschopp, J.; Yazdi, A.S. Tissue-specific opposing functions of the inflammasome adaptor ASC in the regulation of epithelial skin carcinogenesis. Proc. Natl. Acad. Sci. USA 2012, 109, 18384–18389. [Google Scholar] [CrossRef]
- Theivanthiran, B.; Haykal, T.; Cao, L.; Holtzhausen, A.; Plebanek, M.; DeVito, N.C.; Hanks, B.A. Overcoming immunotherapy resistance by targeting the tumor-intrinsic NLRP3-HSP70 signaling axis. Cancers 2021, 13, 4753. [Google Scholar] [CrossRef]
- Ahmad, I.; Muneer, K.M.; Tamimi, I.A.; Chang, M.E.; Ata, M.O.; Yusuf, N. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome. Toxicol. Appl. Pharmacol. 2013, 270, 70–76. [Google Scholar] [CrossRef]
- Cesati, M.; Scatozza, F.; D’Arcangelo, D.; Antonini-Cappellini, G.C.; Rossi, S.; Tabolacci, C.; Nudo, M.; Palese, E.; Lembo, L.; Di Lella, G.; et al. Investigating serum and tissue expression identified a cytokine/chemokine signature as a highly effective melanoma marker. Cancers 2020, 12, 3680. [Google Scholar] [CrossRef]
- Tengesdal, I.W.; Menon, D.R.; Osborne, D.G.; Neff, C.P.; Powers, N.E.; Gamboni, F.; Mauro, A.G.; D’Alessandro, A.; Stefanoni, D.; Henen, M.A.; et al. Targeting tumor-derived NLRP3 reduces melanoma progression by limiting MDSCs expansion. Proc. Natl. Acad. Sci. USA 2021, 118, e2000915118. [Google Scholar] [CrossRef]
- Theivanthiran, B.; Yarla, N.; Haykal, T.; Nguyen, Y.V.; Cao, L.; Ferreira, M.; Holtzhausen, A.; Al-Rohil, R.; Salama, A.K.S.; Beasley, G.M.; et al. Tumor-intrinsic NLRP3-HSP70-TLR4 axis drives premetastatic niche development and hyperprogression during anti-PD-1 immunotherapy. Sci. Transl. Med. 2022, 14, eabq7019. [Google Scholar] [CrossRef]
- Okamoto, M.; Liu, W.; Luo, Y.; Tanaka, A.; Cai, X.; Norris, D.A.; Dinarello, C.A.; Fujita, M. Constitutively active inflammasome in human melanoma cells mediating autoinflammation via caspase-1 processing and secretion of interleukin-1β. J. Biol. Chem. 2010, 285, 6477–6488. [Google Scholar] [CrossRef]
- Manica, D.; da Silva, G.B.; Narzetti, R.A.; Dallagnoll, P.; da Silva, A.P.; Marafon, F.; Cassol, J.; de Souza Matias, L.; Zamoner, A.; de Oliveira Maciel, S.F.V.; et al. Curcumin modulates purinergic signaling and inflammatory response in cutaneous metastatic melanoma cells. Purinergic Signal. 2024. [Google Scholar] [CrossRef] [PubMed]
- da Silva, G.B.; Manica, D.; da Silva, A.P.; Marafon, F.; Moreno, M.; Bagatini, M.D. Rosmarinic acid decreases viability, inhibits migration, and modulates expression of apoptosis-related CASP8/CASP3/NLRP3 genes in human metastatic melanoma cells. Chem. Biol. Interact. 2023, 375, 110427. [Google Scholar] [CrossRef] [PubMed]
- Tengesdal, I.W.; Dinarello, A.; Powers, N.E.; Burchill, M.A.; Joosten, L.A.B.; Marchetti, C.; Dinarello, C.A. Tumor NLRP3-derived IL-1β drives the IL-6/STAT3 axis resulting in sustained MDSC-mediated immunosuppression. Front. Immunol. 2021, 12, 661323. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.Y.; Park, S.H.; Jakobsson, H.; Shackleton, M.; Möller, A. Immune regulation and immune therapy in melanoma: Review with emphasis on CD155 signalling. Cancers 2024, 16, 1950. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chan, S.C.; Ngai, C.H.; Lok, V.; Zhang, L.; Lucero-Prisno, D.E., III; Xu, W.; Zheng, Z.J.; Elcarte, E.; Withers, M.; et al. Disease burden, risk factors, and trends of leukemia: A global analysis. Front. Oncol. 2022, 12, 904292. [Google Scholar] [CrossRef]
- Saluja, S.; Bansal, I.; Bhardwaj, R.; Beg, M.S.; Palanichamy, J.K. Inflammation as a driver of hematological malignancies. Front. Oncol. 2024, 14, 1347402. [Google Scholar] [CrossRef]
- Giles, F.J.; Krawczyk, J.; O’Dwyer, M.; Swords, R.; Freeman, C. The role of inflammation in leukemia. Adv. Exp. Med. Biol. 2014, 816, 335–360. [Google Scholar] [CrossRef]
- Bonifant, C.L.; Tasian, S.K. The future of cellular immunotherapy for childhood leukemia. Curr. Opin. Pediatr. 2020, 32, 13–25. [Google Scholar] [CrossRef]
- Inaba, H.; Pui, C.H. Immunotherapy in pediatric acute lymphoblastic leukemia. Cancer Metastasis Rev. 2019, 38, 595–610. [Google Scholar] [CrossRef]
- Jasinski, S.; De Los Reyes, F.A.; Yametti, G.C.; Pierro, J.; Raetz, E.; Carroll, W.L. Immunotherapy in pediatric B-cell acute lymphoblastic leukemia: Advances and ongoing challenges. Paediatr. Drugs 2020, 22, 485–499. [Google Scholar] [CrossRef]
- Andina, N.; Bonadies, N.; Allam, R. Inflammasome Activation in Myeloid Malignancies-Friend or Foe? Front. Cell Dev. Biol. 2022, 9, 825611. [Google Scholar] [CrossRef] [PubMed]
- Alves-Hanna, F.S.; Crespo-Neto, J.A.; Nogueira, G.M.; Pereira, D.S.; Lima, A.B.; Ribeiro, T.L.P.; Santos, V.G.R.; Fonseca, J.R.F.; Magalhães-Gama, F.; Sadahiro, A.; et al. Insights Regarding the Role of Inflammasomes in Leukemia: What Do We Know? J. Immunol. Res. 2023, 2023, 5584492. [Google Scholar] [CrossRef] [PubMed]
- Urwanisch, L.; Luciano, M.; Horejs-Hoeck, J. The NLRP3 Inflammasome and Its Role in the Pathogenicity of Leukemia. Int. J. Mol. Sci. 2021, 22, 1271. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Wang, R.; Hua, M.; Zhang, C.; Han, F.; Xu, M.; Yang, X.; Li, G.; Hu, X.; Sun, T.; et al. NLRP3 Inflammasome Promotes the Progression of Acute Myeloid Leukemia via IL-1β Pathway. Front. Immunol. 2021, 12, 661939, Erratum in Front. Immunol. 2021, 12, 808492. [Google Scholar] [CrossRef]
- Wang, H.; Hua, M.; Wang, S.; Yu, J.; Chen, C.; Zhao, X.; Zhang, C.; Zhong, C.; Wang, R.; He, N.; et al. Genetic Polymorphisms of IL-18 rs1946518 and IL-1β rs16944 Are Associated with Prognosis and Survival of Acute Myeloid Leukemia. Inflamm. Res. 2017, 66, 249–258. [Google Scholar] [CrossRef]
- Liu, Q.; Hua, M.; Zhang, C.; Wang, R.; Liu, J.; Yang, X.; Han, F.; Hou, M.; Ma, D. NLRP3-Activated Bone Marrow Dendritic Cells Play Antileukemic Roles via IL-1β/Th1/IFN-γ in Acute Myeloid Leukemia. Cancer Lett. 2021, 520, 109–120. [Google Scholar] [CrossRef]
- Liu, N.; Wu, Y.; Wen, X.; Li, P.; Lu, F.; Shang, H. Chronic Stress Promotes Acute Myeloid Leukemia Progression Through HMGB1/NLRP3/IL-1β Signaling Pathway. J. Mol. Med. 2021, 99, 403–414. [Google Scholar] [CrossRef]
- Hamarsheh, S.; Osswald, L.; Saller, B.S.; Unger, S.; De Feo, D.; Vinnakota, J.M.; Konantz, M.; Uhl, F.M.; Becker, H.; Lübbert, M.; et al. Oncogenic KrasG12D Causes Myeloproliferation via NLRP3 Inflammasome Activation. Nat. Commun. 2020, 11, 1659. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, C.; Hua, M.; Wang, M.; Chen, P.; Ma, D. Aberrant NLRP3 Inflammasome Associated with Aryl Hydrocarbon Receptor Potentially Contributes to the Imbalance of T-Helper Cells in Patients with Acute Myeloid Leukemia. Oncol. Lett. 2017, 14, 7031–7044. [Google Scholar] [CrossRef]
- Hurtado-Navarro, L.; Cuenca-Zamora, E.J.; Zamora, L.; Bellosillo, B.; Such, E.; Soler-Espejo, E.; Martínez-Banaclocha, H.; Hernández-Rivas, J.M.; Marco-Ayala, J.; Martínez-Alarcón, L.; et al. NLRP3 Inflammasome Activation and Symptom Burden in KRAS-Mutated CMML Patients Is Reverted by IL-1 Blocking Therapy. Cell Rep. Med. 2023, 4, 101329. [Google Scholar] [CrossRef]
- Song, Z.; Wang, M.; Ge, Y.; Chen, X.P.; Xu, Z.; Sun, Y.; Xiong, X.F. Tyrosine Phosphatase SHP2 Inhibitors in Tumor-Targeted Therapies. Acta Pharm. Sin. B 2021, 11, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Tomasik, J.; Basak, G.W. Inflammasomes-New Contributors to Blood Diseases. Int. J. Mol. Sci. 2022, 23, 8129. [Google Scholar] [CrossRef] [PubMed]
