Mechanistic Aspects of [3+2] Cycloaddition Reaction of Trifluoroacetonitrile with Diarylnitrilimines in Light of Molecular Electron Density Theory Quantum Chemical Study
Abstract
:1. Introduction
2. Results
2.1. Analysis of the Electronic Structures of the Reagents
2.2. Analysis of the Reactivity Indices of the Reagents
2.3. Study of the 32CA Reaction Between NI 3a–c and TFAN 4
2.4. Bonding Evolution Theory (BET)
3. Computational Details
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frühauf, A.; Behringer, M.; Meyer-Almes, F.-J. Significance of Five-Membered Heterocycles in Human Histone Deacetylase Inhibitors. Molecules 2023, 28, 5686. [Google Scholar] [CrossRef]
- Dai, J.; Tian, S.; Yang, X.; Liu, Z. Synthesis Methods of 1,2,3-/1,2,4-Triazoles: A Review. Front. Chem. 2022, 10, 891484. [Google Scholar] [CrossRef] [PubMed]
- Ait Lahcen, M.; Fadili, D.; Ettahiri, W.; Hmaimou, S.; Adardour, M.; Chkirate, K.; Mague, J.T.; Loughzail, M.; Taleb, M.; Baouid, A. Comprehensive Study of 1,2,4-Triazolo[1,5]Benzodiazepine Derivatives: Synthesis, Characterization, X-Ray Diffraction, DFT Calculations, Hirshfeld Surface Analysis, ADMET Properties, and Molecular Docking. J. Mol. Struct. 2025, 1322, 140410. [Google Scholar] [CrossRef]
- Cardillo, P.; Dellavedova, M.; Gigante, L.; Lunghi, A.; Pasturenzi, C.; Salatelli, E.; Zanirato, P. Synthesis, Spectroscopic and Thermal Characterization of Azido-1,2,4-triazoles: A Class of Heteroarenes with a High Nitrogen Content. Eur. J. Org. Chem. 2012, 2012, 1195–1201. [Google Scholar] [CrossRef]
- Ameziane El Hassani, I.; Rouzi, K.; Ameziane El Hassani, A.; Karrouchi, K.; Ansar, M. Recent Developments Towards the Synthesis of Triazole Derivatives: A Review. Organics 2024, 5, 450–471. [Google Scholar] [CrossRef]
- Xiao, P.-L.; Song, X.-Y.; Xiong, X.-T.; Peng, D.-Y.; Nie, X.-L. Synthesis, Crystal Structure, Spectral Characterization and Antifungal Activity of Novel Phenolic Acid Triazole Derivatives. Molecules 2023, 28, 6970. [Google Scholar] [CrossRef]
- Strzelecka, M.; Świątek, P. 1,2,4-Triazoles as Important Antibacterial Agents. Pharmaceuticals 2021, 14, 224. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Wang, T.; Xiao, J.; Huang, G. Antibacterial Activity Study of 1,2,4-Triazole Derivatives. Eur. J. Med. Chem. 2019, 173, 274–281. [Google Scholar] [CrossRef]
- El Sawy, M.A.; Elshatanofy, M.M.; El Kilany, Y.; Kandeel, K.; Elwakil, B.H.; Hagar, M.; Aouad, M.R.; Albelwi, F.F.; Rezki, N.; Jaremko, M.; et al. Novel Hybrid 1,2,4- and 1,2,3-Triazoles Targeting Mycobacterium Tuberculosis Enoyl Acyl Carrier Protein Reductase (InhA): Design, Synthesis, and Molecular Docking. Int. J. Mol. Sci. 2022, 23, 4706. [Google Scholar] [CrossRef]
- El-Sebaey, S.A. Recent Advances in 1,2,4-Triazole Scaffolds as Antiviral Agents. ChemistrySelect 2020, 5, 11654–11680. [Google Scholar] [CrossRef]
- Konkova, A.V.; Savina, I.V.; Evtushok, D.V.; Pozmogova, T.N.; Solomatina, M.V.; Nokhova, A.R.; Alekseev, A.Y.; Kuratieva, N.V.; Eltsov, I.V.; Yanshole, V.V.; et al. Water-Soluble Polyoxometal Clusters of Molybdenum (V) with Pyrazole and Triazole: Synthesis and Study of Cytotoxicity and Antiviral Activity. Molecules 2023, 28, 8079. [Google Scholar] [CrossRef] [PubMed]
