Tailoring Red-to-Blue Emission in In1−xGaxP/ZnSe/ZnS Quantum Dots Using a Novel [In(btsa)2Cl]2 Precursor and GaI3
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Indium Bis(bis(trimethylsilyl)amino)chloride ([In(btsa)2Cl]2)
3.3. Synthesis of InP and In1−xGaxP (x > 0) Core–Shell QDs
3.3.1. Synthesis of InP and In1−xGaxP (x > 0) Core
3.3.2. Growth of ZnSe Inner Shell
3.3.3. Growth of ZnS Outer Shell
3.3.4. Ligand Treatment
3.4. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramasamy, P.; Kim, B.; Lee, M.-S.; Lee, J.-S. Beneficial effects of water in the colloidal synthesis of InP/ZnS core-shell quantum dots for optoelectronic applications. Nanoscale 2016, 8, 17159–17168. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Mohs, A.M.; Nie, S. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 2009, 4, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Almeida, G.; Ubbink, R.F.; Stam, M.; Fossé, I.D.; Houtepen, A.J. InP colloidal quantum dots for visible and near-infrared photonics. Nat. Rev. Mater. 2023, 8, 742–758. [Google Scholar] [CrossRef]
- Shen, H.; Gao, Q.; Zhang, Y.; Lin, Y.; Lin, Q.; Li, Z.; Chen, L.; Zeng, Z.; Li, X.; Jia, Y.; et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197. [Google Scholar] [CrossRef]
- Shirasaki, Y.; Supran, G.J.; Bawendi, M.G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23. [Google Scholar] [CrossRef]
- Vikram, A.; Zahid, A.; Bhargava, S.S.; Jang, H.; Sutrisno, A.; Khare, A.; Trefonas, P.; Shim, M.; Kenis, P.J.A. Unraveling the origin of interfacial oxidation of InP-based quantum dots: Implications for bioimaging and optoelectronics. ACS Appl. Nano Mater. 2020, 3, 12325–12333. [Google Scholar] [CrossRef]
- Martynenko, I.V.; Litvin, A.P.; Purcell-Milton, F.; Baranov, A.V.; Fedorov, A.V.; Gun’ko, Y.K. Application of semiconductor quantum dots in bioimaging and biosensing. J. Mater. Chem. B 2017, 5, 6701–6727. [Google Scholar] [CrossRef]
- Laufersky, G.; Bradley, S.; Frécaut, E.; Lein, M.; Nann, T. Unraveling aminophosphine redox mechanisms for glovebox-free InP quantum dot syntheses. Nanoscale 2018, 10, 8752–8762. [Google Scholar] [CrossRef]
- Järup, L.; Åkesson, A. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 2009, 238, 201–208. [Google Scholar] [CrossRef]
- Hardman, R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 2006, 114, 165–172. [Google Scholar] [CrossRef]
- Yang, J.; Choi, M.K.; Yang, U.J.; Kim, S.Y.; Kim, Y.S.; Kim, J.H.; Kim, D.-H.; Hyeon, T. Toward full-color electroluminescent quantum dot displays. Nano Lett. 2021, 21, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Lou, Y.; Ding, S.; Zhang, W.; Wu, Z.; Yang, H.; Xu, B.; Wang, K.; Sun, X.W. Green InP/ZnSeS/ZnS core multi-shelled quantum dots synthesized with aminophosphine for effective display applications. Adv. Funct. Mater. 2021, 31, 2008453. [Google Scholar] [CrossRef]
- Prodanov, M.F.; Vashchenko, V.V.; Srivastava, A.K. Progress toward blue-emitting (460–475 nm) nanomaterials in display applications. Nanophotonics 2021, 10, 1801–1836. [Google Scholar] [CrossRef]