- Pourhassan, H.; Murphy, L.; Aldoss, I. Glucocorticoid Therapy in Acute Lymphoblastic Leukemia: Navigating Short-Term and Long-Term Effects and Optimal Regimen Selection. Curr. Hematol. Malig. Rep. 2024, 19, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Paugh, S.W.; Bonten, E.J.; Savic, D.; Ramsey, L.B.; Thierfelder, W.E.; Gurung, P.; Malireddi, R.K.; Actis, M.; Mayasundari, A.; Min, J.; et al. NALP3 Inflammasome Upregulation and CASP1 Cleavage of the Glucocorticoid Receptor Cause Glucocorticoid Resistance in Leukemia Cells. Nat. Genet. 2015, 47, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Paugh, S.W.; Bonten, E.J.; Evans, W.E. Inflammasome-Mediated Glucocorticoid Resistance: The Receptor Rheostat. Mol. Cell. Oncol. 2015, 3, e1065947. [Google Scholar] [CrossRef]
- Hu, Z.; Sporn, M.; Letterio, J. Targeting NLRP3 Inflammasome-Induced Therapy Resistance in ALL. Blood 2020, 136 (Suppl. 1), 46. [Google Scholar] [CrossRef]
- Singh, J.; Kumari, S.; Arora, M.; Verma, D.; Palanichamy, J.K.; Kumar, R.; Sharma, G.; Bakhshi, S.; Pushpam, D.; Ali, M.S.; et al. Prognostic Relevance of Expression of EMP1, CASP1, and NLRP3 Genes in Pediatric B-Lineage Acute Lymphoblastic Leukemia. Front. Oncol. 2021, 11, 606370. [Google Scholar] [CrossRef]
- Alves, F.S.; Xabregas, L.A.; Kerr, M.W.A.; Souza, G.L.; Pereira, D.S.; Magalhães-Gama, F.; Santiago, M.R.R.; Garcia, N.P.; Tarragô, A.M.; Ogusku, M.M.; et al. Genetic Polymorphisms of Inflammasome Genes Associated with Pediatric Acute Lymphoblastic Leukemia and Clinical Prognosis in the Brazilian Amazon. Sci. Rep. 2021, 11, 9869. [Google Scholar] [CrossRef]
- Zhang, A.; Yu, J.; Yan, S.; Zhao, X.; Chen, C.; Zhou, Y.; Zhao, X.; Hua, M.; Wang, R.; Zhang, C.; et al. The Genetic Polymorphism and Expression Profiles of NLRP3 Inflammasome in Patients with Chronic Myeloid Leukemia. Hum. Immunol. 2018, 79, 57–62. [Google Scholar] [CrossRef]
- Adinolfi, E.; Melchiorri, L.; Falzoni, S.; Chiozzi, P.; Morelli, A.; Tieghi, A.; Cuneo, A.; Castoldi, G.; Di Virgilio, F.; Baricordi, O.R. P2X7 Receptor Expression in Evolutive and Indolent Forms of Chronic B Lymphocytic Leukemia. Blood 2002, 99, 706–708. [Google Scholar] [CrossRef]
- Salaro, E.; Rambaldi, A.; Falzoni, S.; Amoroso, F.S.; Franceschini, A.; Sarti, A.C.; Bonora, M.; Cavazzini, F.; Rigolin, G.M.; Ciccone, M.; et al. Involvement of the P2X7-NLRP3 Axis in Leukemic Cell Proliferation and Death. Sci. Rep. 2016, 6, 26280. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lin, J.; Wang, Z.; Li, Z.; Wang, M. Possible Therapeutic Targets for NLRP3 Inflammasome-Induced Breast Cancer. Discov. Oncol. 2023, 14, 93. [Google Scholar] [CrossRef] [PubMed]
- Sonnessa, M.; Cioffi, A.; Brunetti, O.; Silvestris, N.; Zito, F.A.; Saponaro, C.; Mangia, A. NLRP3 Inflammasome From Bench to Bedside: New Perspectives for Triple Negative Breast Cancer. Front. Oncol. 2020, 10, 1587. [Google Scholar] [CrossRef]
- Faria, S.S.; Costantini, S.; de Lima, V.C.C.; de Andrade, V.P.; Rialland, M.; Cedric, R.; Budillon, A.; Magalhães, K.G. NLRP3 Inflammasome-Mediated Cytokine Production and Pyroptosis Cell Death in Breast Cancer. J. Biomed. Sci. 2021, 28, 26. [Google Scholar] [CrossRef] [PubMed]
- Quagliariello, V.; De Laurentiis, M.; Cocco, S.; Rea, G.; Bonelli, A.; Caronna, A.; Lombari, M.C.; Conforti, G.; Berretta, M.; Botti, G.; et al. NLRP3 as Putative Marker of Ipilimumab-Induced Cardiotoxicity in the Presence of Hyperglycemia in Estrogen-Responsive and Triple-Negative Breast Cancer Cells. Int. J. Mol. Sci. 2020, 21, 7802. [Google Scholar] [CrossRef]
- Chang, C.M.; Liang, T.R.; Lam, H.Y.P. The Use of Schisandrin B to Combat Triple-Negative Breast Cancers by Inhibiting NLRP3-Induced Interleukin-1β Production. Biomolecules 2024, 14, 74. [Google Scholar] [CrossRef]
- Holen, I.; Lefley, D.V.; Francis, S.E.; Rennicks, S.; Bradbury, S.; Coleman, R.E.; Ottewell, P. IL-1 Drives Breast Cancer Growth and Bone Metastasis in Vivo. Oncotarget 2016, 7, 75571–75584. [Google Scholar] [CrossRef]
- Li, K.; Wei, L.; Huang, Y.; Wu, Y.; Su, M.; Pang, X.; Wang, N.; Ji, F.; Zhong, C.; Chen, T. Leptin Promotes Breast Cancer Cell Migration and Invasion via IL-18 Expression and Secretion. Int. J. Oncol. 2016, 48, 2479–2487. [Google Scholar] [CrossRef]
- Zheng, Q.; Yao, D.; Cai, Y.; Zhou, T. NLRP3 Augmented Resistance to Gemcitabine in Triple-Negative Breast Cancer Cells via EMT/IL-1β/Wnt/β-Catenin Signaling Pathway. Biosci. Rep. 2020, 40, BSR20200730. [Google Scholar] [CrossRef]
- Reed, J.R.; Leon, R.P.; Hall, M.K.; Schwertfeger, K.L. Interleukin-1β and Fibroblast Growth Factor Receptor 1 Cooperate to Induce Cyclooxygenase-2 During Early Mammary Tumorigenesis. Breast Cancer Res. 2009, 11, R21. [Google Scholar] [CrossRef]
- Zhou, J.; Ottewell, P.D. The Role of IL-1β in Breast Cancer Bone Metastasis. J. Bone Oncol. 2024, 46, 100608. [Google Scholar] [CrossRef] [PubMed]
- Jeon, M.; Han, J.; Nam, S.J.; Lee, J.E.; Kim, S. Elevated IL-1β Expression Induces Invasiveness of Triple Negative Breast Cancer Cells and Is Suppressed by Zerumbone. Chem. Biol. Interact. 2016, 258, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Bae, S.Y.; Oh, S.J.; Lee, J.; Lee, J.H.; Lee, H.C.; Lee, S.K.; Kil, W.H.; Kim, S.W.; Nam, S.J.; et al. Zerumbone Suppresses IL-1β-Induced Cell Migration and Invasion by Inhibiting IL-8 and MMP-3 Expression in Human Triple-Negative Breast Cancer Cells. Phytother. Res. 2014, 28, 1654–1660. [Google Scholar] [CrossRef] [PubMed]
- Perez-Yepez, E.A.; Ayala-Sumuano, J.T.; Lezama, R.; Meza, I. A Novel β-Catenin Signaling Pathway Activated by IL-1β Leads to the Onset of Epithelial-Mesenchymal Transition in Breast Cancer Cells. Cancer Lett. 2014, 354, 164–171. [Google Scholar] [CrossRef]
- García-Morales, L.; Mendoza-Rodríguez, M.G.; Tapia Ramírez, J.; Meza, I. CBD Inhibits In Vivo Development of Human Breast Cancer Tumors. Int. J. Mol. Sci. 2023, 24, 13235. [Google Scholar] [CrossRef]
- Pham, D.V.; Raut, P.K.; Pandit, M.; Chang, J.H.; Katila, N.; Choi, D.Y.; Jeong, J.H.; Park, P.H. Globular Adiponectin Inhibits Breast Cancer Cell Growth Through Modulation of Inflammasome Activation: Critical Role of Sestrin2 and AMPK Signaling. Cancers 2020, 12, 613. [Google Scholar] [CrossRef]
- Chen, Q.; Lei, J.H.; Bao, J.; Wang, H.; Hao, W.; Li, L.; Peng, C.; Masuda, T.; Miao, K.; Xu, J.; et al. BRCA1 Deficiency Impairs Mitophagy and Promotes Inflammasome Activation and Mammary Tumor Metastasis. Adv. Sci. 2020, 7, 1903616. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Zang, Y.; Wang, F. NLRP3 Inflammasome Inactivation Driven by miR-223-3p Reduces Tumor Growth and Increases Anticancer Immunity in Breast Cancer. Mol. Med. Rep. 2019, 19, 2180–2188. [Google Scholar] [CrossRef]
- Xia, J.; Yu, X.; Tang, L.; Li, G.; He, T. P2X7 Receptor Stimulates Breast Cancer Cell Invasion and Migration via the AKT Pathway. Oncol. Rep. 2015, 34, 103–110. [Google Scholar] [CrossRef]
- Du, Y.; Cao, Y.; Song, W.; Wang, X.; Yu, Q.; Peng, X.; Zhao, R. Role of the P2X7 Receptor in Breast Cancer Progression. Purinergic Signal. 2024. [Google Scholar] [CrossRef]