- Khramchikhin, A.V.; Skryl’nikova, M.A.; Gureev, M.A.; Zarubaev, V.V.; Esaulkova, I.L.; Ilyina, P.A.; Mammeri, O.A.; Spiridonova, D.V.; Porozov, Y.B.; Ostrovskii, V.A. Novel 1,2,4-Triazole- and Tetrazole-Containing 4H-Thiopyrano[2,3-b]Quinolines: Synthesis Based on the Thio-Michael/Aza-Morita–Baylis–Hillman Tandem Reaction and Investigation of Antiviral Activity. Molecules 2023, 28, 7427. [Google Scholar] [CrossRef] [PubMed]
- Paprocka, R.; Wiese-Szadkowska, M.; Kołodziej, P.; Kutkowska, J.; Balcerowska, S.; Bogucka-Kocka, A.; Demchenko, S.; Lesyk, R.; Yadlovskyi, O.; Holota, S.; et al. Fused Triazole-Azepine Hybrids as Potential Non-Steroidal Antiinflammatory Agents. Sci. Pharm. 2023, 91, 26. [Google Scholar] [CrossRef]
- Rasheed, H.A.M.; Al-Majidi, S.M.H. Synthesis of Novel 1,2,4-Triazole Derivatives of N-Benzyl-5-Nitroisatin: Anticancer Activity, Anti-Oxidant Activity, and Molecular Design. Org. Prep. Proced. Int. 2024, 1–13. [Google Scholar] [CrossRef]
- Klen, E.E.; Nikitina, I.L.; Khaliullin, F.A.; Rozit, G.A.; Nikitina, E.A.; Gaisina, G.G.; Samorodov, A.V.; Pavlov, V.N. Reactions of Thiiranes with NH-Heterocycles: III. The Synthesis of N2/N4-Mono- and N2/N4-Dithietane-Containing 5-Bromo-2,4-Dihydro-1,2,4-Triazol-3-Ones and Their Antidepressant Activity. Chem. Heterocycl. Compd. 2024, 60, 357–364. [Google Scholar] [CrossRef]
- Rohman, N.; Ardiansah, B.; Wukirsari, T.; Judeh, Z. Recent Trends in the Synthesis and Bioactivity of Coumarin, Coumarin–Chalcone, and Coumarin–Triazole Molecular Hybrids. Molecules 2024, 29, 1026. [Google Scholar] [CrossRef] [PubMed]
- Gillis, E.P.; Eastman, K.J.; Hill, M.D.; Donnelly, D.J.; Meanwell, N.A. Applications of Fluorine in Medicinal Chemistry. J. Med. Chem. 2015, 58, 8315–8359. [Google Scholar] [CrossRef]
- Johnson, B.M.; Shu, Y.-Z.; Zhuo, X.; Meanwell, N.A. Metabolic and Pharmaceutical Aspects of Fluorinated Compounds. J. Med. Chem. 2020, 63, 6315–6386. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J.L.; Soloshonok, V.A.; Izawa, K.; Liu, H. Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II–III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chem. Rev. 2016, 116, 422–518. [Google Scholar] [CrossRef] [PubMed]
- Borysov, O.V.; Voloshchuk, V.V.; Nechayev, M.A.; Lysenko, V.A.; Nikolaychuk, M.M.; Portiankin, A.O.; Oliinyk, O.V.; Lega, D.A.; Volochnyuk, D.M.; Ryabukhin, S.V. Focused Small Molecule Library of 5,6,7,8-Tetrahydro[1,2,4]Triazolo-[4,3-a]Pyrazines: A Brick for the House of Medicinal Chemistry. Chem. Heterocycl. Compd. 2023, 59, 429–441. [Google Scholar] [CrossRef]
- Park, B.K.; Kitteringham, N.R.; O’Neill, P.M. Metabolism of Fluorine-Containing Drugs. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 443–470. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Weng, Q.; Da, D.; Yao, S.; Zhang, Y.; Wu, Y. Enhancement of Fluoride’s Antibacterial and Antibiofilm Effects against Oral Staphylococcus Aureus by the Urea Derivative BPU. Antibiotics 2024, 13, 930. [Google Scholar] [CrossRef] [PubMed]
