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Abstract: The gut–brain axis (GBA) is a complex communication network connecting
the gastrointestinal tract (GIT) and the central nervous system (CNS) through neuronal,
endocrine, metabolic, and immune pathways. Omega-3 (n-3) fatty acids, particularly eicos-
apentaenoic acid (EPA) and docosahexaenoic acid (DHA), are crucial food components that
may modulate the function of this axis through molecular mechanisms. Derived mainly
from marine sources, these long-chain polyunsaturated fatty acids are integral to cell mem-
brane structure, enhancing fluidity and influencing neurotransmitter function and signal
transduction. Additionally, n-3 fatty acids modulate inflammation by altering eicosanoid
production, reducing proinflammatory cytokines, and promoting anti-inflammatory me-
diators. These actions help preserve the integrity of cellular barriers like the intestinal
and blood–brain barriers. In the CNS, EPA and DHA support neurogenesis, synaptic
plasticity, and neurotransmission, improving cognitive functions. They also regulate the
hypothalamic–pituitary–adrenal (HPA) axis by reducing excessive cortisol production,
associated with stress responses and mental health disorders. Furthermore, n-3 fatty acids
influence the composition and function of the gut microbiota, promoting beneficial bacterial
populations abundance that contribute to gut health and improve systemic immunity. Their
multifaceted roles within the GBA underscore their significance in maintaining homeostasis
and supporting mental well-being.

Keywords: cognitive function; docosahexaenoic acid (DHA); eicosapentaenoic acid (EPA);
gut microbiota; gut–brain axis (GBA); hypothalamic–pituitary–adrenal (HPA) axis; inflam-
mation; omega-3 (n-3) fatty acids

1. Introduction
The gastrointestinal tract (GIT) plays a key physiological role in nutrient digestion

and absorption but is also particularly vulnerable, since the alimentary canal is constantly
exposed to external and potentially hazardous factors [1]. Given this dual character, GIT has
to be closely monitored by the organism’s master controller—the brain [2]. The exchange
of information between the intestines and the central nervous system (CNS) is mutual.
It involves a plethora of neuronal, endocrine, metabolic, and immune factors, known
collectively as the gut–brain axis (GBA). The GBA is crucial for maintaining homeostasis
and mental health [3]. The pathways that form the axis include interactions with the ner-
vous system as well as molecular signals, like microbial metabolites, tight junction protein
expression, and cytokines released during inflammation [4]. Dietary factors, particularly
omega-3 polyunsaturated fatty acids (PUFAs), significantly modulate the GBA by influ-
encing gut microbiota composition, enhancing intestinal barrier integrity, and supporting
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neural function, showing the interplay between nutrition and gut–brain health. Based on
the position of the first double bond relative to the terminal end of the carbon chain, PUFAs
can be classified into two main groups: omega-3 (n-3) and omega-6 (n-6) fatty acids [5].
n-3 Fatty acids are crucial dietary fats derived from plant sources and marine organisms.
α-linolenic acid (ALA, C18:3), an 18-carbon chain fatty acid, is the shortest in the n-3 family
and is classified as a short-chain polyunsaturated fatty acid (SC-PUFA). It is also the most
abundant n-3 fatty acid found in dietary sources, such as flaxseed, chia seeds, walnuts, and
rapeseed oil [6]. ALA plays unique roles supporting cardiovascular health by reducing
lipids, blood pressure, and inflammation. Additionally, ALA-derived oxylipins promote
vascular health, and emerging evidence highlights its potential in improving cognitive
function and supporting brain health [7]. Marine n-3 fatty acids, including eicosapentaenoic
acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6), are classified as a long-chain
PUFAs (LC-PUFA) and exhibit greater biological activity than their plant-derived counter-
parts [8]. These essential fatty acids cannot be synthesized in the human body and must
be supplied through the diet [9]. LCPUFAs, including EPA, DHA, and arachidonic acid
(AA, C20:4, n-6 fatty acid), are major components of cellular membrane phospholipids
(75–88%, depending on the cell type). Reduced dietary intake of n-3 fatty acids, such as
ALA, EPA, and DHA, can lead to decreased content of those fatty acids in brain cells and
organelles. DHA, in particular, is the most abundant n-3 fatty acid in the CNS, and is
especially concentrated in the membrane lipids of gray matter [8,10]. Therefore, it is to
be expected that n-3—and LCPUFAs in particular—would play a crucial role in the GBA,
maintaining proper functioning of both the gut and the brain.

2. The Gut–Brain Axis: Definition and Overview
The fundamental part of the GBA is the enteric nervous system (ENS), which en-

tails 100 million nerve cells located in two principal plexuses: the submucosal and the
myenteric plexuses [11,12]. ENS forms part of the autonomic nervous system (ANS) and
regulates processes related to digestion, nutrient absorption, the release of gastrointestinal
hormones, and peristalsis. It serves as an intermediary between the GIT and the CNS by
detecting diverse stimuli originating from the intestinal lumen and transferring them to
the brain [11–13]. The bidirectional communication network between the CNS and the GIT
involves the ENS and parasympathetic innervation, primarily through the vagus nerve
fibers that innervate most of the GT. The vagus nerve, also known as the tenth cranial nerve,
plays a central role in the complex communication network between the gut and the brain.
This nerve is a branch of the ANS that connects the CNS to the ENS through both afferent
and efferent nerve fibers [11–13]. Given their multifarious receptors, the constituents of the
vagus nerve are sensitive to diverse stimuli, including mechanical tension, hormones, and
other chemical incentives. The signals they provide are integrated by the solitary nucleus
in the brainstem and elicit a wide array of effects in the brain, stimulating regions related to
feeding behavior, anxiety, or emotions [11]. On the other hand, efferent vagal activity has
an impact on the gut environment, influencing the immune system and metabolism [11,12].

The CNS also communicates with the GIT through the hypothalamic–pituitary–
adrenal (HPA) axis, a key component of the gut–brain communication pathways [11].
The HPA axis activity is initiated by the release of corticotropin-releasing hormone (CRH)
from the hypothalamus, which stimulates the anterior pituitary to secrete adrenocorti-
cotropic hormone (ACTH). ACTH, in turn, stimulates the adrenal cortex to release cortisol,
a steroid hormone, which plays an important role in regulating metabolism, immune re-
sponse, and maintaining homeostasis under stress conditions [4,14]. The endocrine factors
that influence and regulate the functioning of the GBA include CRH and cortisol. The
latter can affect the functioning of immune cells, leading to the production of both proin-
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flammatory cytokines (e.g., tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), and
interleukin 6 (IL-6)) and anti-inflammatory cytokines (e.g., IL-10). Additionally, cortisol
increases the permeability of the intestinal barrier, allowing bacterial antigens to pass
from the intestinal lumen into the bloodstream, which contributes to the development of
systemic inflammation [15].

Gut-associated lymphoid tissue (GALT), which consists of immune cells, is another
component of the GBA, positioned at the interface between gut contents and the inter-
nal environment of the body [16]. It constitutes 70–80% of the human immune system,
highlighting the crucial and sensitive role the intestines play in the body’s defense mecha-
nisms [17]. M cells and dendritic cells interact with luminal antigens, activating T and B
lymphocytes in Peyer’s patches [1]. Cytokine release from immune cells and enterocytes
triggers an immune response that can extend beyond the GI tract, reaching the CNS via
the bloodstream and affecting vagus nerve signaling. The immune cells’ defense is com-
plemented by the protective function of the intestinal barrier [1,11]. The intestinal mucosa
functions as a physical and immunological defense barrier, consisting of key components,
such as the outer mucus layer with commensal microbiota, antimicrobial peptides, and
secretory immunoglobulin A. It also includes a central single layer of epithelial cells and
an inner lamina propria containing innate and adaptive immune cells like T cells, B cells,
macrophages, and dendritic cells [18].