- Yu, X.; Chen, X.; Tang, X.; Cao, Y.; Tang, L.; Liu, Y. P2X7 Blockade Inhibits the Growth of Breast Cancer in 4T1 Breast Cancer-Bearing Mice by NLRP3/Caspase 1 Pathway. Arch. Med. Sci. 2020. [Google Scholar] [CrossRef]
- Thandra, K.C.; Barsouk, A.; Saginala, K.; Aluru, J.S.; Barsouk, A. Epidemiology of Lung Cancer. Contemp. Oncol. 2021, 25, 45–52. [Google Scholar] [CrossRef]
- Volk, R.J.; Myers, R.E.; Arenberg, D.; Caverly, T.J.; Hoffman, R.M.; Katki, H.A.; Mazzone, P.J.; Moulton, B.W.; Reuland, D.S.; Tanner, N.T.; et al. The American Cancer Society National Lung Cancer Roundtable Strategic Plan: Current Challenges and Future Directions for Shared Decision Making for Lung Cancer Screening. Cancer 2024, 130, 3996–4011. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Soler, J.; Reckamp, K.L.; Sankar, K. Emerging Targets in Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 2024, 25, 10046. [Google Scholar] [CrossRef]
- Hendriks, L.E.L.; Remon, J.; Faivre-Finn, C.; Garassino, M.C.; Heymach, J.V.; Kerr, K.M.; Tan, D.S.W.; Veronesi, G.; Reck, M. Non-Small-Cell Lung Cancer. Nat. Rev. Dis. Primers. 2024, 10, 71. [Google Scholar] [CrossRef]
- Annareddy, S.; Ghewade, B.; Jadhav, U.; Wagh, P.; Sarkar, S. Unveiling the Long-Term Lung Consequences of Smoking and Tobacco Consumption: A Narrative Review. Cureus 2024, 16, e66415. [Google Scholar] [CrossRef]
- Jabeen, S.; Ahmed, N.; Rashid, F.; Lal, N.; Kong, F.; Fu, Y.; Zhang, F. Circular RNAs in Tuberculosis and Lung Cancer. Clin. Chim. Acta 2024, 561, 119810. [Google Scholar] [CrossRef]
- Ferdosnejad, K.; Zamani, M.S.; Soroush, E.; Fateh, A.; Siadat, S.D.; Tarashi, S. Tuberculosis and Lung Cancer: Metabolic Pathways Play a Key Role. Nucleosides Nucleotides Nucleic Acids 2024, 43, 1262–1281. [Google Scholar] [CrossRef]
- Malhotra, J.; Malvezzi, M.; Negri, E.; La Vecchia, C.; Boffetta, P. Risk Factors for Lung Cancer Worldwide. Eur. Respir. J. 2016, 48, 889–902. [Google Scholar] [CrossRef]
- Xu, L.; Cao, P.; Wang, J.; Zhang, P.; Hu, S.; Cheng, C.; Wang, H. IL-22: A Key Inflammatory Mediator as a Biomarker and Potential Therapeutic Target for Lung Cancer. Heliyon 2024, 10, e35901. [Google Scholar] [CrossRef]
- Thapa, R.; Moglad, E.; Goyal, A.; Bhat, A.A.; Almalki, W.H.; Kazmi, I.; Alzarea, S.I.; Ali, H.; Oliver, B.G.; MacLoughlin, R.; et al. Deciphering NF-kappaB Pathways in Smoking-Related Lung Carcinogenesis. EXCLI J. 2024, 23, 991–1017. [Google Scholar] [CrossRef] [PubMed]
- Mo, R.; Zhang, J.; Chen, Y.; Ding, Y. Nicotine Promotes Chronic Obstructive Pulmonary Disease via Inducing Pyroptosis Activation in Bronchial Epithelial Cells. Mol. Med. Rep. 2022, 25, 92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.Y.; Jiang, Y.X.; Yang, Y.C.; Liu, J.Y.; Huo, C.; Ji, X.L.; Qu, Y.Q. Cigarette Smoke Extract Induces Pyroptosis in Human Bronchial Epithelial Cells Through the ROS/NLRP3/Caspase-1 Pathway. Life Sci. 2021, 269, 119090. [Google Scholar] [CrossRef] [PubMed]
- Rumora, L.; Somborac-Bačura, A.; Hlapčić, I.; Hulina-Tomašković, A.; Rajković, M.G. Cigarette Smoke and Extracellular Hsp70 Induce Secretion of ATP and Differential Activation of NLRP3 Inflammasome in Monocytic and Bronchial Epithelial Cells. Cytokine 2020, 135, 155220. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Li, N.; Jiang, Z.; Li, X. Role of Mitochondrial Stress and the NLRP3 Inflammasome in Lung Diseases. Inflamm. Res. 2023, 72, 829–846. [Google Scholar] [CrossRef]
- Wang, G.L.; Xu, Y.L.; Zhao, K.M.; Sui, A.F.; Wang, L.N.; Deng, H.; Wang, G. Anti-Inflammatory Effects of Tao Hong Si Wu Tang in Mice with Lung Cancer and Chronic Obstructive Pulmonary Disease. World J. Clin. Oncol. 2024, 15, 1198–1206. [Google Scholar] [CrossRef]
- Rao, X.; Zhou, D.; Deng, H.; Chen, Y.; Wang, J.; Zhou, X.; Jie, X.; Xu, Y.; Wu, Z.; Wang, G.; et al. Activation of NLRP3 Inflammasome in Lung Epithelial Cells Triggers Radiation-Induced Lung Injury. Respir. Res. 2023, 24, 25. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Yu, B.; Yang, T.; Liu, B.; Li, F.; Jin, X.; Li, Q. RSPO3 Regulates the Radioresistance of Non-Small Cell Lung Cancer Cells via NLRP3 Inflammasome-Mediated Pyroptosis. Radiother. Oncol. 2024, 200, 110528. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, C.; Chen, X.; Shi, Q.; Su, W.; Zhao, H. SOCS-1 Suppresses Inflammation Through Inhibition of NALP3 Inflammasome Formation in Smoke Inhalation-Induced Acute Lung Injury. Inflammation 2018, 41, 1557–1567. [Google Scholar] [CrossRef]
- Ye, P.; Wang, X.; Ge, S.; Chen, W.; Wang, W.; Han, X. Long-Term Cigarette Smoking Suppresses NLRP3 Inflammasome Activation in Oral Mucosal Epithelium and Attenuates Host Defense Against Candida albicans in a Rat Model. Biomed. Pharmacother. 2019, 113, 108597. [Google Scholar] [CrossRef]
- Wang, Y.; Kong, H.; Zeng, X.; Liu, W.; Wang, Z.; Yan, X.; Wang, H.; Xie, W. Activation of NLRP3 Inflammasome Enhances the Proliferation and Migration of A549 Lung Cancer Cells. Oncol. Rep. 2016, 35, 2053–2064. [Google Scholar] [CrossRef] [PubMed]
- Dutkowska, A.; Szmyd, B.; Kaszkowiak, M.; Domańska-Senderowska, D.; Pastuszak-Lewandoska, D.; Brzeziańska-Lasota, E.; Kordiak, J.; Antczak, A. Expression of Inflammatory Interleukins and Selected miRNAs in Non-Small Cell Lung Cancer. Sci. Rep. 2021, 11, 5092. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Wang, Y.; Zeng, X.; Wang, Z.; Wang, H.; Xie, W. Differential Expression of Inflammasomes in Lung Cancer Cell Lines and Tissues. Tumour Biol. 2015, 36, 7501–7513. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Duan, S.; Shao, H.; Zhang, A.; Chen, S.; Zhang, P.; Wang, N.; Wang, W.; Wu, Y.; Wang, J.; et al. NLRP3 Deletion Inhibits Inflammation-Driven Mouse Lung Tumorigenesis Induced by Benzo(a)pyrene and Lipopolysaccharide. Respir. Res. 2019, 20, 20. [Google Scholar] [CrossRef]
- Yano, S.; Nokihara, H.; Yamamoto, A.; Goto, H.; Ogawa, H.; Kanematsu, T.; Miki, T.; Uehara, H.; Saijo, Y.; Nukiwa, T.; et al. Multifunctional Interleukin-1β Promotes Metastasis of Human Lung Cancer Cells in SCID Mice via Enhanced Expression of Adhesion-, Invasion- and Angiogenesis-Related Molecules. Cancer Sci. 2003, 94, 244–252. [Google Scholar] [CrossRef]
- Li, Z.; Yang, F.; Zhu, X.; Zhou, B.; Jin, K.; Dai, J.; Jiang, G. Effect of NLRP3 Inflammasome on Lung Cancer Immune Microenvironment Activation and Its Mechanism. Altern. Ther. Health Med. 2024, 30, 86–91. [Google Scholar]
- Metwally, Y.F.; Elsaid, A.M.; Elsadda, R.R.; Refaat, S.; Zahran, R.F. Impact of IL-6 and IL-1β Gene Variants on Non-small-cell Lung Cancer Risk in Egyptian Patients. Biochem. Genet. 2024, 62, 3367–3388. [Google Scholar] [CrossRef]
- Liu, W.; Xin, M.; Li, Q.; Sun, L.; Han, X.; Wang, J. IL-17A Promotes the Migration, Invasion and the EMT Process of Lung Cancer Accompanied by NLRP3 Activation. Biomed. Res. Int. 2022, 2022, 7841279. [Google Scholar] [CrossRef]
- Bodnar-Wachtel, M.; Huber, A.L.; Gorry, J.; Hacot, S.; Burlet, D.; Gérossier, L.; Guey, B.; Goutagny, N.; Bartosch, B.; Ballot, E.; et al. NLRP3 and Gasdermin D-Mediated Pyroptosis Contributes to Resistance of Small Cell Lung Cancer to Anticancer Chemotherapy. J. Clin. Investig. 2024, 134, e162801. [Google Scholar]
- Zhu, H.; Guan, Y.; Wang, W.; Liu, X.; Wang, S.; Zheng, R.; Li, Y.; Liu, L.; Huang, H. Reniformin A Suppresses Non-Small Cell Lung Cancer Progression by Inducing TLR4/NLRP3/Caspase-1/GSDMD-Dependent Pyroptosis. Int. Immunopharmacol. 2024, 133, 112068. [Google Scholar] [CrossRef]
