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Abstract: Dihydromyricetin (DMY), as the main active ingredient in Ampelopsis grosseden-
tata, is a naturally occurring flavonoid that has attracted extensive attention for its mul-
tiple biological activities. For the quick and accurate measurement of DMY, a novel elec-
trochemical sensor based on a glassy carbon electrode (GCE) modified with a cobalt
metal-organic framework (Co-MOF) was proposed in this work. The Co-MOF was
synthesized via a single-step hydrothermal process using Co(NO3)2·6H2O. Fourier in-
frared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy
were used to study the morphology and structure of the synthesized Co-MOF. Utiliz-
ing differential pulse voltammetry and cyclic voltammetry methods, the effectiveness
of DMY electro-oxidation on the Co-MOF/GCE was examined. The results showed
that, in comparison to the bare GCE, the electro-oxidation peak current of DMY was
considerably increased by the Co-MOF/GCE. The detection limit was 0.07 µM, and
the peak current demonstrated two linear relationships in the ranges of 0.2−20 µM
and 20−100 µM, with the linear equations of Ip (µA) = 0.4729c (µM) + 1.0822 (R2 = 0.9913)
and Ip (µA) = 0.0939c (µM) + 8.4178 (R2 = 0.9971), respectively. The average DMY con-
tent in Ampelopsis grossedentata samples was measured to be 3.275 µM, with a good
recovery of 108.27% and a relative standard deviation value of 3.46%. The proposed
method is simple, rapid and sensitive and can be used for the determination of DMY in
Ampelopsis grossedentata.

Keywords: dihydromyricetin; determination; electrochemical sensor; metal-organic
framework; Ampelopsis grossedentata

1. Introduction
Ampelopsis grossedentata, the botanical name of the serpentine grape in the genus

Serpentine, family Vitis vinifera, also known as berry tea or vine tea, is mainly distributed
in the southern provinces of China and mostly concentrated or scattered in mountainous
bushes or woods with high humidity [1]. The leaves of Ampelopsis grossedentata have been
widely used in China as a health tea and herbal medicine for more than 1200 years [2,3].

Dihydromyricetin (DMY), the main active ingredient in Ampelopsis grossedentata, is
a naturally occurring flavonoid that has attracted extensive attention for its multiple bio-
logical activities [4], such as its antineoplastic [5], antidiabetic [6], anti-inflammatory [7],
antioxidant [8], antibacterial [9], antineoplastic [10], neuroprotective [11] and enteroprotec-
tive [12] properties. The content of DMY is used as a standard substance for evaluating the
total flavonoid content in Ampelopsis grossedentata, which has become one of the indicators

Molecules 2025, 30, 180 https://doi.org/10.3390/molecules30010180

https://doi.org/10.3390/molecules30010180
https://doi.org/10.3390/molecules30010180
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-9137-4304
https://orcid.org/0000-0002-5551-3861
https://doi.org/10.3390/molecules30010180
https://www.mdpi.com/article/10.3390/molecules30010180?type=check_update&version=1


Molecules 2025, 30, 180 2 of 13

for evaluating the quality of Ampelopsis grossedentata, and the content is also often shown
in the labeling information of commercial Ampelopsis grossedentata products. DMY has a
wide range of application prospects in food development and processing. For example,
DMY has strong antioxidant activity, and can be added in the process of cookie making.
The color and aroma of the product have a special beneficial effect, and the texture does
not change significantly, but it may weaken the role of lipid and protein oxidation [13,14].
Therefore, it is an urgent problem to quickly and conveniently detect the content of DMY
for determining the quality of Ampelopsis grossedentata.

In recent years, chromatography and capillary electrophoresis have been developed for
the determination of DMY in plants, foods and biological samples [15,16]. However, these
methods require expensive instrumentation, complicated sample pretreatment processes
and time-consuming detection procedures, which are not suitable for routine large-batch de-
termination of the DMY content in Ampelopsis grossedentata for product screening and grad-
ing. In this regard, the identified and quantified methods based on electrochemical sensors
have progressed rapidly due to the advantages of the fast analytical response, low dose re-
quirement, simple sample pretreatment process, high precision and sensitivity, which have
been applied in the food, environment, biomedicine and biopharmaceutical areas [17–19].
As known, the chemical structure of DMY (as shown in Figure 1) contains several hydroxyl
groups, which can generate electrochemical signals. Hence, electrochemical sensors maybe
a better choice for the rapid determination of DMY in Ampelopsis grossedentata.