GALT is also a very important site of interaction with microbial agents and their
metabolites [11,16]. Collectively known as the gut microbiota, these microorganisms signif-
icantly influence the host’s physiology [19]. Interestingly, the number of microbes within
the digestive tract exceeds the number of human cells by a factor of 1.3, which highlights
their essential role in both health and disease [20,21]. Intestinal microorganisms produce
a number of neurotransmitters and neuromodulators—including serotonin, melatonin,
γ-aminobutyric acid (GABA), catecholamines, and histamine—which contribute signif-
icantly to the proper functioning of brain areas involved in emotion processing, motor
activity, and cognitive skills [21,22]. Intestinal microorganisms synthesize and metabolize
tryptophan, producing about 95% of systemic serotonin in the gut, which also participates
in gut–brain communication [23,24]. Current research demonstrates that the microbiota not
only interacts with the CNS but also shapes its development by influencing growth and
maturation of brain cells [11,16,25]. Additionally, alterations in microbiota composition
have been associated with the onset of various CNS-related disorders, such as Alzheimer’s
disease, Parkinson’s disease, autism, and depression [12].

GALT and gut microbiota collaboratively reinforce the intestinal barrier, contributing
to immune protection and maintaining gut homeostasis. Epithelial cells are the primary
physical components of the intestinal barrier [26]. Due to the impermeability of cell mem-
branes to hydrophilic solutes without specific transporters, the passage of such molecules
through intestinal epithelial cells (IECs) is highly restricted. Lipophilic or larger molecules
are primarily absorbed via diffusion and endocytosis that is controlled by junctional com-
plexes, with the most crucial being tight junctions (TJs), adherens junctions (AJs), and
desmosomes. TJs, located at the apical region, seal the intercellular space and include
proteins such as claudins, occludin, and zonula occludens (ZO)-1 and ZO-2. AJs are posi-
tioned below TJs and, together with desmosomes, maintain the epithelial integrity through
strong adhesive bonds [27]. The proper functioning of the intestinal barrier is ensured
by the tight adhesion of these cells, allowing for transcellular transport and enabling
selective absorption.

The GBA also includes the physical barrier that protects the CNS. The blood–brain
barrier (BBB) is formed by endothelial cells that are connected by protein junctions [28].
These specialized squamous epithelial cells create a single layer of polarized lining on the
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inner side of the capillary wall [29]. The intercellular spaces of the capillary endothelium are
covered by a dense network of high-resistance junctions, with TJs being the most significant
ones. The main components of these TJs are the proteins occludin and claudin [30]. Another
set of proteins found in the barrier junctions of the brain are cell adhesion molecules—
junctional adhesion molecules (JAM)-A, -B, -C, and -D—with JAM-A believed to influ-
ence TJs formation. Along with membrane proteins, the barrier connections also include
cytosolic proteins such as ZO-1, -2, and -3 [31]. Additionally, astrocytes contribute to the
neurovascular cell complex by forming an extra barrier that circulating blood compounds
must cross to reach the brain, enhancing the selectivity of the BBB during periods of in-
creased neuronal activity. Transport of substrates and metabolites is carefully regulated by
membrane systems, including the sodium–potassium pump. The BBB serves as a protective
barrier against neuroactive substances (e.g., catecholamines) and blood-borne toxins, while
also supplying neurons with essential nutrients like glucose and amino acids. Moreover,
this barrier protects also against the entry of immune system cells [30].

In summary, multiple communication pathways link the gut and the brain, encom-
passing systems like the ANS, HPA axis, ENS, intestinal barrier, GALT, microbiota, and the
BBB. These systems engage in continuous interaction and information exchange within the
GBA (Figure 1) [13].
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Designed using elements by ©Canva, sparklestroke, Pixeden, iconsy, OpenClipart-Vectors via
Canva.com (access date: 18 November 2024).

3. Molecular Mechanisms Linking n-3 Fatty Acids, Microbiota, and Brain
Function
3.1. Omega-3 Fatty Acids as Components of Cell Membranes

The multifaceted roles of n-3 fatty acids within biological systems include complex
interactions with the GBA. They are integral components of phospholipids in the nerve cell
membranes, which enhance their structure and are crucial for their optimal fluidity [32].
This fluidity influences neuronal information transfer by affecting neurotransmitter binding
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and the speed and integrity of cell signaling [33–35]. DHA represents approximately 15%
of all fatty acids in the gray matter of the prefrontal cortex, while EPA and n-3 docos-
apentaenoic acid (DPA) account for only ~1% of brain fatty acids [36–38]. However, the
hydroxy derivative of DHA (2-hydroxydocosahexaenoic acid, OHDHA) has demonstrated
therapeutic potential in treating Alzheimer’s disease in a mouse model. Administration
of this DHA derivative increased brain DHA levels and reduced Aβ (amyloid-β) levels
as well as Aβ-induced tau phosphorylation—key factors in the progression of the disease.
These effects supported neuronal cell membranes, preserving proper synaptic function,
which is essential for signaling and membrane stability in the CNS [39]. The mechanism
through which neuronal fluidity changes is based on the displacement of cholesterol from
the membrane as well as the induction of non-lamellar structure formation in the mem-
brane [40–42]. Different lipid concentrations in the cell membrane can alter its fluidity as
well as the structure and functioning of embedded proteins, such as enzymes, receptors,
and ion channels. It is believed that the incorporation of fatty acids into cell membranes
also affects the inflammatory cellular responses [43–45]. EPA and DHA compete with
dihomogammalinolenic acid and AA for incorporation into the phospholipid membrane,
sharing enzymes involved in the eicosanoid production process [46,47]. Metabolic trans-
formations of DHA and EPA carried out by cyclooxygenases (COX), lipoxygenases (LOX),
and cytochrome P450 enzymes result in the production of numerous eicosanoids and
docosanoids [48,49]. These metabolites influence the brain-derived neurotrophic factor
(BDNF), increasing synaptic plasticity and enhancing neurotransmission, thus providing
neuroprotective effects, as demonstrated in studies conducted on the multipotent human
hippocampal progenitor cell line HPC0A07/03C and the human bone marrow neurob-
lastoma SH-SY5Y cell line (multipotent human hippocampal progenitor cell line) [48–50].
Both animal and human studies indicate that the incorporation of EPA and DHA into
cell phospholipids during inflammatory processes is dose-dependent and occurs at the
expense of AA content [47,51–56]. The role of n-3 fatty acids as components of CNS cellular
membranes is summarized in Figure 2.
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3.2. Impact of Omega-3 Fatty Acids on Inflammation