- Chen, M.; Hu, C.; Yang, L.; Guo, Q.; Liang, Y.; Wang, W. Saikosaponin-D Induces the Pyroptosis of Lung Cancer by Increasing ROS and Activating the NF-κB/NLRP3/Caspase-1/GSDMD Pathway. J. Biochem. Mol. Toxicol. 2023, 37, e23444. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Chen, C.; Han, W.; Liang, M.; Cheng, Y.; Chen, Y.; Pang, D.; Lei, H.; Feng, X.; Cao, S.; et al. EEBR Induces Caspase-1-Dependent Pyroptosis Through the NF-κB/NLRP3 Signalling Cascade in Non-Small Cell Lung Cancer. J. Cell. Mol. Med. 2024, 28, e18094. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Ma, D.; Qin, Y.; Xu, Y.; Li, S.; Liu, H. Melatonin Downregulates Angiogenesis and Lymphangiogenesis by Regulating Tumor-Associated Macrophages via NLRP3 Inflammasomes in Lung Adenocarcinoma. Aging 2024, 16, 12225–12238. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global Burden of Colorectal Cancer in 2020 and 2040: Incidence and Mortality Estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef]
- Brandaleone, L.; Dal Buono, A.; Gabbiadini, R.; Marcozzi, G.; Polverini, D.; Carvello, M.; Spinelli, A.; Hassan, C.; Repici, A.; Bezzio, C.; et al. Hereditary Colorectal Cancer Syndromes and Inflammatory Bowel Diseases: Risk Management and Surveillance Strategies. Cancers 2024, 16, 2967. [Google Scholar] [CrossRef]
- Goudarzi, Y.; Monirvaghefi, K.; Aghaei, S.; Amiri, S.S.; Rezaei, M.; Dehghanitafti, A.; Azarpey, A.; Azani, A.; Pakmehr, S.; Eftekhari, H.R.; et al. Effect of Genetic Profiling on Surgical Decisions at Hereditary Colorectal Cancer Syndromes. Heliyon 2024, 10, e34375. [Google Scholar] [CrossRef]
- Iacucci, M.; Santacroce, G.; Majumder, S.; Morael, J.; Zammarchi, I.; Maeda, Y.; Ryan, D.; Di Sabatino, A.; Rescigno, M.; Aburto, M.R.; et al. Opening the Doors of Precision Medicine: Novel Tools to Assess Intestinal Barrier in Inflammatory Bowel Disease and Colitis-Associated Neoplasia. Gut 2024, 73, 1749–1762. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Cui, M.; Zhou, Y.; Zhang, M.; Zhang, M. Interaction of Exosomal MicroRNA and Oxidative Stress in the Pathogenesis of Colitis-Associated Cancer. Front. Biosci. 2024, 29, 276. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, M.M.; Hou, J.G. Molecular and Cellular Pathways in Colorectal Cancer: Apoptosis, Autophagy and Inflammation as Key Players. Scand. J. Gastroenterol. 2022, 57, 1279–1290. [Google Scholar] [CrossRef]
- Direito, R.; Barbalho, S.M.; Figueira, M.E.; Minniti, G.; de Carvalho, G.M.; de Oliveira Zanuso, B.; de Oliveira Dos Santos, A.R.; de Góes Corrêa, N.; Rodrigues, V.D.; de Alvares Goulart, R.; et al. Medicinal Plants, Phytochemicals and Regulation of the NLRP3 Inflammasome in Inflammatory Bowel Diseases: A Comprehensive Review. Metabolites 2023, 13, 728. [Google Scholar] [CrossRef]
- Aggeletopoulou, I.; Kalafateli, M.; Tsounis, E.P.; Triantos, C. Exploring the role of IL-1β in inflammatory bowel disease pathogenesis. Front. Med. 2024, 11, 1307394. [Google Scholar] [CrossRef] [PubMed]
- Bank, S.; Julsgaard, M.; Abed, O.K.; Burisch, J.; Broder Brodersen, J.; Pedersen, N.K.; Gouliaev, A.; Ajan, R.; Nytoft Rasmussen, D.; Honore Grauslund, C.; et al. Polymorphisms in the NFkB, TNF-Alpha, IL-1Beta, and IL-18 Pathways Are Associated with Response to Anti-TNF Therapy in Danish Patients with Inflammatory Bowel Disease. Aliment. Pharmacol. Ther. 2019, 49, 890–903. [Google Scholar] [CrossRef] [PubMed]
- Bauer, C.; Duewell, P.; Lehr, H.A.; Endres, S.; Schnurr, M. Protective and Aggravating Effects of NLRP3 Inflammasome Activation in IBD Models: Influence of Genetic and Environmental Factors. Dig. Dis. 2012, 30 (Suppl. 1), 82–90. [Google Scholar] [CrossRef] [PubMed]
- Bauer, C.; Duewell, P.; Mayer, C.; Lehr, H.A.; Fitzgerald, K.A.; Dauer, M.; Tschopp, J.; Endres, S.; Latz, E.; Schnurr, M. Colitis Induced in Mice with Dextran Sulfate Sodium (DSS) Is Mediated by the NLRP3 Inflammasome. Gut 2010, 59, 1192–1199. [Google Scholar] [CrossRef]
- Itani, S.; Watanabe, T.; Nadatani, Y.; Sugimura, N.; Shimada, S.; Takeda, S.; Otani, K.; Hosomi, S.; Nagami, Y.; Tanaka, F.; et al. NLRP3 Inflammasome Has a Protective Effect Against Oxazolone-Induced Colitis: A Possible Role in Ulcerative Colitis. Sci. Rep. 2016, 6, 39075. [Google Scholar] [CrossRef]
- Guo, W.; Sun, Y.; Liu, W.; Wu, X.; Guo, L.; Cai, P.; Wu, X.; Wu, X.; Shen, Y.; Shu, Y.; et al. Small Molecule-Driven Mitophagy-Mediated NLRP3 Inflammasome Inhibition Is Responsible for the Prevention of Colitis-Associated Cancer. Autophagy 2014, 10, 972–985. [Google Scholar] [CrossRef]
- Perera, A.P.; Kunde, D.; Eri, R. NLRP3 Inhibitors as Potential Therapeutic Agents for Treatment of Inflammatory Bowel Disease. Curr. Pharm. Des. 2017, 23, 2321–2327. [Google Scholar] [CrossRef]
- Hu, D.; Li, Y.; Wang, X.; Zou, H.; Li, Z.; Chen, W.; Meng, Y.; Wang, Y.; Li, Q.; Liao, F.; et al. Palmitoylation of NLRP3 Modulates Inflammasome Activation and Inflammatory Bowel Disease Development. J. Immunol. 2024, 213, 481–493. [Google Scholar] [CrossRef]
- Dharmapuri, G.; Kotha, A.K.; Kalangi, S.K.; Reddanna, P. Mangiferin, A Naturally Occurring Glucosylxanthone, Induces Apoptosis in Caco-2 Cells In Vitro and Exerts Protective Effects on Acetic Acid-Induced Ulcerative Colitis in Mice through the Regulation of NLRP3. ACS Pharmacol. Transl. Sci. 2024, 7, 1270–1277. [Google Scholar] [CrossRef]
- Feng, S.H.; Zhao, B.; Zhan, X.; Li, R.H.; Yang, Q.; Wang, S.M.; Li, A. Quercetin-Induced Pyroptosis in Colon Cancer through NEK7-Mediated NLRP3 Inflammasome-GSDMD Signaling Pathway Activation. Am. J. Cancer Res. 2024, 14, 934–958. [Google Scholar] [CrossRef]
- Allen, I.C.; TeKippe, E.M.; Woodford, R.M.; Uronis, J.M.; Holl, E.K.; Rogers, A.B.; Herfarth, H.H.; Jobin, C.; Ting, J.P. The NLRP3 Inflammasome Functions as a Negative Regulator of Tumorigenesis During Colitis-Associated Cancer. J. Exp. Med. 2010, 207, 1045–1056. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ma, S.; Pi, D.; Wu, Y.; Zuo, Q.; Li, C.; Ouyang, M. Luteolin Induces Pyroptosis in HT-29 Cells by Activating the Caspase-1/Gasdermin D Signalling Pathway. Front. Pharmacol. 2022, 13, 952587. [Google Scholar] [CrossRef]
- Li, X.Y.; Yang, Y.T.; Zhao, Y.; Kong, X.H.; Yang, G.; Hong, J.; Zhang, D.; Ma, X.P. Moxibustion Inhibits the Expression of Colonic NLRP3 through miR7/RNF183/NF-κB Signaling Pathway in UC Rats. Evid.-Based Complement. Alternat. Med. 2021, 2021, 6519063. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, M.; Tai, Y.; Xing, Y.; Zuo, H.; Jin, X.; Ma, J. ZNF70 Regulates IL-1β Secretion of Macrophages to Promote the Proliferation of HCT116 Cells via Activation of NLRP3 Inflammasome and STAT3 Pathway in Colitis-Associated Colorectal Cancer. Cell Signal. 2024, 114, 110979. [Google Scholar] [CrossRef]
- Wang, S.L.; Zhang, M.M.; Zhou, H.; Su, G.Q.; Ding, Y.; Xu, G.H.; Wang, X.; Li, C.F.; Huang, W.F.; Yi, L.T. Inhibition of NLRP3 Attenuates Sodium Dextran Sulfate-Induced Inflammatory Bowel Disease through Gut Microbiota Regulation. Biomed. J. 2023, 46, 100580. [Google Scholar] [CrossRef]
- Gao, Q.; Tian, W.; Yang, H.; Hu, H.; Zheng, J.; Yao, X.; Hu, B.; Liu, H. Shen-Ling-Bai-Zhu-San Alleviates the Imbalance of Intestinal Homeostasis in Dextran Sodium Sulfate-Induced Colitis Mice by Regulating Gut Microbiota and Inhibiting the NLRP3 Inflammasome Activation. J. Ethnopharmacol. 2024, 319 Pt. 1, 117136. [Google Scholar] [CrossRef]