- Chen, B.; Li, D.; Wang, F. InP quantum dots: Synthesis and lighting applications. Small 2020, 16, 2002454. [Google Scholar] [CrossRef]
- Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv. Mater. 2019, 31, 1804294. [Google Scholar] [CrossRef]
- Anc, M.J.; Pickett, N.L.; Gresty, N.C.; Harris, J.A.; Mishra, K.C. Progress in non-Cd quantum dot development for lighting applications. ECS J. Solid State Sci. Technol. 2013, 2, R3071. [Google Scholar] [CrossRef]
- Kim, Y.; Ham, S.; Jang, H.; Min, J.H.; Chung, H.; Lee, J.; Kim, D.; Jang, E. Bright and uniform green light emitting InP/ZnSe/ZnS quantum dots for wide color gamut displays. ACS Appl. Nano Mater. 2019, 2, 1496–1504. [Google Scholar] [CrossRef]
- Kim, K.-H.; Jo, J.-H.; Jo, D.-Y.; Han, C.-Y.; Yoon, S.-Y.; Kim, Y.; Kim, Y.-H.; Ko, Y.H.; Kim, S.W.; Lee, C.; et al. Cation-exchange-derived InGaP alloy quantum dots toward blue emissivity. Chem. Mater. 2020, 32, 3537–3544. [Google Scholar] [CrossRef]
- Jo, J.-H.; Jo, D.-Y.; Choi, S.-W.; Lee, S.-H.; Kim, H.-M.; Yoon, S.-Y.; Kim, Y.; Han, J.-N.; Yang, H. Highly bright, narrow emissivity of InP quantum dots synthesized by aminophosphine: Effects of double shelling scheme and Ga treatment. Adv. Opt. Mater. 2021, 9, 2100427. [Google Scholar] [CrossRef]
- Lee, W.; Lee, C.; Kim, B.; Choi, Y.; Chae, H. Synthesis of blue-emissive InP/GaP/ZnS quantum dots via controlling the reaction kinetics of shell growth and length of capping ligands. Nanomaterials 2020, 10, 2171. [Google Scholar] [CrossRef]
- Park, J.P.; Lee, J.-J.; Kim, S.-W. Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process. Sci. Rep. 2016, 6, 30094. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Ondry, J.C.; Lin, K.; Chen, Y.; Hudson, M.H.; Chen, M.; Schaller, R.D.; Rossini, A.J.; Rabani, E.; Talapin, D.V. Composition-defined optical properties and the direct-to-indirect transition in core–shell In1–xGaxP/ZnS colloidal quantum dots. J. Am. Chem. Soc. 2023, 145, 16429–16448. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Shin, W.H.; Bang, J. Highly luminescent and stable green-emitting In(Zn,Ga)P/ZnSeS/ZnS small-core/thick-multishell quantum dots. J. Lumin. 2019, 205, 555–559. [Google Scholar] [CrossRef]
- Pietra, F.; Kirkwood, N.; Trizio, L.D.; Hoekstra, A.W.; Kleibergen, L.; Renaud, N.; Koole, R.; Baesjou, P.; Manna, L.; Houtepen, A.J. Ga for Zn cation exchange allows for highly luminescent and photostable InZnP-based quantum dots. Chem. Mater. 2017, 29, 5192–5199. [Google Scholar] [CrossRef]
- Friedfeld, M.R.; Stein, J.L.; Johnson, D.A.; Park, N.; Henry, N.A.; Enright, M.J.; Mocatta, D.; Cossairt, B.M. Effects of Zn2+ and Ga3+ doping on the quantum yield of cluster-derived InP quantum dots. J. Chem. Phys. 2019, 151, 194702. [Google Scholar] [CrossRef]
- Wegner, K.D.; Pouget, S.; Ling, W.L.; Carrière, M.; Reiss, P. Gallium—A versatile element for tuning the photoluminescence properties of InP quantum dots. Chem. Commun. 2019, 55, 1663–1666. [Google Scholar] [CrossRef]