The modulation of inflammation by n-3 fatty acids, mainly through their effects on
eicosanoid production, illustrates a critical mechanism by which dietary fats influence
both neurological health and systemic inflammatory responses [57,58]. Prostaglandins,
thromboxanes, leukotrienes, and hydroxyl and hydroxy fatty acids are enzymatic metabolic
products of PUFA, known as eicosanoids. These compounds play a pivotal role in the
inflammatory processes and neurological pathways within the GBA [59,60]. The structural
differences in eicosanoids derived from EPA and AA affect the biological activity of EPA
derivatives, as eicosanoid receptors have a lower affinity for the mediators derived from
EPA than ARA [61]. An in vitro study on HEK293 cell lines demonstrated 50–80% lower
activity of prostaglandin E3 (PGE3) compared to prostaglandin E2 (PGE2) on prostaglandin
E2 receptors 1, 2, 3, and 4 (EP1, EP2, EP3, and EP4), indicating nuanced influence of dietary
fats on neuroinflammatory responses [62]. Eicosanoids derived from EPA and DHA have
anti-inflammatory properties [47,55,58,63]. EPA competes with AA for the cyclooxygenase
enzyme system, effectively inhibiting the production of proinflammatory eicosanoids
from AA. Both DHA and EPA reduce the release of proinflammatory cytokines, such as
interleukin-1β (IL-1β), -2 (IL-2), and -6 (IL-6), along with IFN-γ and TNF-α [57,63–65].
These cytokines can affect the CNS both indirectly and directly by reducing the availability
of neurotransmitter precursors, influencing their metabolism, transport, and regulation, as
well as impacting the HPA axis and mRNA-encoding proteins involved in neurotransmitter
metabolism [66–69]. Flaxseed oil inhibits the synthesis of proinflammatory cytokines,
thereby regulating neurotransmitter production and the HPA axis [70]. Marine-derived n-3
fatty acids lead to the production of pro-resolving lipid mediators, such as EPA-derived
resolvins (E series), DHA-derived resolvins (D series), and resolvins derived from DPA
n-3 (RvDn-3 DPA), along with protectins (also known as neuroprotectins when produced
in the nervous tissue) and maresins derived from DHA. Their synthesis occurs through
COX and LOX pathways, acting intercellularly [57,71–74]. The anti-inflammatory actions
of n-3 fatty acids involve binding to peroxisome proliferator-activated receptors (PPARs),
G-protein–coupled receptor 40 (GPR40), and free fatty acid receptor 4 (FFA4), also known
as GPR120, which promote the production of anti-inflammatory lipids—resolvins and
protectins. These lipids play a crucial role in inhibiting the activation of key inflammatory
regulators, including transcription factor nuclear factor kappa B (NF-kB), IL-1 β, and
TNF-α release [75–79]. Supplementation with EPA and DHA in mice has been shown
to increase the number of T lymphocytes [80]. Additionally, DHA and EPA are able to
inhibit IL-6 and interleukin 8 (IL-8) production stimulated by lipopolysaccharide (LPS) in
human endothelial cells. Moreover, EPA has been observed to inhibit TNF-α production by
cultured monocytes [81,82]. LC-PUFAs also reduce LPS-induced proinflammatory cytokine
production in human blood monocytes and in murine fetal liver-derived macrophages,
leading to a decrease in TNF-α level in serum, NF-kB activation, and IL-1 β production by
monocytes [82–84]. This reduction can trigger the release of substantial amounts of anti-
inflammatory factors, such as interleukin-10 (IL-10), from resident macrophages. LC-PUFAs
play a critical role in directly modulating cytokine production and immune cell regulation.
They also exert broader anti-inflammatory effects through key intracellular signaling
pathways, such as NFκB, that influence overall immune response and inflammatory status
mainly due to the increased level of inflammatory cytokines, adhesion molecules, and
cyclooxygenase-2 (COX-2) [82,85,86]. NFκB is activated by the signaling cascade triggered
by external inflammatory stimuli, including endotoxin binding to toll-like receptor (TLR) 4.
Upon activation, the NFκB dimer is translocated to the nucleus, where it upregulates gene
expression [87–90].
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The documented anti-inflammatory and regulatory capabilities of EPA and DHA on
cytokine dynamics and cellular mediator pathways also help preserve the integrity of cellu-
lar barriers, such as the BBB, by reducing inflammation-induced disruption and enhancing
barrier functions. Transmembrane proteins, including claudin-5 and occludin, along with
scaffold proteins, like ZO-1 and ZO-2, participate in the tight junction complex of endothe-
lial cells in the CNS [91,92]. LC-PUFAs indirectly enhance the integrity of the BBB and
reduce its permeability by modulating levels of inflammatory cytokines [93,94]. Systemic
administration of IL-1β has been demonstrated to cause prolonged BBB disruption, activate
matrix metalloproteinase-9, and induce rearrangement of claudin-5 in cerebral vessels fol-
lowing transient middle cerebral artery occlusion in mice [95]. Therefore, it is suggested that
n-3 fatty acids may strengthen the integrity of the BBB by downregulating the expression of
proinflammatory cytokines. Interestingly, research indicates that certain anti-inflammatory
cytokines, including IL-4, IL-10, and IL-13, can also contribute to damaging the BBB, but
the precise mechanisms behind these effects are not yet well understood [96]. However, the
disruption kinetics of the barrier via IL-4 seems to be similar to that of n-6 PUFAs, such
as di-homo-gamma-linolenic acid (DGLA, C20:3 n-6) and AA. In comparison n-3 PUFAs,
including EPA and DHA, support epithelial barrier integrity by enhancing trans-epithelial
electrical resistance (TER) and significantly reducing IL-4-induced permeability. This sug-
gests that LC-PUFAs play a crucial role in maintaining barrier function, as demonstrated by
Willemsen Le et al. [97]. Tight junction complexes actively control paracellular permeability
and are sensitive to soluble barrier-disrupting mediators [98,99]. Proteins such as occludin,
ZO-1, and claudins play critical roles in regulating the intestinal barrier, controlled by
the perijunctional actomyosin ring and myosin light chain kinase [100–102]. LC-PUFAs
improve trans-epithelial resistance, but the exact mechanism of its impact on this process is
not fully understood. Several mechanisms have been proposed to explain the effects of n-3
LC-PUFAs on BBB integrity, particularly their roles in modulating inflammatory pathways
and enhancing antioxidant defense systems. Notably, n-3 PUFAs suppress IFN-γ-induced
expression of TNF-α, IL-6, nitric oxide synthase (NOS), and COX-2, while promoting the
upregulation of heme oxygenase-1 (HO-1) in BV-2 microglia cells. BBB disruption and
“leaky gut” phenomenon increase the transfer of neurotoxins into the brain, leading to
elevated production of proinflammatory molecules, reactive oxygen species, and increased
bacterial adhesion through receptors, thereby disrupting endothelial connections [103]. n-3
Fatty acids, specifically EPA and DHA, have been shown to enhance basal trans-epithelial
resistance (TER), thereby reducing the permeability of the gut barrier in human intestinal
epithelial cells (T84) in vitro, indirectly through mechanisms involving IL-4. LCPUFAs,
such as dihomo-γ-linolenic acid (DGLA), AA, EPA, and DHA, stimulate basal resistance
and mitigate IL-4-induced permeability changes [97,104,105]. Supplementation with EPA in
rats has been shown to increase the expression of occludin, a protein playing an important
role in the intestinal barrier integrity [106–108]. These protective effects are associated
with support and protection of the tight junction structure and function. Additionally, n-3
fatty acids have been shown to increase the number of goblet cells, promote the growth
of beneficial bacteria, and elevate the expression of mucin 2, all of which contribute to
improved intestinal barrier integrity [104,109]. Summarized anti-inflammatory effects of
n-3 fatty acids in the gut and the brain are shown in Figure 3.
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3.3. Impact of Omega-3 Fatty Acids on the Nervous System and Cognitive Functions

Omega-3 fatty acids, mainly DHA and EPA, are essential for maintaining neural in-
tegrity and improving cognitive functions, as they serve as integral components of neuron
membrane structure and play a critical role in neurogenesis, neural signaling, and neuropro-
tection. DHA also promotes neuron growth by enhancing protein kinase B signaling [110].
This process requires the accumulation of lipids in newly formed membranes and DHA
facilitates the incorporation of cholesterol into structures important for myelination and
neurite extension, thereby assisting in the organization of the lipid raft domain of the mem-
brane [111–113]. Summarized data presenting the effects of n-3 fatty acids on cognitive
functions are presented in Table 1.