- Zhen, Y.; Zhang, H. NLRP3 Inflammasome and Inflammatory Bowel Disease. Front. Immunol. 2019, 10, 276. [Google Scholar] [CrossRef]
- Wang, P.; Gu, Y.; Yang, J.; Qiu, J.; Xu, Y.; Xu, Z.; Gao, J.; Wan, C. The Prognostic Value of NLRP1/NLRP3 and Its Relationship with Immune Infiltration in Human Gastric Cancer. Aging 2022, 14, 9980–10008. [Google Scholar] [CrossRef]
- Zhang, K.; Lin, G.; Nie, Z.; Jin, S.; Bing, X.; Li, Z.; Li, M. TRIM38 Suppresses Migration, Invasion, Metastasis, and Proliferation in Non-Small Cell Lung Cancer (NSCLC) via Regulating the AMPK/NF-κB/NLRP3 Pathway. Mol. Cell. Biochem. 2024, 479, 2069–2079. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Liu, X.; Zhang, Y. NLRP3 Inflammasome Activation in MΦs-CRC Crosstalk Promotes Colorectal Cancer Metastasis. Ann. Clin. Lab. Sci. 2022, 52, 571–579. [Google Scholar] [PubMed]
- Deng, Q.; Geng, Y.; Zhao, L.; Li, R.; Zhang, Z.; Li, K.; Liang, R.; Shao, X.; Huang, M.; Zuo, D.; et al. NLRP3 Inflammasomes in Macrophages Drive Colorectal Cancer Metastasis to the Liver. Cancer Lett. 2019, 442, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M. Epidemiology of Gastric Cancer—Changing Trends and Global Disparities. Cancers 2024, 16, 2948. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Liu, K.; Lu, F.; Zhai, C.; Cheng, F. Programmed Cell Death in Helicobacter pylori Infection and Related Gastric Cancer. Front. Cell. Infect. Microbiol. 2024, 14, 1416819. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.; Bentrem, D. Environmental and Genetic Risk Factors for Gastric Cancer. Cancer Treat. Res. 2024, 192, 1–17. [Google Scholar] [CrossRef]
- Shen, G.; Wang, Q.; Li, Z.; Xie, J.; Han, X.; Wei, Z.; Zhang, P.; Zhao, S.; Wang, X.; Huang, X.; et al. Bridging Chronic Inflammation and Digestive Cancer: The Critical Role of Innate Lymphoid Cells in Tumor Microenvironments. Int. J. Biol. Sci. 2024, 20, 4799–4818. [Google Scholar] [CrossRef]
- Yuan, X.Y.; Zhang, Y.; Zhao, X.; Chen, A.; Liu, P. IL-1β, an Important Cytokine Affecting Helicobacter pylori-Mediated Gastric Carcinogenesis. Microb. Pathog. 2023, 174, 105933. [Google Scholar] [CrossRef]
- Hong, J.B.; Zuo, W.; Wang, A.J.; Lu, N.H. Helicobacter pylori Infection Synergistic with IL-1β Gene Polymorphisms Potentially Contributes to the Carcinogenesis of Gastric Cancer. Int. J. Med. Sci. 2016, 13, 298–303. [Google Scholar] [CrossRef]
- Sun, C.C.; Li, L.; Tao, H.Q.; Jiang, Z.C.; Wang, L.; Wang, H.J. The Role of NLRP3 Inflammasome in Digestive System Malignancy. Front. Cell Dev. Biol. 2022, 10, 1051612. [Google Scholar] [CrossRef]
- Li, L.; Liao, A. Application of Pyroptosis Score in the Treatment and Prognosis Evaluation of Gastric Cancer. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2023, 48, 1882–1889. [Google Scholar] [CrossRef]
- Kumar, S.; Dhiman, M. Helicobacter pylori Secretary Proteins-Induced Oxidative Stress and Its Role in NLRP3 Inflammasome Activation. Cell. Immunol. 2024, 399–400, 104811. [Google Scholar] [CrossRef]
- Zhang, X.; Li, C.; Chen, D.; He, X.; Zhao, Y.; Bao, L.; Wang, Q.; Zhou, J.; Xie, Y. H. pylori CagA Activates the NLRP3 Inflammasome to Promote Gastric Cancer Cell Migration and Invasion. Inflamm. Res. 2022, 71, 141–155. [Google Scholar] [CrossRef]
- Pachathundikandi, S.K.; Blaser, N.; Bruns, H.; Backert, S. Helicobacter pylori Avoids the Critical Activation of NLRP3 Inflammasome-Mediated Production of Oncogenic Mature IL-1β in Human Immune Cells. Cancers 2020, 12, 803. [Google Scholar] [CrossRef] [PubMed]
- Jang, A.R.; Kang, M.J.; Shin, J.I.; Kwon, S.W.; Park, J.Y.; Ahn, J.H.; Lee, T.S.; Kim, D.Y.; Choi, B.G.; Seo, M.W.; et al. Unveiling the Crucial Role of Type IV Secretion System and Motility of Helicobacter pylori in IL-1β Production via NLRP3 Inflammasome Activation in Neutrophils. Front. Immunol. 2020, 11, 1121. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Bond, J.S. Prointerleukin-18 is Activated by Meprin Beta in Vitro and in Vivo in Intestinal Inflammation. J. Biol. Chem. 2008, 283, 31371–31377. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wu, L.; Liu, X.; Wang, Q.; Gui, S.; Bao, L.; Wang, Z.; He, X.; Zhao, Y.; Zhou, J.; et al. Helicobacter pylori CagA-Mediated Mitophagy to Attenuate the NLRP3 Inflammasome Activation and Enhance the Survival of Infected Cells. Sci. Rep. 2024, 14, 21648. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Liu, J.; Wang, L.; Gu, P.; Song, S.; Shu, P. Kaempferol-Induced Mitochondrial Damage Promotes NF-κB-NLRP3-Caspase-1 Signaling Axis-Mediated Pyroptosis in Gastric Cancer Cells. Heliyon 2024, 10, e28672. [Google Scholar] [CrossRef]
- Liu, J.; Qi, X.; Gu, P.; Wang, L.; Song, S.; Shu, P. Baicalin Induces Gastric Cancer Cell Pyroptosis through the NF-κB-NLRP3 Signaling Axis. J. Cancer 2024, 15, 494–507. [Google Scholar] [CrossRef]
- Che, Y.; Xu, W.; Ding, C.; He, T.; Xu, X.; Shuai, Y.; Huang, H.; Wu, J.; Wang, Y.; Wang, C.; et al. Bile Acids Target Mitofusin 2 to Differentially Regulate Innate Immunity in Physiological Versus Cholestatic Conditions. Cell Rep. 2023, 42, 112011. [Google Scholar] [CrossRef]
- Zhao, C.; Mu, M.; Li, X.; Dong, Z.; Wang, J.; Yao, C.; Zheng, J.; Sun, X.; Yu, J. USP50 Regulates NLRP3 Inflammasome Activation in Duodenogastric Reflux-Induced Gastric Tumorigenesis. Front. Immunol. 2024, 15, 1326137. [Google Scholar] [CrossRef]
- Xu, P.P.; Wu, J.; Zhang, J.; Yu, T.Y.; Wang, Y.B. Paclitaxel May Inhibit Migration and Invasion of Gastric Cancer Cells via Nod-Like Receptor Family Pyrin Domain-Containing 3/Caspase-1/Gasdermin E Mediated Pyroptosis Pathway. Chem. Biol. Drug Des. 2024, 103, e14325. [Google Scholar] [CrossRef]
- Ren, N.; Jiang, T.; Wang, C.; Xie, S.; Xing, Y.; Piao, D.; Zhang, T.; Zhu, Y. LncRNA ADAMTS9-AS2 Inhibits Gastric Cancer (GC) Development and Sensitizes Chemoresistant GC Cells to Cisplatin by Regulating miR-223-3p/NLRP3 Axis. Aging 2020, 12, 11025–11041. [Google Scholar] [CrossRef]
- Schulz, C.; Koch, N.; Schütte, K.; Pieper, D.H.; Malfertheiner, P. H. pylori and Its Modulation of Gastrointestinal Microbiota. J. Dig. Dis. 2015, 16, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.F.; Lindberg, M.; Jakobsson, H.; Bäckhed, F.; Nyrén, P.; Engstrand, L. Comparative Analysis of Human Gut Microbiota by Barcoded Pyrosequencing. PLoS ONE 2008, 3, e2836. [Google Scholar] [CrossRef] [PubMed]
- Ruff, S.M.; Pawlik, T.M. Molecular Classification and Pathogenesis of Pancreatic Adenocarcinoma and Targeted Therapies: A Review. Front. Biosci. 2024, 29, 101. [Google Scholar] [CrossRef] [PubMed]
- Döppler, H.R.; Storz, P. Macrophage-Induced Reactive Oxygen Species in the Initiation of Pancreatic Cancer: A Mini-Review. Front. Immunol. 2024, 15, 1278807. [Google Scholar] [CrossRef]
- Feng, W.; Niu, N.; Lu, P.; Chen, Z.; Rao, H.; Zhang, W.; Ma, C.; Liu, C.; Xu, Y.; Gao, W.Q.; et al. Multilevel Regulation of NF-κB Signaling by NSD2 Suppresses Kras-Driven Pancreatic Tumorigenesis. Adv. Sci. 2024, 11, e2309387. [Google Scholar] [CrossRef]