Molecules 2025, 30, x FOR PEER REVIEW 2 of 13 
 

 

evaluating the total flavonoid content in Ampelopsis grossedentata, which has become one 
of the indicators for evaluating the quality of Ampelopsis grossedentata, and the content is 
also often shown in the labeling information of commercial Ampelopsis grossedentata 
products. DMY has a wide range of application prospects in food development and 
processing. For example, DMY has strong antioxidant activity, and can be added in the 
process of cookie making. The color and aroma of the product have a special beneficial 
effect, and the texture does not change significantly, but it may weaken the role of lipid 
and protein oxidation [13,14]. Therefore, it is an urgent problem to quickly and conven-
iently detect the content of DMY for determining the quality of Ampelopsis grossedentata. 

In recent years, chromatography and capillary electrophoresis have been developed 
for the determination of DMY in plants, foods and biological samples [15,16]. However, 
these methods require expensive instrumentation, complicated sample pretreatment 
processes and time-consuming detection procedures, which are not suitable for routine 
large-batch determination of the DMY content in Ampelopsis grossedentata for product 
screening and grading. In this regard, the identified and quantified methods based on 
electrochemical sensors have progressed rapidly due to the advantages of the fast ana-
lytical response, low dose requirement, simple sample pretreatment process, high preci-
sion and sensitivity, which have been applied in the food, environment, biomedicine 
and biopharmaceutical areas [17–19]. As known, the chemical structure of DMY (as 
shown in Figure 1) contains several hydroxyl groups, which can generate electrochemi-
cal signals. Hence, electrochemical sensors maybe a better choice for the rapid determi-
nation of DMY in Ampelopsis grossedentata. 

 

Figure 1. Structural formula of DMY. 

It is essential to build sensitive and effective electrochemical sensors for quick de-
termination. A wide range of micro- and nanomaterials with various properties have 
been used to build electrochemical sensors. These materials include polymers, carbon 
nanomaterials (carbon nanotube, graphene, g-C3N4, etc.), quantum dots, metal and metal 
derivatives and metal-organic frameworks (MOFs) [20,21]. The DMY content in Ampe-
lopsis grossedentata can be successfully determined using the previously reported DNA 
immobilized ethylenediamine/polyglutamic modified electrode [22], nafi-
on/single-walled carbon nanotube modified glassy carbon electrode (GCE) [23] and 
graphene–nafion composite film modified electrode [24]. However, there have not yet 
been any reports on the determination of DMY using electrochemical sensors based on 
MOFs. 

MOFs with redox-active metal ions and a variety of organic linkers have been 
widely investigated as potential prospective electrode materials in chemical sensors be-
cause of their large specific surface area, adjustable aperture size, different topological 
structures, strong catalytic efficiency and good stability [25,26]. Generally, MOFs are 
composed of a variety of metals, including Zr, Cu, Ni, Fe and Co [27–29]. Compared to 
other metal-based MOF materials, Co in various oxidation states can result in surface 
Faradaic reactions, good electrochemical activity and exceptional thermal stability. Usu-
ally, cobalt salt and organic ligand are the main materials for the preparation of Co-MOF. 
Cobalt nitrate is one of the commonly used cobalt salts, and organic ligand is an im-

Figure 1. Structural formula of DMY.

It is essential to build sensitive and effective electrochemical sensors for quick determi-
nation. A wide range of micro- and nanomaterials with various properties have been used
to build electrochemical sensors. These materials include polymers, carbon nanomaterials
(carbon nanotube, graphene, g-C3N4, etc.), quantum dots, metal and metal derivatives and
metal-organic frameworks (MOFs) [20,21]. The DMY content in Ampelopsis grossedentata
can be successfully determined using the previously reported DNA immobilized ethylene-
diamine/polyglutamic modified electrode [22], nafion/single-walled carbon nanotube
modified glassy carbon electrode (GCE) [23] and graphene–nafion composite film modified
electrode [24]. However, there have not yet been any reports on the determination of DMY
using electrochemical sensors based on MOFs.