Neurogenesis is essential for cognitive function, as it supports brain plasticity and
adaptability, fundamental for learning and memory retention. This process is most apparent
during prenatal development, but it persists in certain parts of the adult brain, most no-
tably in the hippocampus, a structure crucial for learning and memory formation [114,115].
BDNF is a protein that belongs to the neurotrophin family of growth factors, which are
vital for the growth, survival, and differentiation of neuron cells. It plays a key role in
neuroplasticity, and it is a critical mediator that links neurogenesis to broader brain func-
tions, particularly those related to learning, memory, and overall cognitive health [116–118].
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n-3 Fatty acids—especially DHA—increase BDNF levels, thereby influencing the growth,
differentiation, and viability of neurons in the hippocampus, playing a significant role in
the regulation of various neurotransmitter systems [119–122]. Direct administration of
BDNF to the dorsal hippocampus in rats significantly increased the granule cell layer of the
hilar region [123]. Deuterated polyunsaturated fatty acids (D-PUFAs) supplementation has
been shown to alleviate cognitive decline through its antioxidant activity and reduction
in lipid peroxidation in a Huntington’s disease mouse model [124]. In an animal model
of spinal cord injury, DHA treatment following injury led to comprehensive functional
improvements, evidenced by enhanced fore and hindlimb locomotion and better motor
control in the grid exploration and staircase tests. This was accompanied by structural
neural adaptations, including increased synaptophysin density around motor neurons,
enhanced cortical synaptogenesis, amplified serotonergic innervation, and increased sprout-
ing of corticospinal axons in both rostral and caudal regions of the injured area [125]. DHA
also promotes hippocampal neuron development in vitro by supporting neurite growth
and branching and also synaptogenesis. Moreover, in vivo DHA depletion in the fetal
hippocampus resulted in inhibition of hippocampal neuron development in culture, which
can be reversed with DHA supplementation [126].

n-3 Fatty acids increase synaptic plasticity in hippocampal neurons and improve
its glutaminergic activity, which is crucial for cognitive function as it mediates synaptic
plasticity and neurotransmission, fundamental for learning, memory formation, and overall
brain cell connectivity [127–129]. A 6-month randomized controlled trial showed that
supplementation at a dose of almost 2 g of EPA and DHA decreases depression symptoms
in the Geriatric Depression Scale in geriatric patients and DHA improves cognitive function,
i.e., verbal fluency tested with Initial Letter Fluency [130]. In a model of accelerated
aging with prediabetic status, dietary enrichment with flaxseed and fish oils enhanced
spatial learning and working memory performance in the Morris water maze test through
reduction in inflammatory markers and toxic metabolites in the CNS of male rats. Elevated
n-3 fatty acids levels in the frontal cortex following supplementation were associated with
protective effects against cognitive impairment and reduced depressive-like behaviors
linked to gray matter atrophy, suggesting a crucial role of EPA in preventing cognitive
decline [131].

The cognitive enhancements provided by n-3 fatty acids primarily stem from their
profound impact on cellular structures, which leads to the modulation of the physical
aspects of brain health, particularly the stabilization of neuronal membranes and ion chan-
nels [132–134]. In a randomized, double-blind, controlled trial, healthy older adults who
consumed 3.7 g per day of flaxseed oil containing 2.2 g of ALA over 12 weeks demon-
strated improved verbal fluency. This improvement is believed to result from changes in
neuronal cell membrane structure across broad anatomical regions, enhanced membrane
fluidity, and improved intercellular connectivity, which typically decline with age [135].
LC-PUFAs influence the integrity of membrane proteins, including enzymes, receptors,
and ion channels. They regulate membrane protein integrity, affecting enzymatic activity,
receptor function, and ion channel conductance. Administration of DHA demonstrated
neuromodulatory effects via ion channel regulation, subsequently reducing the amplitude
of epileptiform discharges in experimental rodent models of seizure activity [134,136].
These changes occurred through sodium channel blockade and neuronal membrane sta-
bilization by suppressing calcium-gated membrane tension, thereby blocking synaptic
transmission [132–134,136–138]. Research indicates that n-3 LC-PUFAs play a crucial role
in promoting brain health. They enhance neuroprotective capabilities, support neuroplas-
ticity, and reduce neuroinflammation, all of which are essential for sustaining cognitive
functions. Short-term exposure to EPA and DHA reversed spatial working memory deficits
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in older mice by reducing IL-1β expression in inflammation-associated hippocampi [139].
Similarly, a high-fat diet enriched with flaxseed oil improved spatial learning and working
memory in male mice during the Morris water maze test by reducing levels of inflammatory
markers and toxic metabolites in the CNS [140].

n-3 Fatty acids contribute to brain health by modulating membrane structures and
reducing neuronal damage. Additionally, they directly impact cellular mechanisms that
eliminate harmful proteins and facilitate cellular repair, highlighting their potential ther-
apeutic roles in neurodegenerative diseases [141]. DHA and EPA stimulate and increase
the expression of insulin-degrading enzyme (IDE) genes, which raises the levels of IDE,
the main enzyme responsible for degrading amyloid-beta (Aβ) peptide secreted into the
extracellular space of neuronal and microglial cells [142]. The accumulation of Aβ pep-
tides is linked to the development of AD, and the effect of n-3 fatty acids may assist in
removing these peptides from the brain and modulating inflammation, thereby supporting
brain glial cells [143,144]. Additionally, DHA exhibits a protective effect on dopaminergic
neurons in a Parkinson’s disease animal model induced by the neurotoxin 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) [142]. Moreover, another study demonstrated
that DHA administration significantly increased TH-positive neurons compared to the
control group when exposed to MPTP, suggesting changes in dopaminergic activity [145].
It has been suggested that the DHA may delay or slow the progression of Parkinson disease
development by blocking the conversion of MPTP to MPP+ (methylpyridinium ion) or by
preventing the uptake of MPP+ into dopaminergic terminals. Furthermore, DHA has been
shown to influence synaptic plasticity and cognitive functions by activating syntaxin 3, a
plasma membrane protein that plays a significant role in membrane expansion [146,147].
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Table 1. Effects of n-3 fatty acids on the CNS and cognitive functions.

Models Type of Study Source and Dose Exposure Effect Related to Nervous System and Cognitive Functions Reference

In vitro model studies

Embryonic neurons from
E18 mouse hippocampi
pregnant C57/BL6 mice

in vitro
Diet with 2.5 wt% of

linolenic acid plus 0.9 wt%
DHA

16 days - Increased neurite growth and synaptogenesis
- Enhance glutamatergic synaptic activity [126]

Hippocampus of Sprague
Dawley rats in vitro 50 µM of DHA Single dose - Attenuation of epileptic activity [136]

In vivo model studies

Q140 mouse model of
Huntington’s disease in vivo Deuterium-reinforced

D2-Lin (KI D-PUFA) 5 months - Alleviation of cognitive decline [124]

Female Sprague
Dawley rats in vivo 5 mL/kg of DHA

(i.v. injection) post-injury Single bolus - Improve locomotion and BBB score
- Enhanced synaptogenesis in cortical neurons [125]

Male Sprague Dawley rats
with prediabetic status in vivo 2% fish oil (EPA + DHA)

or 2% flaxseed oil 3 months - Improved spatial memory [131]

Adult male Sprague
Dawley rats in vivo

Diet with n-6/n-3 PUFA
ratio at 6:1

(1.25% DHA, 0.25% EPA)
12 days - Enhanced synaptic function underlying learning and memory

- Improved spatial learning [146]

C57Bl6/J mice 22 months
old (aged) in vivo EPA and DHA from

tuna oil 2 months
- Inhibition proinflammatory cytokine expression
- Prevention of morphological alterations in hippocampal tissue
- Amelioration of spatial memory impairments

[139]

Obese male C57BL/6 mice
8 weeks old in vivo n-3 PUFA from linseed oil 16 weeks

- Improved spatial memory
- Reduced inflammatory markers (TNF-α)
- Decreased toxic metabolite levels in the CNS

[140]

Male C57BL/6 mice model
of Parkinson’s disease

(3 months old)
in vivo 36 mg/kg/d of DHA

(in corn oil) 30 days
- Decrease levels and activity of heme oxygenase (HO) in
substantia nigra- Decrease in levels of Nuclear Factor
E2-related factor 2, HO-1 and HO-2 in substantia nigra

[148]
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Table 1. Cont.