- Fraile-Martinez, O.; García-Montero, C.; Pekarek, L.; Saz, J.V.; Álvarez-Mon, M.Á.; Barrena-Blázquez, S.; García-Honduvilla, N.; Buján, J.; Asúnsolo, Á.; Coca, S.; et al. Decreased Survival in Patients with Pancreatic Cancer May Be Associated with an Increase in Histopathological Expression of Inflammasome Marker NLRP3. Histol. Histopathol. 2024, 39, 35–40. [Google Scholar] [CrossRef]
- Xu, B.; Bai, B.; Sha, S.; Yu, P.; An, Y.; Wang, S.; Kong, X.; Liu, C.; Wei, N.; Feng, Q.; et al. Interleukin-1β Induces Autophagy by Affecting Calcium Homeostasis and Trypsinogen Activation in Pancreatic Acinar Cells. Int. J. Clin. Exp. Pathol. 2014, 7, 3620–3631. [Google Scholar] [PubMed]
- Caronni, N.; La Terza, F.; Vittoria, F.M.; Barbiera, G.; Mezzanzanica, L.; Cuzzola, V.; Barresi, S.; Pellegatta, M.; Canevazzi, P.; Dunsmore, G.; et al. IL-1β+ Macrophages Fuel Pathogenic Inflammation in Pancreatic Cancer. Nature 2023, 623, 415–422. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, J.; Zhang, Q.; Zhang, J.; Lou, Y.; Yang, J.; Chen, Y.; Wei, T.; Zhang, J.; Fu, Q.; et al. Tumour Cell-Derived Debris and IgG Synergistically Promote Metastasis of Pancreatic Cancer by Inducing Inflammation via Tumour-Associated Macrophages. Br. J. Cancer 2019, 121, 786–795. [Google Scholar] [CrossRef]
- Wu, X.; Yang, Z.; Wang, H.; Zhao, Y.; Gao, X.; Zang, B. High-Mobility Group Box Protein-1 Induces Acute Pancreatitis through Activation of Neutrophil Extracellular Trap and Subsequent Production of IL-1β. Life Sci. 2021, 286, 119231. [Google Scholar] [CrossRef]
- Miskiewicz, A.; Szparecki, G.; Durlik, M.; Rydzewska, G.; Ziobrowski, I.; Górska, R. The Q705K and F359L Single-Nucleotide Polymorphisms of NOD-Like Receptor Signaling Pathway: Association with Chronic Pancreatitis, Pancreatic Cancer, and Periodontitis. Arch. Immunol. Ther. Exp. 2015, 63, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Boone, B.A.; Murthy, P.; Miller-Ocuin, J.L.; Liang, X.; Russell, K.L.; Loughran, P.; Gawaz, M.; Lotze, M.T.; Zeh, H.J., 3rd; Vogel, S. The Platelet NLRP3 Inflammasome is Upregulated in a Murine Model of Pancreatic Cancer and Promotes Platelet Aggregation and Tumor Growth. Ann. Hematol. 2019, 98, 1603–1610. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xu, Y.; Liang, K.; Liu, R. Immune Cells Combined with NLRP3 Inflammasome Inhibitor Exert Better Antitumor Effect on Pancreatic Ductal Adenocarcinoma. Front. Oncol. 2020, 10, 1378. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Lu, A.L.; Yao, X.M.; Hua, Q.; Li, X.Y.; Qin, L.; Zhang, H.M.; Meng, G.X.; Su, Q. Activation of NLRP3 Inflammasome by Advanced Glycation End Products Promotes Pancreatic Islet Damage. Oxidative Med. Cell. Longev. 2017, 2017, 692546. [Google Scholar] [CrossRef]
- Ren, Z.; Li, H.; Zhang, M.; Zhao, Y.; Fang, X.; Li, X.; Chen, W.; Zhang, H.; Wang, Y.; Pan, L.L.; et al. A Novel Derivative of the Natural Product Danshensu Suppresses Inflammatory Responses to Alleviate Caerulein-Induced Acute Pancreatitis. Front. Immunol. 2018, 9, 2513. [Google Scholar] [CrossRef]
- Sheng, L.P.; Han, C.Q.; Ling, X.; Guo, X.W.; Lin, R.; Ding, Z. Proanthocyanidins Suppress NLRP3 Inflammasome and M1 Macrophage Polarization to Alleviate Severe Acute Pancreatitis in Mice. J. Biochem. Mol. Toxicol. 2023, 37, e23242. [Google Scholar] [CrossRef]
- Xu, C.; Pascual-Sabater, S.; Fillat, C.; Goel, A. The LAMB3-EGFR Signaling Pathway Mediates Synergistic Anti-Cancer Effects of Berberine and Emodin in Pancreatic Cancer. Biochem. Pharmacol. 2024, 228, 116509. [Google Scholar] [CrossRef]
- Ali, B.M.; Al-Mokaddem, A.K.; Selim, H.M.R.M.; Alherz, F.A.; Saleh, A.; Hamdan, A.M.E.; Ousman, M.S.; El-Emam, S.Z. Pinocembrin’s Protective Effect Against Acute Pancreatitis in a Rat Model: The Correlation Between TLR4/NF-κB/NLRP3 and miR-34a-5p/SIRT1/Nrf2/HO-1 Pathways. Biomed. Pharmacother. 2024, 176, 116854. [Google Scholar] [CrossRef]
- Fawzy, H.A.; Mohammed, A.A.; Fawzy, H.M.; Fikry, E.M. Reorienting of Pramipexole as a Promising Therapy for Acute Pancreatitis in a Rat Model by Suppressing TLR4\NF-κB p65\NLRP3 Inflammasome Signaling. Can. J. Physiol. Pharmacol. 2022, 100, 542–552. [Google Scholar] [CrossRef]
- He, R.; Ye, Y.; Zhu, Q.; Xie, C. Systemic Immune-Inflammation Index is Associated with High Risk for Prostate Cancer Among the U.S. Elderly: Evidence from NHANES 2001-2010. Front. Oncol. 2024, 14, 1441271. [Google Scholar] [CrossRef]
- Li, W.; Wang, J. The Current State of Inflammation-Related Research in Prostate Cancer: A Bibliometric Analysis and Systematic Review. Front. Oncol. 2024, 14, 1432857. [Google Scholar] [CrossRef] [PubMed]
- Ponomareva, L.; Liu, H.; Duan, X.; Dickerson, E.; Shen, H.; Panchanathan, R.; Choubey, D. AIM2, an IFN-Inducible Cytosolic DNA Sensor, in the Development of Benign Prostate Hyperplasia and Prostate Cancer. Mol. Cancer Res. 2013, 11, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
- Panchanathan, R.; Liu, H.; Choubey, D. Hypoxia Primes Human Normal Prostate Epithelial Cells and Cancer Cell Lines for the NLRP3 and AIM2 Inflammasome Activation. Oncotarget 2016, 7, 28183–28194. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wang, H.; Qin, Z.; Zhao, F.; Zhou, L.; Xu, L.; Jia, R. NLRP3 Inflammasome Promoted the Malignant Progression of Prostate Cancer via the Activation of Caspase-1. Cell Death Discov. 2021, 7, 399. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, D.; Liu, G.; Zhang, M.; Pan, F. Caspase-Linked Programmed Cell Death in Prostate Cancer: From Apoptosis, Necroptosis, and Pyroptosis to PANoptosis. Biomolecules 2023, 13, 1715. [Google Scholar] [CrossRef]
- Karan, D.; Tawfik, O.; Dubey, S. Expression Analysis of Inflammasome Sensors and Implication of NLRP12 Inflammasome in Prostate Cancer. Sci. Rep. 2017, 7, 4378. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, M.X.; Wu, S.Q.; Xu, C. Carvedilol Induces Pyroptosis Through NLRP3-Caspase1-ASC Inflammasome by Nuclear Migration of NF-κB in Prostate Cancer Models. Mol. Biol. Rep. 2024, 51, 201. [Google Scholar] [CrossRef]
- Gharieb, K.; Doumandji, N.; Bensalem, W.; Bellon, R.P.; Inoubli, L.; Siddeek, B.; Traverse-Glehen, A.; Decaussin-Petrucci, M.; Trabucchi, M.; Benahmed, M.; et al. Combined developmental exposure to estrogenic endocrine disruptor and nutritional imbalance induces long term adult prostate inflammation through inflammasome activation. Toxicol. Lett. 2024. [Google Scholar] [CrossRef]
- Miyauchi, T.; Narita, S.; Saiki, Y.; Kudo-Asabe, Y.; Horii, A.; Fukushige, S.; Habuchi, T.; Nanjo, H.; Goto, A. Association Between NLRP3 Inflammasome and Tumor-Node-Metastasis Staging in Prostate Cancer: Immunohistochemical Studies of Prostate Needle Biopsy and Radical Prostatectomy Specimens. Tohoku J. Exp. Med. 2024. [Google Scholar] [CrossRef]
- Chaudagar, K.; Rameshbabu, S.; Mei, S.; Hirz, T.; Hu, Y.M.; Argulian, A.; Labadie, B.; Desai, K.; Grimaldo, S.; Kahramangil, D.; et al. Androgen Blockade Primes NLRP3 in Macrophages to Induce Tumor Phagocytosis. bioRxiv 2023. [Google Scholar] [CrossRef]
- Zhao, A.N.; Yang, Z.; Wang, D.D.; Shi, B.; Zhang, H.; Bai, Y.; Yan, B.W.; Zhang, Y.; Wen, J.K.; Wang, X.L.; et al. Disturbing NLRP3 Acetylation and Inflammasome Assembly Inhibits Androgen Receptor-Promoted Inflammatory Responses and Prostate Cancer Progression. FASEB J. 2022, 36, e22602. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhu, X.; Xu, C.; Min, F.; Yu, G.; Chen, C. Ulinastatin Ameliorates the Malignant Progression of Prostate Cancer Cells by Blocking the RhoA/ROCK/NLRP3 Pathway. Drug Dev. Res. 2023, 84, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Alsaadi, M.; Tezcan, G.; Garanina, E.E.; Hamza, S.; McIntyre, A.; Rizvanov, A.A.; Khaiboullina, S.F. Doxycycline Attenuates Cancer Cell Growth by Suppressing NLRP3-Mediated Inflammation. Pharmaceuticals 2021, 14, 852. [Google Scholar] [CrossRef] [PubMed]