- Yoo, D.; Choi, M.-J. Asymmetric metal–carboxylate complexes for synthesis of InGaP alloyed quantum dots with blue emission. ACS Nano 2024, 18, 16051–16058. [Google Scholar] [CrossRef]
- Yamashita, Y.; Saito, Y.; Imaizumi, T.; Kobayashi, S. A Lewis acid/metal amide hybrid as an efficient catalyst for carbon–carbon bond formation. Chem. Sci. 2014, 5, 3958–3962. [Google Scholar] [CrossRef]
- Raji, F.; Pakizeh, M. Study of Hg(II) species removal from aqueous solution using hybrid ZnCl2-MCM-41 adsorbent. Appl. Surf. Sci. 2013, 282, 415–424. [Google Scholar] [CrossRef]
- Jo, J.-H.; Jo, D.-Y.; Lee, S.-H.; Yoon, S.-Y.; Lim, H.-B.; Lee, B.-J.; Do, Y.R.; Yang, H. InP-based quantum dots having an InP core, composition-gradient ZnSeS inner shell, and ZnS outer shell with sharp, bright emissivity, and blue absorptivity for display devices. ACS Appl. Nano Mater. 2020, 3, 1972–1980. [Google Scholar] [CrossRef]
- Tessier, M.D.; Nolf, K.D.; Dupont, D.; Sinnaeve, D.; Roo, J.D.; Hens, Z. Aminophosphines: A double role in the synthesis of colloidal indium phosphide quantum dots. J. Am. Chem. Soc. 2016, 138, 5923–5929. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Choi, Y.; Chae, H. Efficient green indium phosphide quantum dots with tris(dimethylamino)-phosphine phosphorus precursor for electroluminescent devices. J. Mater. Sci. Mater. Electron. 2021, 32, 4686–4694. [Google Scholar] [CrossRef]
GaI3 Amount (mmol) | A1 | τ1 (ns) | A2 | τ2 (ns) | τavg (ns) | PLQY | ktot (µs−1) | kr (µs−1) | knr (µs−1) |
---|---|---|---|---|---|---|---|---|---|
0.00 | 0.57 | 18.58 | 0.43 | 77.99 | 63.65 | 32% | 15.7 | 4.71 | 10.99 |
0.25 | 0.65 | 35.67 | 0.35 | 95.20 | 70.96 | 50% | 14.1 | 7.05 | 7.05 |
0.50 | 0.58 | 24.25 | 0.42 | 88.62 | 70.87 | 31% | 14.1 | 4.23 | 9.87 |
0.75 | 0.71 | 1.85 | 0.32 | 8.24 | 6.12 | 6% | 163.4 | 10 | 153.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duah, C.; Jeong, J.-S.; Ryu, J.Y.; Park, B.K.; Lee, Y.K.; Lee, S.J. Tailoring Red-to-Blue Emission in In1−xGaxP/ZnSe/ZnS Quantum Dots Using a Novel [In(btsa)2Cl]2 Precursor and GaI3. Molecules 2025, 30, 35. https://doi.org/10.3390/molecules30010035
Duah C, Jeong J-S, Ryu JY, Park BK, Lee YK, Lee SJ. Tailoring Red-to-Blue Emission in In1−xGaxP/ZnSe/ZnS Quantum Dots Using a Novel [In(btsa)2Cl]2 Precursor and GaI3. Molecules. 2025; 30(1):35. https://doi.org/10.3390/molecules30010035
Chicago/Turabian StyleDuah, Calem, Ji-Seoung Jeong, Ji Yeon Ryu, Bo Keun Park, Young Kuk Lee, and Seon Joo Lee. 2025. "Tailoring Red-to-Blue Emission in In1−xGaxP/ZnSe/ZnS Quantum Dots Using a Novel [In(btsa)2Cl]2 Precursor and GaI3" Molecules 30, no. 1: 35. https://doi.org/10.3390/molecules30010035
APA StyleDuah, C., Jeong, J.-S., Ryu, J. Y., Park, B. K., Lee, Y. K., & Lee, S. J. (2025). Tailoring Red-to-Blue Emission in In1−xGaxP/ZnSe/ZnS Quantum Dots Using a Novel [In(btsa)2Cl]2 Precursor and GaI3. Molecules, 30(1), 35. https://doi.org/10.3390/molecules30010035