Models Type of Study Source and Dose Exposure Effect Related to Nervous System and Cognitive Functions Reference

Male C57BL/6 mice model of
Parkinson’s disease

(10 months old)
in vivo 36 mg/kg/d of DHA

(in corn oil) 30 days - Protection against oxidative stress
- Significant increase in TH-positive neurons [145]

Human subject studies

Healthy older adults
65–80 years old human subjects 3.7 g/day of flaxseed oil with

2.2 g of alpha-linolenic acid 12 weeks - Improve lexical fluency [135]

Elderly people
(over 65 years old) human subjects

1.67 g EPA + 0.16 g DHA/d
or 1.55 g DHA + 0.40 g

EPA/d
6 months - Decrease in depression symptoms [130]



Molecules 2025, 30, 71 13 of 28

3.4. Impact of Omega-3 Fatty Acids on the HPA Axis

As a neuroendocrine factor, cortisol is essential in the stress response and plays a
critical role in regulating GBA functions. As a primary stress hormone released by the
adrenal glands in response to stress, cortisol forms part of the body’s HPA axis, which
is closely connected to the GBA. Dysregulation of this system, particularly HPA axis
hyperactivity, has been implicated in the pathophysiology of anxiety, depression, and other
stress-related conditions [149,150]. n-3 fatty acids, particularly EPA and DHA, have been
shown to regulate the HPA axis by reducing excessive cortisol production. Research has
shown a reduced cortisol response to acute mental stress in healthy men who were given
7.2 g/day of fish oil for 3 weeks [151]. Preclinical and clinical data indicate that low plasma
levels of n-3 fatty acids are correlated with higher CRH [149] and plasma concentration of
cortisol [152,153], while n-3 fatty acid supplementation may decrease CRH expression and
corticosterone secretion [154,155]. CRH, crucial in regulating the HPA axis, is produced
in neurons within the hypothalamic paraventricular nucleus (PVN), which receives input
from the limbic system and the brainstem. This connectivity enables these neurons to
respond to both psychological and physical stressors [156]. In vitro studies confirmed
that n-3 fatty acid-deficient rats had exaggerated distress behaviours in comparison with
rats with the appropriate n-3 fatty acid levels during administration of CRH and were
normalized upon restoration of n-3 fatty acid levels [157]. Studies conducted on male
Finnish psychiatric patients (with diagnosed depression, alcoholism, or both) and healthy
patients without psychiatric disorders have also shown that excessive stress response
and HPA hyperactivity may be related to concentrations of brain and plasma neuroactive
steroids (NASs) [158]. NASs are produced in the CNS from cholesterol and have the ability
to alter neuronal excitability rapidly. In a study carried out on male psychiatric patients
from Finland, the authors observed that lower plasma levels of n-3 fatty acids were linked
to higher plasma levels of neurosteroids. Specifically, reduced concentrations of DHA
and EPA were correlated with increased levels of NASs in healthy control subjects [158].
DHA supplementation reduced stress-related increases in aggression and hostility among
Japanese students [159]. The research conducted by Oravcova et al. [160] on patients aged
11–18 confirmed the hypothesis that long-term (12 weeks) supplementation of n-3 fatty
acids from fish oil emulsion reduces morning cortisol levels in saliva. These findings are
in line with the current understanding of the connection between HPA axis activity and
fatty acid metabolism in adults with recurrent depressive disorder [155]. Adults with
lower levels of n-3 fatty acids demonstrated HPA axis dysregulation, suggesting that
supplementation with these fatty acids could potentially improve both physical and mental
health [161]. Notably, dietary supplementation with LC-PUFAs from marine oils has been
shown to lower corticosterone levels in rats and to reduce cortisol secretion in both healthy
individuals and adults experiencing depression [151,162,163]. Results from a randomized,
placebo-controlled trial in midlife adults demonstrated that EPA and DHA supplementation
significantly reduced cortisol levels during stress in a dose–response manner. Patients
receiving the higher doses of n-3 fatty acids had the lowest overall cortisol levels, while
those in the placebo group exhibited the highest levels [164]. Additionally, supplementation
with n-3 fatty acids (2400 mg of total omega-3 fatty acids; 1000 mg of EPA and 750 mg of
DHA; EPA:DHA ratio of 1.33:1) over a 12-week period was shown to significantly reduce
clinical symptoms of depression in older children and adolescents [165]. In adolescent
patients, the positive treatment effects from n-3 fatty acid supplementation were also
associated with a decrease in various oxidative stress markers, such as 8-isoprostane,
advanced oxidation protein products, and nitrotyrosine blood levels, as well as increased
Trolox equivalent antioxidant capacity and superoxide dismutase activity [166].
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Chronic stress or inflammation can result in the overactivation of the HPA axis. Previ-
ous studies have demonstrated increased levels of inflammatory markers, including IL-6
and TNF-α, in numerous chronic diseases such as cardiovascular diseases, obesity, and de-
pression, contributing to their development and progression [167–169]. Additionally, HPA
axis hyperactivity has been observed in obesity, and increased morning cortisol levels have
been reported in individuals with depression [170,171]. Given their anti-inflammatory and
immunomodulatory effects, n-3 PUFAs may help mitigate these detrimental processes and
thereby potentially alleviate conditions characterized by HPA axis dysregulation [172,173].
n-3 fatty acids can lower HPA axis hyperactivity by decreasing proinflammatory cytokines
levels, such as IL-6 and TNF-α, which influence the stress response. By downregulating the
proinflammatory cytokine pathways and modulating the stress response, n-3 fatty acids
reduce the sensitivity of the HPA axis. This means that the axis is less likely to become
overactive in response to minor stressors, potentially lowering the risk of stress-related
disorders. In a randomized, double blind, placebo-controlled trial conduced on healthy
man, n-3 supplementation in combination with phosphatidylserine significantly improved
the functioning of the HPA axis by lowering chronic and acute stress [174]. The authors
concluded that individuals experiencing high levels of chronic stress and/or having a dys-
functional HPA axis response could benefit from n-3 phosphatidylserine supplementation.
The impact of n-3 fatty acids on regulating the activity of the HPA axis may be related to
their anti-inflammatory properties, coupled with the increase in the HPA axis sensitivity to
negative feedback [175,176].

3.5. Modulation of the Gut Microbiota by Omega-3 Fatty Acids

The beneficial physiological effects of LC-PUFAs encompass their influence on the
composition and function of the gut microbiota, as demonstrated in various studies linking
fatty acid intake to microbial diversity and health outcomes. n-3 fatty acids can influence
the modulation and abundance of gut bacteria types. At the same time, gut microbiota can
affect the absorption and metabolism of these fatty acids. Fish oil, for instance, reduces
the growth of Enterobacteria, while increasing that of Bifidobacteria. EPA and DHA are
partially metabolized by anaerobic bacteria, such as Bifidobacteria and Lactobacilli, in the
distal gut [177]. In a study conducted on gnotobiotic piglets fed with PUFA from seal
oil, a significant increase in the number of Lactobacillus paracasei adhering to the jejunal
mucosa was shown [178]. Similarly, n-3 fatty acids administered to male transgenic fat-1
mice significantly increased the number and percentage of Bifidobacterium, Akkermansia
muciniphila, Lactobacillus, Clostridium clusters IV and XIVa, and Enterococcus faecium in the
intestines [179]. The modulatory functions of n-3 fatty acids are also attributed to increased
levels of SCFAs. It has been shown that dietary supplementation with DHA and EPA in
mice infected with Salmonella increased SCFA fecal content, enhancing resistance against the
pathogen [180]. Consuming 3 g per day of DHA and EPA from sardines significantly altered
the gut microbiota composition in patients with untreated type 2 diabetes. Specifically,
the proportions of Bacteroides/Prevotella increased, while the Firmicutes/Bacteroidetes ratio
decreased [181]. In a study of birds, a diet rich in omega-3 PUFA significantly increased
the presence of Firmicutes (e.g., Faecalibacterium, Clostridium, and Ruminococcus, all of
which are butyrate producers), in the gut microbiota [182]. Additionally, serum levels of
omega-3 fatty acids, particularly DHA, were positively correlated with gut microbiome
diversity and the abundance of specific bacterial taxa, such as Lachnospiraceae, in a cohort
of 876 elderly women, suggesting a potential role for LC-PUFA intake in modulating
microbiome composition [183]. A 6-week intervention study further demonstrated that
omega-3 supplementation alters gut microbiome composition, increasing the abundance of
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butyrate-associated Coprococcus spp. and beneficial fermentation products, suggesting a
potential prebiotic-like role for omega-3 fatty acids [184].