- Mezzasoma, L.; Talesa, V.N.; Costanzi, E.; Bellezza, I. Natriuretic Peptides Regulate Prostate Cells Inflammatory Behavior: Potential Novel Anticancer Agents for Prostate Cancer. Biomolecules 2021, 11, 794. [Google Scholar] [CrossRef]
- Giannella, L.; Ciavattini, A. Screening and Early Diagnosis in Gynecological Cancers. Cancers 2023, 15, 5152. [Google Scholar] [CrossRef]
- Rathod, S.; Shanoo, A.; Acharya, N. Endometriosis: A Comprehensive Exploration of Inflammatory Mechanisms and Fertility Implications. Cureus 2024, 16, e66128. [Google Scholar] [CrossRef]
- Reis, J.L.; Rosa, N.N.; Martins, C.; Ângelo-Dias, M.; Borrego, L.M.; Lima, J. The Role of NK and T Cells in Endometriosis. Int. J. Mol. Sci. 2024, 25, 10141. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, F.; Huang, Q.; Lin, X.; Zhang, S.; Dai, Y. NLRP3 Activated Macrophages Promote Endometrial Stromal Cells Migration in Endometriosis. J. Reprod. Immunol. 2022, 152, 103649. [Google Scholar] [CrossRef]
- Guo, X.; Xu, X.; Li, T.; Yu, Q.; Wang, J.; Chen, Y.; Ding, S.; Zhu, L.; Zou, G.; Zhang, X. NLRP3 Inflammasome Activation of Mast Cells by Estrogen via the Nuclear-Initiated Signaling Pathway Contributes to the Development of Endometriosis. Front. Immunol. 2021, 12, 749979. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, Z.; Peng, X.; Cai, D.; Peng, R.; Lin, Y.; Dai, L.; Li, J.; Chen, Y.; Xiao, J.; et al. NLRP3 Inflammasome-Mediated Pyroptosis Induces Notch Signal Activation in Endometriosis Angiogenesis. Mol. Cell. Endocrinol. 2023, 574, 111952. [Google Scholar] [CrossRef]
- Li, L.; Ye, K.; Wang, D. Upregulation of HTRA1 Mediated by the lncRNA NEAT1/miR-141-3p Axis Contributes to Endometriosis Development through Activating NLRP3 Inflammasome-Mediated Pyroptotic Cell Death and Cellular Inflammation. In Vitr. Cell. Dev. Biol. Anim. 2023, 59, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Hang, Y.; Tan, L.; Chen, Q.; Liu, Q.; Jin, Y. E3 Ubiquitin Ligase TRIM24 Deficiency Promotes NLRP3/Caspase-1/IL-1β-Mediated Pyroptosis in Endometriosis. Cell Biol. Int. 2021, 45, 1561–1570. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, B.M.; Pinto, B.; Costa, L.; Felgueira, E.; Rebelo, I. Increased Expression of NLRP3 Inflammasome Components in Granulosa Cells and Follicular Fluid Interleukin(IL)-1β and IL-18 Levels in Fresh IVF/ICSI Cycles in Women with Endometriosis. J. Assist. Reprod. Genet. 2023, 40, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, R.; Hu, R.; Yao, J.; Yang, Y. PEG2-Induced Pyroptosis Regulates the Expression of HMGB1 and Promotes hEM15A Migration in Endometriosis. Int. J. Mol. Sci. 2022, 23, 11707. [Google Scholar] [CrossRef]
- Arangia, A.; Marino, Y.; Fusco, R.; Siracusa, R.; Cordaro, M.; D’Amico, R.; Macrì, F.; Raffone, E.; Impellizzeri, D.; Cuzzocrea, S.; et al. Fisetin, a Natural Polyphenol, Ameliorates Endometriosis Modulating Mast Cells Derived NLRP-3 Inflammasome Pathway and Oxidative Stress. Int. J. Mol. Sci. 2023, 24, 5076. [Google Scholar] [CrossRef]
- Di Nicuolo, F.; Castellani, R.; De Cicco Nardone, A.; Barbaro, G.; Paciullo, C.; Pontecorvi, A.; Scambia, G.; Di Simone, N. Alpha-Lipoic Acid Plays a Role in Endometriosis: New Evidence on Inflammasome-Mediated Interleukin Production, Cellular Adhesion, and Invasion. Molecules 2021, 26, 288. [Google Scholar] [CrossRef]
- Webb, P.M.; Jordan, S.J. Global Epidemiology of Epithelial Ovarian Cancer. Nat. Rev. Clin. Oncol. 2024, 21, 389–400. [Google Scholar] [CrossRef]
- Liu, C.; Huang, X.; Su, H. The Role of the Inflammasome and Its Related Pathways in Ovarian Cancer. Clin. Transl. Oncol. 2022, 24, 1470–1477. [Google Scholar] [CrossRef]
- Chang, C.M.; Wang, M.L.; Lu, K.H.; Yang, Y.P.; Juang, C.M.; Wang, P.H.; Hsu, R.J.; Yu, M.H.; Chang, C.C. Integrating the Dysregulated Inflammasome-Based Molecular Functionome in the Malignant Transformation of Endometriosis-Associated Ovarian Carcinoma. Oncotarget 2017, 9, 3704–3726. [Google Scholar] [CrossRef]
- Luborsky, J.; Barua, A.; Edassery, S.; Bahr, J.M.; Edassery, S.L. Inflammasome Expression is Higher in Ovarian Tumors Than in Normal Ovary. PLoS ONE 2020, 15, e0227081. [Google Scholar] [CrossRef]
- Solini, A.; Cobuccio, L.; Rossi, C.; Parolini, F.; Biancalana, E.; Cosio, S.; Chiarugi, M.; Gadducci, A. Molecular Characterization of Peritoneal Involvement in Primary Colon and Ovary Neoplasm: The Possible Clinical Meaning of the P2X7 Receptor-Inflammasome Complex. Eur. Surg. Res. 2022, 63, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Yan, Y.; Dong, Y.; Xu, J.; Su, W.; Shi, W.; Zou, Q.; Yang, X. NLRP3 Promotes Immune Escape by Regulating Immune Checkpoints: A Pan-Cancer Analysis. Int. Immunopharmacol. 2022, 104, 108512. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Osuka, S.; Muraoka, A.; Hayashi, S.; Bayasula; Kasahara, Y.; Sonehara, R.; Hariyama, Y.; Shinjo, K.; Tanaka, H.; et al. Effectiveness of NLRP3 Inhibitor as a Non-Hormonal Treatment for Ovarian Endometriosis. Reprod. Biol. Endocrinol. 2022, 20, 58. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yin, Y.; Qian, W.; Peng, C.; Shen, S.; Wang, T.; Zhao, S. Citric Acid of Ovarian Cancer Metabolite Induces Pyroptosis via the Caspase-4/TXNIP-NLRP3-GSDMD Pathway in Ovarian Cancer. FASEB J. 2022, 36, e22362. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhao, X.; Zhang, R.; Xie, J.; Zhang, G. Silencing of NLRP3 Sensitizes Chemoresistant Ovarian Cancer Cells to Cisplatin. Mediators Inflamm. 2023, 2023, 7700673. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Y.; Zhao, T.; Wang, X.; Guo, Q.; Wang, S.; Chen, S.; Ju, X.; Li, J.; Wu, X.; et al. Targeting RAC1 Reactivates Pyroptosis to Reverse Paclitaxel Resistance in Ovarian Cancer by Suppressing P21-Activated Kinase 4. MedComm 2024, 5, e719. [Google Scholar] [CrossRef]
- Pontillo, A.; Bricher, P.; Leal, V.N.; Lima, S.; Souza, P.R.; Crovella, S. Role of Inflammasome Genetics in Susceptibility to HPV Infection and Cervical Cancer Development. J. Med. Virol. 2016, 88, 1646–1651. [Google Scholar] [CrossRef]
- Abdul-Sater, A.A.; Koo, E.; Häcker, G.; Ojcius, D.M. Inflammasome-Dependent Caspase-1 Activation in Cervical Epithelial Cells Stimulates Growth of the Intracellular Pathogen Chlamydia trachomatis. J. Biol. Chem. 2009, 284, 26789–26796. [Google Scholar] [CrossRef]
- Lu, Q.; Lao, X.; Gan, J.; Du, P.; Zhou, Y.; Nong, W.; Yang, Z. Impact of NLRP3 Gene Polymorphisms (rs10754558 and rs10733113) on HPV Infection and Cervical Cancer in Southern Chinese Population. Infect. Agent. Cancer 2023, 18, 64. [Google Scholar] [CrossRef]
- He, A.; Shao, J.; Zhang, Y.; Lu, H.; Wu, Z.; Xu, Y. CD200Fc Reduces LPS-Induced IL-1β Activation in Human Cervical Cancer Cells by Modulating TLR4-NF-κB and NLRP3 Inflammasome Pathway. Oncotarget 2017, 8, 33214–33224. [Google Scholar] [CrossRef]