- Carbone, D.; Santos, M.F.; Corbeil, D.; Vistoli, G.; Parrino, B.; Karbanová, J.; Cascioferro, S.; Pecoraro, C.; Bauson, J.; Eliwat, W.; et al. Triazole Derivatives Inhibit the VOR Complex-Mediated Nuclear Transport of Extracellular Particles: Potential Application in Cancer and HIV-1 Infection. Bioorganic Chem. 2024, 150, 107589. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.F.; Zhang, R.Z.; Xu, C.; Wang, M. Controllable Regioselective [3+2] Cyclizations of N-CF3 Imidoyl Chlorides and Ph3PNNC: Divergent Synthesis of N-CF3 Triazoles. Org. Lett. 2024, 26, 5087–5091. [Google Scholar] [CrossRef]
- Couto Rodrigues, S.; Silva Moratório de Moraes, R.; Tavares de Almeida Pinto, G.; Miranda Martins, M.T.; Antunes do Nascimento, P.; Alves Soares, D.L.; Mestre Botelho, A.B.; Cardoso Cruz, C.; Cunha, A.C. A Review on Chemistry and Methods of Synthesis of 1,2,4-Triazole Derivatives. Chem. Rec. 2024, e202400190. [Google Scholar] [CrossRef]
- Sathyanarayana, R.; Poojary, B. Exploring Recent Developments on 1,2,4-triazole: Synthesis and Biological Applications. J. Chin. Chem. Soc. 2020, 67, 459–477. [Google Scholar] [CrossRef]
- Abdelli, A.; Azzouni, S.; Plais, R.; Gaucher, A.; Efrit, M.L.; Prim, D. Recent Advances in the Chemistry of 1,2,4-Triazoles: Synthesis, Reactivity and Biological Activities. Tetrahedron Lett. 2021, 86, 153518. [Google Scholar] [CrossRef]
- Lelyukh, M.I.; Komarenska, Z.M.; Chaban, T.I.; Chaban, I.H. An Overview of the Synthetic Routes toward [1, 2, 4]Triazolo[3,4-b][1,3,4]Thiadiazoles (Microreview). Chem. Heterocycl. Compd. 2024, 60, 342–344. [Google Scholar] [CrossRef]
- Vasilchenko, D.S.; Novikov, M.S.; Rostovskii, N.V. Rh(II)-Catalyzed and Non-Catalytic Synthesis of (Z)-Ethene-1,2-Diamines from 1-Tosyl-1,2,3-Triazoles and Primary Anilines. Chem. Heterocycl. Compd. 2023, 59, 666–671. [Google Scholar] [CrossRef]
- Golovina, O.V.; Shiryaev, A.K.; Bakharev, V.V. An Unexpected Route of Alkylation of 7-Substituted (Dinitro)([1,2,4]Triazolo[4,3-a][1,3,5]Triazin-5-Yl)Methanides with Allyl and Benzyl Bromide. Chem. Heterocycl. Compd. 2023, 59, 587–593. [Google Scholar] [CrossRef]
- Mikhina, E.A.; Stepanycheva, D.V.; Maksimova, V.P.; Sineva, O.N.; Markelova, N.N.; Grebenkina, L.E.; Lesovaya, E.A.; Yakubovskaya, M.G.; Matveev, A.V.; Zhidkova, E.M. Synthesis of Alkyl/Aryloxymethyl Derivatives of 1,2,4-Triazole-3-Carboxamides and Their Biological Activities. Molecules 2024, 29, 4808. [Google Scholar] [CrossRef] [PubMed]
- Woliński, P.; Kącka-Zych, A.; Demchuk, O.M.; Łapczuk-Krygier, A.; Mirosław, B.; Jasiński, R. Clean and Molecularly Programmable Protocol for Preparation of Bis-Heterobiarylic Systems via a Domino Pseudocyclic Reaction as a Valuable Alternative for TM-Catalyzed Cross-Couplings. J. Clean. Prod. 2020, 275, 122086. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, Z.; Yao, Y.; You, Y.; Weng, Z. Regioselective Synthesis of 5-Trifluoromethyl 1,2,4-Triazoles via [3+2]-Cycloaddition of Nitrile Imines with CF3CN. Molecules 2022, 27, 6568. [Google Scholar] [CrossRef] [PubMed]