On the other hand, gut microbiota can both indirectly and directly modulate the
absorption, bioavailability, and biotransformation of n-3 fatty acids [185–187]. Certain
bacterial species, such as Bacillus proteus or Lactobacillus plantarum, convert ALA and
linoleic acid (LA) into conjugated linoleic acid (CLA) and conjugated alpha-linolenic
acid (CALA), which are then hydrogenated to stearic acid, changing the PUFA content
in the brain and heart [188]. A study of mice demonstrated that high tissue levels of
n-3 fatty acids were associated with variations in the amounts of Bifidobacterium and
Lactobacillus [189]. Conversely, mice fed a diet low in n-3 fatty acids for two generations
showed a significant decrease in lactic acid bacteria and an increase in Bifidobacteria in
the oral cavity compared to those fed a diet adequate in n-3 fatty acids [190]. While
studies suggest that Bifidobacterium can significantly modulate fatty acid metabolism and its
absorption by the intestinal epithelium, specific mechanisms underlying this relationship
remain unexplained [191–193].

n-3 Fatty acids can modulate gut microbiota by either inhibiting the production of
proinflammatory mediators or promoting the production of anti-inflammatory mediators.
For instance, DHA reduces its activation by lowering IkappaB kinase (IκB) phosphoryla-
tion in response to LPS in cultured macrophages and dendritic cells, thereby decreasing
NFκB activation [194,195]. Similarly, EPA reduced NFκB activation induced by LPS in
human monocytes due to reduced IκB phosphorylation [196]. Furthermore, peroxisome
proliferator-activated receptor gamma (PPAR-γ), which functions by inhibiting NFκB
translocation to the nucleus, is regulated by the binding of EPA and DHA [197]. This
binding interaction significantly influences inflammatory processes [198]. Supplementation
with these acids significantly influences changes in the gut microbiota by altering the
content of immune cell membranes and influencing proinflammatory signaling pathways.
n-3 Fatty acids increase the number of regulatory T lymphocytes (Tregs), thereby reducing
inflammatory reactions [199]. n-3 Fatty acids are mainly absorbed in the intestine, where
their metabolites can be directly utilized by certain microorganisms. Their protective
action on the intestinal mucosa includes increasing its thickness and improving barrier
functions [200]. Summarized data presenting the mechanistic effects of LC-PUFAs on gut
microbiota, immune function, and intestinal barrier integrity are presented in Table 2.
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Table 2. Summarized effects of LC-PUFAs on the gut microbiota, immune function, and intestinal barrier integrity.

Models Type of Study Source and Dose of n-3 PUFA Exposure Effect Reference

In vitro model studies

RAW 264.7 murine
macrophage-like cell line in vitro 100 µM DHA 24 h - DHA reduced NFκB-DNA binding activity

- Reduced inflammation [194]

Murine bone
marrow-derived DC in vitro 100 µM DHA 24 h

- Reduction NFκB translocation mediated by
inhibition of IκB degradation
- Reduced inflammation

[195]

RAW 264.7 murine MØ
cell line in vitro 12 mg%, ω-3 FA emulsion 4 h

- Reduction in endotoxin-induced NFκB
activation through decreased IκB phosphorylation
- Reduced inflammation

[198]

Human Jurkat T cell
lines E6-1 in vitro 50 µm EPA 48 h

- Promotion of regulatory T lymphocyte (Treg)
induction and prevention of excessive
development of T helper 17 (Th17) cells increase
the number of regulatory T lymphocytes (Tregs)
- Reduced inflammation

[199]

In vivo model and human subject studies

Male BALB/c mice with
chronic stress in vivo

Squid egg and sea cucumber
(9% EPA and 38.9% DHA

or 36% EPA and 5% DHA or
79% EPA and 10% DHA)

21 days

- Increase Lactobacillus, Prevotella spp., Bacteroides
fragilis, and Roseburia spp.
- Decrease Enterobacteriaceae and Enterococcus spp.
- Protection against intestinal dysfunction
- Attenuation of proinflammatory processes
- Amelioration of LPS increase

[177]

Poultry in vivo
0.2% and 0.6% of total n-3 PUFA
in the diet (marine algal biomass

or flaxseed oil)
8 weeks - Increased population of Firmicutes (e.g.,

Faecalibacterium, Clostridium and Ruminococcus [182]

C57BL/6J female mice
were and their male

offspring
in vivo ∼1 g EPADHA/100 g of the diet 12 weeks - Increased fecal Bifidobacterium and Lactobacillus

abundance in offspring [189]
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Table 2. Cont.

Models Type of Study Source and Dose of n-3 PUFA Exposure Effect Reference

Male Sprague Dawley rats
with intestinal damage in vivo 300 µg/kg per day

(EPA 180 µg + DHA 120 µg)

Once per day 48 h
before and 72 h

after MTX
injection

- Increased mass of the colon and ileum
- Greater mass of the ileal mucosa—increased villus
height and crypt depth in the ileum

[200]

Drug-naïve patients with
type 2 diabetes human subjects 3.0 ± 0.2 g EPA + DHA/d (sardines) 5 days a week for

6 months
- Increased ratio of Bacteroides/Prevotella
- Decreased ratio of Firmicutes/Bacteroidetes [181]
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4. Conclusions
n-3 Fatty acids, particularly EPA and DHA, play a pivotal role in the intricate commu-

nication network of the GBA. Their incorporation into cell membranes enhances membrane
fluidity, which is essential for optimal neurotransmitter function and efficient signal trans-
duction. By modulating inflammatory responses—reducing proinflammatory cytokines
and promoting anti-inflammatory mediators—n-3 fatty acids help preserve the integrity of
critical barriers, like the intestinal barrier and the BBB. This not only supports gut health
but also protects the CNS from potential neurotoxins and inflammatory agents. In the
CNS, EPA and DHA contribute to neurogenesis and synaptic plasticity, thereby enhancing
cognitive functions such as learning and memory. They also regulate the HPA axis by
mitigating excessive cortisol production, which is often associated with stress responses
and mental health disorders, like depression and anxiety. Furthermore, n-3 fatty acids
positively influence gut microbiota composition, promoting growth of beneficial bacterial
populations that contribute to gut health and systemic immunity. The effects of n-3 fatty
acids on the GBA are summarized in Figure 4.
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Figure 4. Summary of n-3 PUFAs’ mechanisms of action: a schematic representation of the possi-
ble mechanisms through which n-3 PUFAs influence the gut–brain axis. DHA—docosahexaenoic
acid; EPA—eicosapentaenoic acid; DPA—n-3 docosapentaenoic acid; HPA—hypothalamic-pituitary-
adrenal; BBB—blood–brain barrier; SCFAs—short-chain fatty acids. ↑ indicates an increase, ↓ indi-
cates a decrease. Designed using elements by ©Canva, sparklestroke, Pixeden, iconsy, OpenClipart-
Vectors via Canva.com (access date: 18 November 2024).

Given the multifaceted benefits of n-3 fatty acids on the GBA, it is recommended to
incorporate adequate amounts of EPA and DHA into the diet by consuming marine foods,
like fatty fish, or through supplementation. Additionally, based on the significant benefits
of n-3 fatty acids on the GBA and overall health, the following nutritional recommendations
are proposed:
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1. Incorporate fish rich in n-3 fatty acids, such as salmon, mackerel, sardines, trout, and
herring, into the diet at least twice a week to boost EPA and DHA intake according to
recommendation to achieve essentiality and cardiovascular benefits [201].

2. Consider n-3 fatty acid supplements based on fish oil or algae, especially for individu-
als with limited access to n-3-rich foods or with dietary restrictions [202].

3. Consume fiber-rich foods, like whole grains, fruits, and vegetables, along with fer-
mented foods like yogurt, kefir, and sauerkraut, to support beneficial gut microbiota
that synergizes with n-3 fatty acids [203].