MOFs with redox-active metal ions and a variety of organic linkers have been widely
investigated as potential prospective electrode materials in chemical sensors because of
their large specific surface area, adjustable aperture size, different topological structures,
strong catalytic efficiency and good stability [25,26]. Generally, MOFs are composed of a
variety of metals, including Zr, Cu, Ni, Fe and Co [27–29]. Compared to other metal-based
MOF materials, Co in various oxidation states can result in surface Faradaic reactions,
good electrochemical activity and exceptional thermal stability. Usually, cobalt salt and
organic ligand are the main materials for the preparation of Co-MOF. Cobalt nitrate is
one of the commonly used cobalt salts, and organic ligand is an important component of
the coordination reaction with cobalt ion. The choice of organic ligand directly affects the
structure and properties of Co-MOF, in which 1,4-benzenedi-carboxylic acid has a stable
benzene ring structure and a variety of coordination modes of carboxylic acid groups. Thus,
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Co-MOF has wide application potential in the fields of gas storage and separation, catalysis,
drug delivery and sensors [30].

In this work, Co-MOF was synthesized through the single-step hydrothermal method.
The composition, structure and morphology of the synthesized Co-MOF were characterized
by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier infrared spec-
troscopy (FTIR) and scanning electron microscopy (SEM). For application, the synthesized
Co-MOF was modified on GCE to increase the selectivity and sensitivity for the detection
of DMY content in Ampelopsis grossedentata. This work widens the application of Co-MOF
in the electrochemical analysis of DMY in Ampelopsis grossedentata.

2. Results and Discussion
2.1. SEM, XPS, FTIR and XRD Characterization of Co-MOF

The composition and morphology of the synthesized Co-MOF were analyzed by
SEM. The SEM and energy dispersive spectroscopy (EDS) image of Co-MOF at different
resolutions are shown in Figure 2. As indicated from Figure 2a, the acquired Co-MOF is
porous and forms regular spherical crystals with an average size of 300–400 nm in diameter,
illustrating the nanostructure of the material.
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Figure 2. SEM image (a) and EDS image of Co-MOF (b–e).

A part of the Co-MOF material was selected for the EDS spectroscopy test to further
verify the elemental composition of the material. The distribution of C, O and Co elements
can be observed from Figure 2b–e. The nanomaterial consists of three elements, C, O and
Co, with the contents of 6.8%, 13.3% and 80.0%, respectively, indicating that Co metal has
been doped into the organic framework material, and the Co-MOF nanocomposite material
with an ordered arrangement has been successfully synthesized. This result is consistent
with that of previous reports [31].

XPS was used to analyze the chemical bond states of Co-MOF. Based on the Co-MOF
thin film’s XPS survey spectrum (Figure 3a), we can see that there were Co 2p, O 1s and
C 1s peaks with binding energies of 782, 532 and 286 eV, respectively; and almost no
impurity peaks were observed, confirming that the Co-MOF contains Co, O and C elements.
Furthermore, as displayed in the high-resolution XPS spectrum (Figure 3b), the spectrum
of C 1s can be indexed into three peaks at 295.9, 286.9 and 284.6 eV, which correspond to
the bonds of C=C, C–O and C=O, respectively [32]. In Figure 3c, the spectrum of O 1s is
asymmetric, and two symmetric peaks (532.9 and 530.2 eV) can be fitted. This indicates the
presence of adsorbed oxygen of the surface hydroxyl group and lattice oxygen of Co-MOF,
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respectively. The spectrum of Co 2p (Figure 3d) consists of two separate symmetric peaks.
At binding energies of 781.8 eV (Co 2p1/2) and 798.0 eV (Co 2p3/2), a two-state spectrum
of Co 2p can be observed, which is close to the binding energy of standard Co-MOF [33].
According to the previous report, the binding energy width equal to 16.2 eV between
the main signals of the Co 2p1/2 and Co 2p3/2 doublet correspond to the Co2+ oxidation
state [34].
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FTIR was used to further investigate the material’s functional group information.
The aromatic ring structure and characteristic groups of Co-MOF, as demonstrated in
Figure 4a, were well retained in the wavelength range from 400 cm−1 to 4000 cm−1. It is
speculated that hydrogen bonds are formed between C=O and –OH and equalized the
electron cloud density, thus causing the movement of the position of the C=O peak to
lower wavelengths. Therefore, the significant stretching vibration peak of the C=O peak at
1443 cm−1 can be seen, as can the stretching vibration peak of the O-H functional group
at 3462 cm−1 [35,36]. The crystal structures and phase identification of the materials were
investigated by XRD analysis. Figure 4b presents the experimental XRD pattern for Co-
MOF. As demonstrated, the diffraction peaks of Co-MOFs are consistent with the simulated
Co-MOF (Cambridge Crystallographic Data Center, No. 153067) [37,38]. The diffraction
peaks at 8.86◦, 14.14◦, 15.84◦ and 17.82◦ corresponded to Co-MOF [39], certifying that
Co-MOF with well crystallization have been successfully synthesized.
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2.2. Electrochemical Characterization of Co-MOF