- Yu, S.; Zhao, N.; He, M.; Zhang, K.; Bi, X. MiRNA-214 Promotes the Pyroptosis and Inhibits the Proliferation of Cervical Cancer Cells via Regulating the Expression of NLRP3. Cell. Mol. Biol. 2020, 66, 59–64. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Cui, H.; Zhao, F.; Sun, H.; Zhong, H.; Zhou, G.; Chen, X. Inhibition of HMGB1/RAGE Axis Suppressed the Lipopolysaccharide (LPS)-Induced Vicious Transformation of Cervical Epithelial Cells. Bioengineered 2021, 12, 4995–5003. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liu, J.; Zhang, Y.; Li, Q.; Wang, Q.; Gu, Z. miR-22 Suppresses Cell Viability and EMT of Ovarian Cancer Cells via NLRP3 and Inhibits PI3K/AKT Signaling Pathway. Clin. Transl. Oncol. 2021, 23, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.P.; Cambui, R.A.G.; Soares, J.L.D.S.; Reis, E.C.D.; Leal, V.N.C.; Pontillo, A. Cervical Carcinoma Induces NLRP3 Inflammasome Activation and IL-1β Release in Human Peripheral Blood Monocytes Affecting Patients’ Overall Survival. Clin. Transl. Oncol. 2023, 25, 3277–3286. [Google Scholar] [CrossRef]
- Ji, W.; Jin, Y.; Jiang, W. Foxm1-Mediated Transcriptional Inactivation of NLRP3 Inflammasome Promotes Immunosuppression in Cervical Cancer. Crit. Rev. Eukaryot. Gene Expr. 2024, 34, 35–45. [Google Scholar] [CrossRef]
- Barsouk, A.; Aluru, J.S.; Rawla, P.; Saginala, K.; Barsouk, A. Epidemiology, Risk Factors, and Prevention of Head and Neck Squamous Cell Carcinoma. Med. Sci. 2023, 11, 42. [Google Scholar] [CrossRef]
- Li, K.; Zeng, X.; Liu, P.; Zeng, X.; Lv, J.; Qiu, S.; Zhang, P. The Role of Inflammation-Associated Factors in Head and Neck Squamous Cell Carcinoma. J. Inflamm. Res. 2023, 16, 4301–4315. [Google Scholar] [CrossRef]
- Bae, J.Y.; Lee, S.W.; Shin, Y.H.; Lee, J.H.; Jahng, J.W.; Park, K. P2X7 Receptor and NLRP3 Inflammasome Activation in Head and Neck Cancer. Oncotarget 2017, 8, 48972–48982. [Google Scholar] [CrossRef]
- Huang, C.F.; Chen, L.; Li, Y.C.; Wu, L.; Yu, G.T.; Zhang, W.F.; Sun, Z.J. NLRP3 Inflammasome Activation Promotes Inflammation-Induced Carcinogenesis in Head and Neck Squamous Cell Carcinoma. J. Exp. Clin. Cancer Res. 2017, 36, 116. [Google Scholar] [CrossRef]
- Chen, L.; Huang, C.F.; Li, Y.C.; Deng, W.W.; Mao, L.; Wu, L.; Zhang, W.F.; Zhang, L.; Sun, Z.J. Blockage of the NLRP3 Inflammasome by MCC950 Improves Anti-Tumor Immune Responses in Head and Neck Squamous Cell Carcinoma. Cell. Mol. Life Sci. 2018, 75, 2045–2058. [Google Scholar] [CrossRef]
- Chen, L.; Wan, S.C.; Mao, L.; Huang, C.F.; Bu, L.L.; Sun, Z.J. NLRP3 in Tumor-Associated Macrophages Predicts a Poor Prognosis and Promotes Tumor Growth in Head and Neck Squamous Cell Carcinoma. Cancer Immunol. Immunother. 2023, 72, 1647–1660. [Google Scholar] [CrossRef] [PubMed]
- Jain, T.; Chandra, A.; Mishra, S.P.; Khairnar, M.; Rajoria, S.; Maheswari, R.; Keerthika, R.; Tiwari, S.; Agrawal, R. Unravelling the Significance of NLRP3 and IL-1β in Oral Squamous Cell Carcinoma and Potentially Malignant Oral Disorders: A Diagnostic and Prognostic Exploration. Head Neck Pathol. 2024, 18, 77. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Yin, J.J.; Miao, J.X.; Li, S.G.; Huang, C.Z.; Huang, N.; Fan, T.L.; Li, X.N.; Wang, Y.H.; Han, S.N.; et al. Activation of NLRP3 Inflammasome Promotes the Proliferation and Migration of Esophageal Squamous Cell Carcinoma. Oncol. Rep. 2020, 43, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Luo, Q.; Zhang, H.; Wang, H.; Chen, W.; Meng, G.; Chen, F. The Role of NLRP3 Inflammasome in 5-Fluorouracil Resistance of Oral Squamous Cell Carcinoma. J. Exp. Clin. Cancer Res. 2017, 36, 81. [Google Scholar] [CrossRef]
- Yang, M.; Luo, Q.; Chen, X.; Chen, F. Bitter Melon Derived Extracellular Vesicles Enhance the Therapeutic Effects and Reduce the Drug Resistance of 5-Fluorouracil on Oral Squamous Cell Carcinoma. J. Nanobiotechnol. 2021, 19, 259. [Google Scholar] [CrossRef]
- Chen, X.; Luo, Q.; Ding, J.; Yang, M.; Zhang, R.; Chen, F. Zymosan Promotes Proliferation, Candida albicans Adhesion and IL-1β Production of Oral Squamous Cell Carcinoma In Vitro. Infect. Agent. Cancer 2020, 15, 51. [Google Scholar] [CrossRef]
- Zhang, M.J.; Gao, W.; Liu, S.; Siu, S.P.; Yin, M.; Ng, J.C.; Chow, V.L.; Chan, J.Y.; Wong, T.S. CD38 Triggers Inflammasome-Mediated Pyroptotic Cell Death in Head and Neck Squamous Cell Carcinoma. Am. J. Cancer Res. 2020, 10, 2895–2908. [Google Scholar] [PubMed]
- Xiao, L.; Li, X.; Cao, P.; Fei, W.; Zhou, H.; Tang, N.; Liu, Y. Interleukin-6 Mediated Inflammasome Activation Promotes Oral Squamous Cell Carcinoma Progression via JAK2/STAT3/Sox4/NLRP3 Signaling Pathway. J. Exp. Clin. Cancer Res. 2022, 41, 166. [Google Scholar] [CrossRef]
- Casili, G.; Scuderi, S.A.; Lanza, M.; Filippone, A.; Mannino, D.; Giuffrida, R.; Colarossi, C.; Mare, M.; Capra, A.P.; De Gaetano, F.; et al. Therapeutic Potential of BAY-117082, a Selective NLRP3 Inflammasome Inhibitor, on Metastatic Evolution in Human Oral Squamous Cell Carcinoma (OSCC). Cancers 2023, 15, 2796. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Tao, Z.; Zhu, W.; Su, Y.; Choi, W.S. Tumor-Associated Macrophages Facilitate Oral Squamous Cell Carcinomas Migration and Invasion by MIF/NLRP3/IL-1β Circuit: A Crosstalk Interrupted by Melatonin. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166695. [Google Scholar] [CrossRef]
- Mishra, S.R.; Behera, B.P.; Singh, V.K.; Mahapatra, K.K.; Mundkinajeddu, D.; Bhat, D.; Minz, A.M.; Sethi, G.; Efferth, T.; Das, S.; et al. Anticancer Activity of Bacopa monnieri Through Apoptosis Induction and Mitophagy-Dependent NLRP3 Inflammasome Inhibition in Oral Squamous Cell Carcinoma. Phytomedicine 2024, 123, 155157. [Google Scholar] [CrossRef]
- Yang, H.L.; Chang, C.W.; Vadivalagan, C.; Pandey, S.; Chen, S.J.; Lee, C.C.; Hseu, J.H.; Hseu, Y.C. Coenzyme Q0 Inhibited the NLRP3 Inflammasome, Metastasis/EMT, and Warburg Effect by Suppressing Hypoxia-Induced HIF-1α Expression in HNSCC Cells. Int. J. Biol. Sci. 2024, 20, 2790–2813. [Google Scholar] [CrossRef]
Cancer Type | Role of NLRP3 | Citations |
---|---|---|
Gastric cancer |
| [156,157] |
| [148,158,159] | |
| [160] | |
| [161] | |
| [162,163] | |
| [165,166,167] | |
| [170] | |
| [171] | |
| [172,173] | |
Pancreatic Cancer |
| [174,175,176,177] |
| [178,179,180,181] | |
| [182] | |
| [183] | |
| [184] | |
| [185,186,187,188] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalali, A.M.; Mitchell, K.J.; Pompoco, C.; Poludasu, S.; Tran, S.; Ramana, K.V. Therapeutic Significance of NLRP3 Inflammasome in Cancer: Friend or Foe? Int. J. Mol. Sci. 2024, 25, 13689. https://doi.org/10.3390/ijms252413689
Jalali AM, Mitchell KJ, Pompoco C, Poludasu S, Tran S, Ramana KV. Therapeutic Significance of NLRP3 Inflammasome in Cancer: Friend or Foe? International Journal of Molecular Sciences. 2024; 25(24):13689. https://doi.org/10.3390/ijms252413689
Chicago/Turabian StyleJalali, Aliea M., Kenyon J. Mitchell, Christian Pompoco, Sudeep Poludasu, Sabrina Tran, and Kota V. Ramana. 2024. "Therapeutic Significance of NLRP3 Inflammasome in Cancer: Friend or Foe?" International Journal of Molecular Sciences 25, no. 24: 13689. https://doi.org/10.3390/ijms252413689
APA StyleJalali, A. M., Mitchell, K. J., Pompoco, C., Poludasu, S., Tran, S., & Ramana, K. V. (2024). Therapeutic Significance of NLRP3 Inflammasome in Cancer: Friend or Foe? International Journal of Molecular Sciences, 25(24), 13689. https://doi.org/10.3390/ijms252413689