- Kula, K.; Łapczuk, A.; Sadowski, M.; Kras, J.; Zawadzińska, K.; Demchuk, O.M.; Gaurav, G.K.; Wróblewska, A.; Jasiński, R. On the Question of the Formation of Nitro-Functionalized 2,4-Pyrazole Analogs on the Basis of Nitrylimine Molecular Systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. Molecules 2022, 27, 8409. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry. Molecules 2016, 21, 1319. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R.; Kula, K.; Ríos-Gutiérrez, M.; Jasiński, R. Understanding the Participation of Fluorinated Azomethine Ylides in Carbenoid-Type [3+2] Cycloaddition Reactions with Ynal Systems: A Molecular Electron Density Theory Study. J. Org. Chem. 2021, 86, 12644–12653. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Gutiérrez, M.; Domingo, L.R. Unravelling the Mysteries of the [3+2] Cycloaddition Reactions. Eur. J. Org. Chem. 2019, 2019, 267–282. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Duque-Noreña, M.; Chamorro, E.; Pérez, P. Understanding the Carbenoid-Type Reactivity of Nitrile Ylides in [3+2] Cycloaddition Reactions towards Electron-Deficient Ethylenes: A Molecular Electron Density Theory Study. Theor. Chem. Acc. 2016, 135, 160. [Google Scholar] [CrossRef]
- Becke, A.D.; Edgecombe, K.E. A Simple Measure of Electron Localization in Atomic and Molecular Systems. J. Chem. Phys. 1990, 92, 5397–5403. [Google Scholar] [CrossRef]
- Domingo, L.R. 1999–2024, a Quarter Century of the Parr’s Electrophilicity ω Index. Sci. Radices 2024, 3, 157–186. [Google Scholar] [CrossRef]
- Paar, R.G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules 2016, 21, 748. [Google Scholar] [CrossRef] [PubMed]
- Aurell, M.J.; Domingo, L.R.; Pérez, P.; Contreras, R. A Theoretical Study on the Regioselectivity of 1,3-Dipolar Cycloadditions Using DFT-Based Reactivity Indexes. Tetrahedron 2004, 60, 11503–11509. [Google Scholar] [CrossRef]
- Boguszewska-Czubara, A.; Kula, K.; Wnorowski, A.; Biernasiuk, A.; Popiołek, Ł.; Miodowski, D.; Demchuk, O.M.; Jasiński, R. Novel Functionalized β-Nitrostyrenes: Promising Candidates for New Antibacterial Drugs. Saudi Pharm. J. 2019, 27, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R.; Ríos-Gutiérrez, M. A Useful Classification of Organic Reactions Based on the Flux of the Electron Density. Sci. Radices 2023, 2, 1–24. [Google Scholar] [CrossRef]
- Parr, R.G.; Szentpály, L.v.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Domingo, L.R.; Pérez, P. The Nucleophilicity N Index in Organic Chemistry. Org. Biomol. Chem. 2011, 9, 7168. [Google Scholar] [CrossRef]
- Ríos-Gutiérrez, M.; Domingo, L.R. The Carbenoid-Type Reactivity of Simplest Nitrile Imine from a Molecular Electron Density Theory Perspective. Tetrahedron 2019, 75, 1961–1967. [Google Scholar] [CrossRef]
- Sadowski, M.; Utnicka, J.; Wójtowicz, A.; Kula, K. The Global and Local Reactivity of C,N-Diarylnitryle Imines in [3+2] Cycloaddition Processes with Trans-β-Nitrostyrene According to Molecular Electron Density Theory: A Computational Study. Curr. Chem. Lett. 2023, 12, 421–430. [Google Scholar] [CrossRef]
- Kula, K.; Sadowski, M. Regio- and Stereoselectivity of [3+2] Cycloaddition Reactions between (Z)-1-(Anthracen-9-Yl)-N-Methyl Nitrone and Analogs of Trans-β-Nitrostyrene on the Basis of MEDT Computational Study. Chem. Heterocycl. Compd. 2023, 59, 138–144. [Google Scholar] [CrossRef]