The electrochemical behaviors of the bare GCE and Co-MOF/GCE were measured
by electrochemical impedance spectroscopy (EIS) in 0.1 M KCl containing 5 mM (Fe(CN)6)
3−/4− solutions. As shown in Figure 5a, the resistance value of bare GCE is 520 Ω, while
the resistance value of Co-MOF/GCE is 160 Ω. Due to the excellent conductivity of the
Co metal, the organic skeleton material centered on metal Co significantly reduces the
resistance value. Impedance difference between the bare GCE and the Co-MOF/GCE
confirmed that Co-MOF material has been successfully modified on the surface of the GCE.
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0.1 M PBS solution (pH 6.5) containing 10 µM DMY.

2.3. Electro-Oxidation Mechanism of DMY on Co-MOF/GCE

Differential pulse voltammetry (DPV) was used to analyze the property change of
the electrode surface. In Figure 5b, the bare GCE showed an oxidation peak situated at a
potential of 0.088 V with the current intensity of 0.510 µA in a 0.1 M PBS (pH 6.5) solution
containing 10 µM DMY. However, when the bare GCE was modified with Co-MOF, the
peak current significantly increased (7.185 µA), indicating that the synthesized Co-MOF
can greatly amplify the electro-oxidation signal. This phenomenon is attributed to the
fact that Co-MOF has multiple metal catalytic sites, which can interact with each other to
produce a synergistic catalytic effect, and the metal element Co itself has a good electrical
conductivity. Therefore, the Co-MOF/GCE is an ideal choice for the detection of DMY.

The cyclic voltammetry (CV) technique was used to examine the impact of the scan
rates on the oxidation currents of DMY. Figure 6a shows the CVs of 10 µM DMY on
the Co-MOF/GCE at different scan rates. The redox peak currents of DMY increased
with the increase in scan rate in the range of 0.02−0.26 V·s−1. In addition, the reduc-
tion peak currents were linearly proportional to the scan rates, as seen in Figure 6b,
where Ip = 1.8119υ + 19.053 (R2 = 0.9989), suggesting that the kinetics of the electrochem-
ical oxidation–reduction reactions of DMY on the Co-MOF/GCE were an adsorption-
controlled process [40]. Additionally, in Figure 6c, it can be seen that the relationship
between the potentials and logs of the scan rates (υ) can be expressed by the equation:
Ep = 0.2426 logυ + 0.419 (R2 = 0.9906), according to Laviron’s equation [41].

Epa = E0′ +
2.303RT
(1 − α)nF

logυ (1)

where the slope is equal to 2.303RT/(1−α)nF. As for a totally irreversible electrode process,
the electron transfer coefficient (α) can be assumed as 0.5, and thus the electron transfer
number (n) was calculated to be 1.15.
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It is commonly recognized that different parameters have a distinct influence on the
outcomes of experiments. The modification amount of Co-MOF material has an important
influence on the electrochemical response of DMY. By precisely controlling the drop coating
amount, the electrochemical activity and electron transfer efficiency of the electrode can be
significantly enhanced to ensure that the subsequent experiments can be carried out at a
higher current level, which helps to enhance the sensitivity of the detection. In this work,
2, 4, 6, 8 and 10 µL of Co-MOF dispersion were drop-coated on the pretreated GCE, and
the electrochemical signals of the Co-MOF/GCE were detected by using DPV for 10 µM
DMY, and the optimal drop-coating amount of the material was obtained by comparison.
As indicated in Figure 7a, the best Co-MOF drop-coating amount was 6 µL.
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The effect of pH value on the performance of the sensor is very important. The
oxidation current values of 10 µM DMY on Co-MOF/GCE changed in 0.1 M PBS at different
pH levels, as demonstrated in Figure 7b. From Figure 7b, we can see that the response
current value increased for pH 4.0−6.5 and then decreased for pH 6.5−8. When the pH
value was 6.5, the DMY oxidation peak current reached the maximum. Thus, pH 6.5 was
chosen as the best pH condition. Furthermore, the oxidation peaks shift positively with
the increase of the pH value at the range from pH 4.0 to 8.0. It can be seen from Figure 7c
that the linear equation can be expressed as Ep = –0.0701pH + 0.5448 (R2 = 0.9951), which
indicates that the oxidation reaction of DMY involves protons. The slope of the equation
∆Ep/∆pH is –0.0701. According to equation [42], Epa = E0′ − 2.303RT