4. Use cooking methods that preserve n-3 content, such as baking, steaming, or grilling,
and avoid high-temperature frying, which can oxidize these delicate fats [204].

5. To ensure adequate intake of omega-3 fatty acids, individuals are encouraged to follow
national or international dietary guidelines, such as those provided by the World
Health Organization, the Institute of Medicine, or the European Food Safety Authority,
which offer evidence-based recommendations for maintaining optimal health.

5. Limitations and Current Knowledge Gaps
Despite the existing research on the influence of LC-PUFAs on the GBA, critical gaps

in our understanding of the precise mechanisms underlying this interaction persist. For
instance, the exact processes by which n-3 PUFAs stabilize physiological barriers—such as
the BBB and the intestinal barrier—and how they modulate the activity of both immune and
neuronal cells, remain incompletely elucidated. Furthermore, the complex relationships
between gut microbiota composition, n-3 fatty acid metabolism, and the regulation of
inflammatory states require more investigations to fully clarify their interconnected roles.
Despite substantial evidence demonstrating the beneficial effects of LC-PUFAs on the GBA,
the major limitation is the difficulty of extrapolating doses and outcomes from in vitro
and animal models to human populations. The concentrations of fatty acids used in cell
culture studies and the dietary interventions used in animal experiments often exceed
physiologically achievable levels in human.
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6. Liput, K.P.; Lepczyński, A.; Ogłuszka, M.; Nawrocka, A.; Poławska, E.; Grzesiak, A.; Ślaska, B.; Pareek, C.S.; Czarnik, U.;
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Stress Markers and Antioxidant Enzymes in Children and Adolescents with Depressive Disorder and Impact of Omega-3 Fatty
Acids in Randomised Clinical Trial. Antioxidants 2021, 10, 1256. [CrossRef] [PubMed]

167. Lasselin, J.; Magne, E.; Beau, C.; Ledaguenel, P.; Dexpert, S.; Aubert, A.; Layé, S.; Capuron, L. Adipose Inflammation in Obesity:
Relationship with Circulating Levels of Inflammatory Markers and Association with Surgery-Induced Weight Loss. J. Clin.
Endocrinol. Metab. 2014, 99, E53–E61. [CrossRef] [PubMed]

168. Kiecolt-Glaser, J.K.; Derry, H.M.; Fagundes, C.P. Inflammation: Depression Fans the Flames and Feasts on the Heat. Am. J.
Psychiatry 2015, 172, 1075–1091. [CrossRef]

169. Gupta, S.; Gupta, I.; Gupta, R.; Gupta, P. Role of C-Reactive Protein in Periodontal Disease—A Review. Int. J. Contemp. Med. Res.
2017, 4, 980–985.

170. Incollingo Rodriguez, A.C.; Epel, E.S.; White, M.L.; Standen, E.C.; Seckl, J.R.; Tomiyama, A.J. Hypothalamic-Pituitary-Adrenal
Axis Dysregulation and Cortisol Activity in Obesity: A Systematic Review. Psychoneuroendocrinology 2015, 62, 301–318. [CrossRef]
[PubMed]

171. Vreeburg, S.A.; Hoogendijk, W.J.; van Pelt, J.; DeRijk, R.H.; Verhagen, J.C.; van Dyck, R.; Smit, J.H.; Zitman, F.G.; Penninx, B.W.
Major Depressive Disorder and Hypothalamic-Pituitary-Adrenal Axis Activity Results from a Large Cohort Study. Arch. Gen.
Psychiatry 2009, 66, 617–626. [CrossRef] [PubMed]

172. Bowden, R.G.; Wilson, R.L.; Deike, E.; Gentile, M. Fish Oil Supplementation Lowers C-Reactive Protein Levels Independent of
Triglyceride Reduction in Patients with End-Stage Renal Disease. Nutr. Clin. Pract. 2009, 24, 508–512. [CrossRef] [PubMed]

173. Zhao, Y.T.; Shao, L.; Teng, L.L.; Hu, B.; Luo, Y.; Yu, X.; Zhang, D.F.; Zhang, H. Effects of N-3 Polyunsaturated Fatty Acid Therapy
on Plasma Inflammatory Markers and N-Terminal Pro-Brain Natriuretic Peptide in Elderly Patients with Chronic Heart Failure. J.
Int. Med. Res. 2009, 37, 1831–1841. [CrossRef] [PubMed]

174. Hellhammer, J.; Hero, T.; Franz, N.; Contreras, C.; Schubert, M. Omega-3 Fatty Acids Administered in Phosphatidylserine
Improved Certain Aspects of High Chronic Stress in Men. Nutr. Res. 2012, 32, 241–250. [CrossRef] [PubMed]

175. Pace, T.W.; Hu, F.; Miller, A.H. Cytokine-Effects on Glucocorticoid Receptor Function: Relevance to Glucocorticoid Resistance
and the Pathophysiology and Treatment of Major Depression. Brain Behav. Immun. 2007, 21, 9–19. [CrossRef] [PubMed]

176. Escoll, P.; Ranz, I.; Muñoz-Antón, N.; Van-Den-Rym, A.; Alvarez-Mon, M.; Martínez-Alonso, C.; Sanz, E.; De-La-Hera, A.
Sustained Interleukin-1β Exposure Modulates Multiple Steps in Glucocorticoid Receptor Signaling, Promoting Split-Resistance to
the Transactivation of Prominent Anti-Inflammatory Genes by Glucocorticoids. Mediat. Inflamm. 2015, 2015, 347965. [CrossRef]
[PubMed]

177. Cao, W.; Wang, C.; Chin, Y.; Chen, X.; Gao, Y.; Yuan, S.; Xue, C.; Wang, Y.; Tang, Q. DHA-Phospholipids (DHA-PL) and
EPA-Phospholipids (EPA-PL) Prevent Intestinal Dysfunction Induced by Chronic Stress. Food Funct. 2019, 10, 277–288. [CrossRef]

178. Bomba, A.; Nemcová, R.; Gancarcíková, S.; Herich, R.; Guba, P.; Mudronová, D. Improvement of the Probiotic Effect of Micro-
Organisms by Their Combination with Maltodextrins, Fructo-Oligosaccharides and Polyunsaturated Fatty Acids. Br. J. Nutr.
2002, 88, S95–S99. [CrossRef] [PubMed]

179. Kaliannan, K.; Wang, B.; Li, X.-Y.; Kim, K.-J.; Kang, J.X. A Host-Microbiome Interaction Mediates the Opposing Effects of Omega-6
and Omega-3 Fatty Acids on Metabolic Endotoxemia. Sci. Rep. 2015, 5, 11276. [CrossRef]

180. Liu, J.; Huang, H.; Yang, Q.; Zhao, J.; Zhang, H.; Chen, W.; Peng, X.; Gu, Z. Dietary Supplementation of N-3 LCPUFAs Prevents
Salmonellosis in a Murine Model. J. Agric. Food Chem. 2020, 68, 128–137. [CrossRef] [PubMed]

181. Balfegò, M.; Canivell, S.; Hanzu, F.A.; Sala-Vila, A.; Martínez-Medina, M.; Murillo, S.; Mur, T.; Ruano, E.G.; Linares, F.; Porras, N.;
et al. Effects of Sardine-Enriched Diet on Metabolic Control, Inflammation and Gut Microbiota in Drug-Naïve Patients with Type
2 Diabetes: A Pilot Randomized Trial. Lipids Health Dis. 2016, 15, 78. [CrossRef] [PubMed]

182. Neijat, M.; Habtewold, J.; Li, S.; Jing, M.; House, J.D. Effect of Dietary N-3 Polyunsaturated Fatty Acids on the Composition of
Cecal Microbiome of Lohmann Hens. Prostaglandins Leukot. Essent. Fat. Acids 2020, 162, 102182. [CrossRef]