- Domingo, L.R.; Pérez, P.; Sáez, J.A. Understanding the Local Reactivity in Polar Organic Reactions through Electrophilic and Nucleophilic Parr Functions. RSC Adv. 2013, 3, 1486–1494. [Google Scholar] [CrossRef]
- Krokidis, X.; Noury, S.; Silvi, B. Characterization of Elementary Chemical Processes by Catastrophe Theory. J. Phys. Chem. A 1997, 101, 7277–7282. [Google Scholar] [CrossRef]
- Polo, V.; Andres, J.; Berski, S.; Domingo, L.R.; Silvi, B. Understanding Reaction Mechanisms in Organic Chemistry from Catastrophe Theory Applied to the Electron Localization Function Topology. J. Phys. Chem. A 2008, 112, 7128–7136. [Google Scholar] [CrossRef] [PubMed]
- Da Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615. [Google Scholar] [CrossRef] [PubMed]
- Hehre, W.J.; Radom, L.; Schleyer, P.v.R.; Pople, J. AB INITIO Molecular Orbital Theory, 1st ed.; Wiley-Interscience: New York, NY, USA, 1986. [Google Scholar]
- Schlegel, H.B. Modern Electronic Structure Theory; Yarkony, D.R., Ed.; World Scientific Publishing: Singapore, 1994; ISBN 978-9810229870. [Google Scholar]
- Schlegel, H.B. Optimization of Equilibrium Geometries and Transition Structures. In Advances in Chemical Physics; John Wiley & Sons: Hoboken, NJ, USA, 1987; Volume 67, pp. 249–286. ISBN 9780470142936. [Google Scholar]
- Zawadzińska, K.; Ríos-Gutiérrez, M.; Kula, K.; Woliński, P.; Mirosław, B.; Krawczyk, T.; Jasiński, R. The Participation of 3,3,3-Trichloro-1-Nitroprop-1-Ene in the [3+2] Cycloaddition Reaction with Selected Nitrile N-Oxides in the Light of the Experimental and MEDT Quantum Chemical Study. Molecules 2021, 26, 6774. [Google Scholar] [CrossRef]
- Sadowski, M.; Kula, K. Unexpected Course of Reaction Between (1E,3E)-1,4-Dinitro-1,3-Butadiene and N-Methyl Azomethine Ylide—A Comprehensive Experimental and Quantum-Chemical Study. Molecules 2024, 29, 5066. [Google Scholar] [CrossRef]
- Kula, K.; Łapczuk-Krygier, A. A DFT Computational Study on the [3+2] Cycloaddition between Parent Thionitrone and Nitroethene. Curr. Chem. Lett. 2018, 7, 27–34. [Google Scholar] [CrossRef]
- Mlostoń, G.; Jasiński, R.; Kula, K.; Heimgartner, H. A DFT Study on the Barton-Kellogg Reaction—The Molecular Mechanism of the Formation of Thiiranes in the Reaction between Diphenyldiazomethane and Diaryl Thioketones. Eur. J. Org. Chem. 2020, 2020, 176–182. [Google Scholar] [CrossRef]
- Jasiński, R. On the Question of Stepwise [4+2] Cycloaddition Reactions and Their Stereochemical Aspects. Symmetry 2021, 13, 1911. [Google Scholar] [CrossRef]
- Dresler, E.; Kącka-Zych, A.; Kwiatkowska, M.; Jasiński, R. Regioselectivity, Stereoselectivity, and Molecular Mechanism of [3+2] Cycloaddition Reactions between 2-Methyl-1-Nitroprop-1-Ene and (Z)-C-Aryl-N-Phenylnitrones: A DFT Computational Study. J. Mol. Model. 2018, 24, 329. [Google Scholar] [CrossRef]
- Fukui, K. Formulation of the Reaction Coordinate. J. Phys. Chem. 1970, 74, 4161–4163. [Google Scholar] [CrossRef]
- Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793–1874. [Google Scholar] [CrossRef]
- Pérez, P.; Domingo, L.R.; Aurell, M.J.; Contreras, R. Quantitative Characterization of the Global Electrophilicity Pattern of Some Reagents Involved in 1,3-Dipolar Cycloaddition Reactions. Tetrahedron 2003, 59, 3117–3125. [Google Scholar] [CrossRef]
- Zawadzińska, K.; Kula, K. Application of β-Phosphorylated Nitroethenes in [3+2] Cycloaddition Reactions Involving Benzonitrile N-Oxide in the Light of a DFT Computational Study. Organics 2021, 2, 26–37. [Google Scholar] [CrossRef]
- Silvi, B.; Savin, A. Classification of Chemical Bonds Based on Topological Analysis of Electron Localization Functions. Nature 1994, 371, 683–686. [Google Scholar] [CrossRef]
- Fuster, F.; Sevin, A.; Silvi, B. Topological Analysis of the Electron Localization Function (ELF) Applied to the Electrophilic Aromatic Substitution. J. Phys. Chem. A 2000, 104, 852–858. [Google Scholar] [CrossRef]
- Noury, S.; Krokidis, X.; Fuster, F.; Silvi, B. Computational Tools for the Electron Localization Function Topological Analysis. Comput. Chem. 1999, 23, 597–604. [Google Scholar] [CrossRef]
- Domingo, L.R. A New C–C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density. RSC Adv. 2014, 4, 32415–32428. [Google Scholar] [CrossRef]
- Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys. 1985, 83, 735–746. [Google Scholar] [CrossRef]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Jasiński, R.; Wąsik, K.; Mikulska, M.; Barański, A. A DFT Study on the (2 + 3) Cycloaddition Reactions of 2-Nitropropene-1 with Z-C,N-Diarylnitrones. J. Phys. Org. Chem. 2009, 22, 717–725. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian Inc.: Pittsburgh, PA, USA, 2016. [Google Scholar]
- Dennington, R.; Keith, T.; Millam, J. GaussView Version 6.0; Semichem Inc.: Shawnee, KS, USA, 2016. [Google Scholar]
- Ríos-Gutiérrez, M.; Domingo, L.R.; Esseffar, M.; Oubella, A.; Ait Itto, M.Y. Unveiling the Different Chemical Reactivity of Diphenyl Nitrilimine and Phenyl Nitrile Oxide in [3+2] Cycloaddition Reactions with (R)-Carvone through the Molecular Electron Density Theory. Molecules 2020, 25, 1085. [Google Scholar] [CrossRef] [PubMed]
3a | 3b | 3c | |
---|---|---|---|
ELF Basins | N [e] | N [e] | N [e] |
V (N1, C1′) | 1.91 | 1.92 | 1.93 |
V (N1, N2) | 2.21 | 2.23 | 2.22 |
V (N2, C3) | 2.43 | 2.42 | 2.23 |
V′ (N2, C3) | 2.76 | 2.73 | 2.47 |
V (C3, C3′) | 2.98 | 3.05 | 2.26 |
V (N1) | 3.44 | 3.41 | 3.34 |
V (C3) | 1.34 |
Homo eV | Lumo eV | µ (eV) | ŋ (eV) | ω (eV) | N (eV) | Electrophile | Nucleophile | |
---|---|---|---|---|---|---|---|---|
3a | −6.95 | 0.03 | −3.46 | 6.98 | 0.86 | 4.44 | moderate | superstrong |
3b | −7.11 | −0.60 | −3.86 | 6.51 | 1.14 | 4.28 | strong | superstrong |
3c | −7.23 | 0.36 | −3.43 | 7.59 | 0.78 | 4.17 | moderate | superstrong |
4 | −13.06 | 1.19 | −5.93 | 14.25 | 1.23 | −1.66 | strong | marginal |
Path | Stationary Point | ΔH | ΔS | ΔG |
---|---|---|---|---|
A | MC5a | −7.2 | −37.6 | 4.0 |
TS5a | 0.7 | −49.8 | 15.5 | |
5a | −87.1 | −57.5 | −70.0 | |
MC5b | −7.1 | −34.1 | 3.0 | |
TS5b | 1.2 | −47.7 | 15.4 | |
5b | −87.3 | −55.8 | −70.6 | |
MC5c | −7.0 | −73.2 | 3.2 | |
TS5c | 0.4 | −46.6 | 14.3 | |
5c | −86.4 | −54.0 | −70.3 | |