183. Menni, C.; Zierer, J.; Pallister, T.; Jackson, M.A.; Long, T.; Mohney, R.P.; Steves, C.J.; Spector, T.D.; Valdes, A.M. Omega-3 Fatty
Acids Correlate with Gut Microbiome Diversity and Production of N-Carbamylglutamate in Middle Aged and Elderly Women.
Sci. Rep. 2017, 7, 11079. [CrossRef] [PubMed]

184. Vijay, A.; Astbury, S.; Le Roy, C.; Spector, T.D.; Valdes, A.M. The Prebiotic Effects of Omega-3 Fatty Acid Supplementation: A
Six-Week Randomised Intervention Trial. Gut Microbes 2021, 13, 1863133. [CrossRef]

185. Jayapala, H.P.S.; Lim, S.Y. N-3 Polyunsaturated Fatty Acids and Gut Microbiota. Comb. Chem. High Throughput Screen. 2022, 26,
892–905. [CrossRef]

186. Tao, F.; Xing, X.; Wu, J.; Jiang, R. Enteral Nutrition Modulation with N-3 PUFAs Directs Microbiome and Lipid Metabolism in
Mice. PLoS ONE 2021, 16, e0248482. [CrossRef]

187. Robertson, R.C.; Oriach, C.S.; Murphy, K.; Moloney, G.M.; Cryan, J.F.; Dinan, T.G.; Ross, R.P.; Stanton, C. Deficiency of Essential
Dietary N-3 PUFA Disrupts the Caecal Microbiome and Metabolome in Mice. Br. J. Nutr. 2017, 118, 959–970. [CrossRef]

https://doi.org/10.3390/antiox10081256
https://www.ncbi.nlm.nih.gov/pubmed/34439504
https://doi.org/10.1210/jc.2013-2673
https://www.ncbi.nlm.nih.gov/pubmed/24243638
https://doi.org/10.1176/appi.ajp.2015.15020152
https://doi.org/10.1016/j.psyneuen.2015.08.014
https://www.ncbi.nlm.nih.gov/pubmed/26356039
https://doi.org/10.1001/archgenpsychiatry.2009.50
https://www.ncbi.nlm.nih.gov/pubmed/19487626
https://doi.org/10.1177/0884533609335376
https://www.ncbi.nlm.nih.gov/pubmed/19461006
https://doi.org/10.1177/147323000903700619
https://www.ncbi.nlm.nih.gov/pubmed/20146881
https://doi.org/10.1016/j.nutres.2012.03.003
https://www.ncbi.nlm.nih.gov/pubmed/22575036
https://doi.org/10.1016/j.bbi.2006.08.009
https://www.ncbi.nlm.nih.gov/pubmed/17070667
https://doi.org/10.1155/2015/347965
https://www.ncbi.nlm.nih.gov/pubmed/25977599
https://doi.org/10.1039/C8FO01404C
https://doi.org/10.1079/BJN2002634
https://www.ncbi.nlm.nih.gov/pubmed/12215187
https://doi.org/10.1038/srep11276
https://doi.org/10.1021/acs.jafc.9b05899
https://www.ncbi.nlm.nih.gov/pubmed/31825613
https://doi.org/10.1186/s12944-016-0245-0
https://www.ncbi.nlm.nih.gov/pubmed/27090218
https://doi.org/10.1016/j.plefa.2020.102182
https://doi.org/10.1038/s41598-017-10382-2
https://www.ncbi.nlm.nih.gov/pubmed/28894110
https://doi.org/10.1080/19490976.2020.1863133
https://doi.org/10.2174/1386207325666220701121025
https://doi.org/10.1371/journal.pone.0248482
https://doi.org/10.1017/S0007114517002999


Molecules 2025, 30, 71 28 of 28

188. Blanchard, H.; Pédrono, F.; Boulier-Monthéan, N.; Catheline, D.; Rioux, V.; Legrand, P. Comparative Effects of Well-Balanced
Diets Enriched in α-Linolenic or Linoleic Acids on LC-PUFA Metabolism in Rat Tissues. Prostaglandins Leukot. Essent. Fat. Acids
2013, 88, 383–389. [CrossRef] [PubMed]

189. Robertson, R.C.; Seira Oriach, C.; Murphy, K.; Moloney, G.M.; Cryan, J.F.; Dinan, T.G.; Paul Ross, R.; Stanton, C. Omega-3
Polyunsaturated Fatty Acids Critically Regulate Behaviour and Gut Microbiota Development in Adolescence and Adulthood.
Brain Behav. Immun. 2017, 59, 21–37. [CrossRef]

190. Pachikian, B.D.; Neyrinck, A.M.; Portois, L.; De Backer, F.C.; Sohet, F.M.; Hacquebard, M.; Carpentier, Y.A.; Cani, P.D.; Delzenne,
N.M. Involvement of Gut Microbial Fermentation in the Metabolic Alterations Occurring in N-3 Polyunsaturated Fatty Acids-
Depleted Mice. Nutr. Metab. 2011, 8, 44. [CrossRef]

191. Horiuchi, H.; Kamikado, K.; Aoki, R.; Suganuma, N.; Nishijima, T.; Nakatani, A.; Kimura, I. Bifidobacterium Animalis Subsp.
Lactis GCL2505 Modulates Host Energy Metabolism via the Short-Chain Fatty Acid Receptor GPR43. Sci. Rep. 2020, 10, 4158.
[CrossRef]

192. Patterson, E.; Wall, R.; Lisai, S.; Ross, R.P.; Dinan, T.G.; Cryan, J.F.; Fitzgerald, G.F.; Banni, S.; Quigley, E.M.; Shanahan, F.; et al.
Bifidobacterium Breve with α-Linolenic Acid Alters the Composition, Distribution and Transcription Factor Activity Associated
with Metabolism and Absorption of Fat. Sci. Rep. 2017, 7, 43300. [CrossRef]

193. Lu, J.; Shataer, D.; Yan, H.; Dong, X.; Zhang, M.; Qin, Y.; Cui, J.; Wang, L. Probiotics and Non-Alcoholic Fatty Liver Disease: Un-
veiling the Mechanisms of Lactobacillus Plantarum and Bifidobacterium Bifidum in Modulating Lipid Metabolism, Inflammation,
and Intestinal Barrier Integrity. Foods 2024, 13, 2992. [CrossRef] [PubMed]

194. Honda, K.L.; Lamon-Fava, S.; Matthan, N.R.; Wu, D.; Lichtenstein, A.H. Docosahexaenoic Acid Differentially Affects TNFα and
IL-6 Expression in LPS-Stimulated RAW 264.7 Murine Macrophages. Prostaglandins Leukot. Essent. Fat. Acids 2015, 97, 27–34.
[CrossRef] [PubMed]

195. Kong, W.; Yen, J.-H.; Vassiliou, E.; Adhikary, S.; Toscano, M.G.; Ganea, D. Docosahexaenoic Acid Prevents Dendritic Cell
Maturation and In Vitro and In Vivo Expression of the IL-12 Cytokine Family. Lipids Health Dis. 2010, 9, 12. [CrossRef] [PubMed]

196. Zhao, Y.; Joshi-Barve, S.; Barve, S.; Chen, L.H. Eicosapentaenoic Acid Prevents LPS-Induced TNF-α Expression by Preventing
NF-KB Activation. J. Am. Coll. Nutr. 2004, 23, 71–78. [CrossRef] [PubMed]

197. Vanden Berghe, W.; Vermeulen, L.; Delerive, P.; De Bosscher, K.; Staels, B.; Haegeman, G. A Paradigm for Gene Regulation:
Inflammation, NF-KB and PPAR. In Peroxisomal Disorders and Regulation of Genes; Springer: Boston, MA, USA, 2003.

198. Novak, T.E.; Babcock, T.A.; Jho, D.H.; Helton, W.S.; Espat, N.J.; Joseph, N. NF-B Inhibition by-3 Fatty Acids Modulates LPS-
Stimulated Macrophage TNF-Transcription. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003, 284, 84–89. [CrossRef] [PubMed]
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