B | MC6a | −4.0 | −36.8 | 7.0 |
TS6a | 6.7 | 50.2 | 21.7 | |
6a | −76.3 | −58.3 | −58.9 | |
MC6b | −3.4 | −35.7 | 7.3 | |
TS6b | 6.0 | −47.0 | 20.0 | |
6b | −76.4 | −55.1 | −59.9 | |
MC6c | −3.9 | −33.5 | 6.0 | |
TS6c | 5.7 | −46.8 | 19.6 | |
6c | −75.6 | −53.8 | −59.5 |
rC3–N4[Å] | lC3–N4 | rC5–N1[Å] | lC5–N1 | Δl | GEDT [e] | |
MC5a | 3.217 | 2.871 | ||||
TS5a | 2.243 | 0.35 | 2.148 | 0.41 | 0.06 | 0.15 |
5a | 1.361 | 1.353 | ||||
rC5–C3 [Å] | lC5–C3 | rN1–N4 [Å] | lN1–N4 | Δl | GEDT [e] | |
MC6a | 3.295 | 3.235 | ||||
TS6a | 2.114 | 0.50 | 2.372 | 0.20 | 0.30 | 0.22 |
6a | 1.413 | 1.315 |
Structures | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Phases | I | II | III | IV | V | VI | VII | VIII | IX | X | XI | |
d1 (N1−C5) | 2.863 | 2.845 | 2.753 | 2.426 | 2.284 | 2.056 | 1.859 | 1.851 | 1.789 | 1.772 | 1.634 | 1.353 |
d2 (N3−C4) | 3.182 | 3.125 | 2.939 | 2.531 | 2.386 | 2.148 | 1.933 | 1.924 | 1.857 | 1.837 | 1.683 | 1.360 |
V (N1, N2) | 2.11 | 2.10 | 2.08 | 1.94 | 1.86 | 1.75 | 1.67 | 1.67 | 1.65 | 1.64 | 1.61 | 1.61 |
V (N2) | 0.85 | 1.81 | 2.18 | 2.47 | 2.48 | 2.56 | 2.58 | 2.73 | 3.05 | |||
V (N2, C3) | 3.36 | 3.39 | 5.34 | 4.46 | 3.52 | 3.26 | 3.10 | 3.10 | 3.07 | 3.53 | 3.33 | 2.81 |
V′ (N2, C3) | 2.36 | 2.10 | ||||||||||
V (C3, C3′) | 2.50 | 2.47 | 2.46 | 2.44 | 2.42 | 2.38 | 2.33 | 2.33 | 2.32 | 2.32 | 2.29 | 2.31 |
V (N4, C5) | 4.56 | 4.56 | 4.56 | 4.49 | 2.15 | 2.07 | 1.89 | 1.88 | 1.84 | 1.83 | 3.34 | 2.84 |
V′ (N4, C5) | 2.29 | 2.06 | 1.80 | 1.79 | 1.74 | 1.72 | ||||||
V (N1) | 3.52 | 3.53 | 3.51 | 3.45 | 3.42 | 3.34 | 3.26 | 2.18 | 2.12 | 2.10 | 1.93 | 0.71 |
V′ (N1) | 1.09 | |||||||||||
V (C5) | 0.25 | 0.55 | 0.55 | |||||||||
V (C3) | 0.28 | 0.45 | 0.66 | 0.73 | 0.85 | 0.63 | 0.62 | 0.40 | ||||
V′ (C3) | 0.28 | 0.29 | 0.51 | |||||||||
V (N4) | 3.13 | 3.13 | 3.14 | 3.20 | 3.26 | 3.39 | 3.58 | 3.59 | 3.65 | 3.05 | 2.94 | 2.88 |
V (N1, C5) | 1.73 | 1.75 | 1.96 | 3.03 | ||||||||
V (C3, N4) | 1.05 | 1.46 | 2.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łapczuk, A.; Ríos-Gutiérrez, M. Mechanistic Aspects of [3+2] Cycloaddition Reaction of Trifluoroacetonitrile with Diarylnitrilimines in Light of Molecular Electron Density Theory Quantum Chemical Study. Molecules 2025, 30, 85. https://doi.org/10.3390/molecules30010085
Łapczuk A, Ríos-Gutiérrez M. Mechanistic Aspects of [3+2] Cycloaddition Reaction of Trifluoroacetonitrile with Diarylnitrilimines in Light of Molecular Electron Density Theory Quantum Chemical Study. Molecules. 2025; 30(1):85. https://doi.org/10.3390/molecules30010085
Chicago/Turabian StyleŁapczuk, Agnieszka, and Mar Ríos-Gutiérrez. 2025. "Mechanistic Aspects of [3+2] Cycloaddition Reaction of Trifluoroacetonitrile with Diarylnitrilimines in Light of Molecular Electron Density Theory Quantum Chemical Study" Molecules 30, no. 1: 85. https://doi.org/10.3390/molecules30010085
APA StyleŁapczuk, A., & Ríos-Gutiérrez, M. (2025). Mechanistic Aspects of [3+2] Cycloaddition Reaction of Trifluoroacetonitrile with Diarylnitrilimines in Light of Molecular Electron Density Theory Quantum Chemical Study. Molecules, 30(1), 85. https://doi.org/10.3390/molecules30010085