nF m·pH, m is the number
of H+, and m/n is calculated as 1.20. The results show that the number of protons involved
in the electrode reaction is the same as the number of electrons. Therefore, the number
of electrons involved in the reduction reaction is 1.20. So, the proposed electro-oxidation
mechanism of DMY on the Co-MOF/GCE surface may be expressed with the following
(Figure 8).
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2.4. Calibration Curve

Under the optimal detection conditions, the quantitative determination of DMY was
performed in a 0.1 M PBS (pH 6.5) solution using DPV on Co-MOF/GCE. DMY solu-
tions with concentrations ranging from 0.2 to 100 µM were prepared, and the relation-
ship between the peak currents and the concentrations was analyzed. The results are
shown in Figure 9. In the DPV response curves obtained after adding different concen-
trations of DMY to 0.1 M PBS, the peak current of the DPV response increased with the
increase of DMY concentration. Two linear relationships were established in the range
of 0.2−20 µM and 20−100 µM, as Ip (µA) = 0.4729c (µM) + 1.0822 (R2 = 0.9913) and
Ip (µA) = 0.0939c (µM) + 8.4178 (R2 = 0.9971), respectively. The detection limit of DMY
was 0.07 µM (signal-to-noise ratio = 3).
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Table 1 summarizes the performance comparison of different electrochemical sensors
for DMY determination in electrode-modified materials, linear ranges and detection limits.
As listed in Table 1, the proposed sensor has a wide linear range in this work, implying that
there is a wider application prospect. So, it is comparable to other methods documented
in literature.

Table 1. Comparison between major characteristics of different sensors for DMY determination.

Modified Electrode Linear Range
(µM)

Detection Limit
(µM) Ref.

DNA/En/PGA 1/GCE 0.04–2 0.02 [22]
Nafion/SWNT 2/GCE 0.1–10 0.09 [23]

Nafion/graphene/GCE 0.08–20 0.02 [24]
Co-MOF/GCE 0.2–20, 20–100 0.07 This work

1 En/PGA: ethylenediamine/polyglutamic; 2 SWNT: single-walled carbon nanotube.

2.5. Selectivity, Repeatability and Stability of Co-MOF/GCE

To understand the repeatability of Co-MOF/GCE, it was placed in 0.1 M PBS con-
taining 10 µM DMY and scanned by the DPV method. The response of the electrode to
DMY was recorded, followed by removing the electrode and drying it naturally. The above
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steps were repeated and measured 5 times, and the relative standard deviation (RSD) of
the response values was calculated. The results showed that the RSD of 5 measurements
was 6.74% (Table 2)

Table 2. Repeatability and stability of Co-MOF/GCE.

No. Measured Initially
(µA)

Average
(µA)

RSD
(%)

Measured after 7 days
(µA)

Average
(µA)

RSD
(%)

1 6.083

6.606 7.18

5.732

6.286 5.34
2 7.005 6.325
3 6.303 6.437
4 7.196 6.307
5 6.444 6.631

The stability of Co-MOF/GCE was studied by comparing the performance changes of
the same prepared modified electrode before and after 7 days. The Co-MOF was stored in
a refrigerator at 4 ◦C for one week, and it was taken out and placed in 0.1 M PBS solution
containing 10 µM DMY on the 7th day. The electrode response to DMY was recorded
by scanning using DPV for 5 consecutive measurements, and the RSD of the measured
values was calculated. The results are listed in Table 2. The initial response value of Co-
MOF/GCE was 6.606 µA, and the response value was 6.286 µA after 7 days, which was
95.2% of the initial value with an RSD of 5.34%. These results indicated that the stability
and repeatability of Co-MOF/GCE were good.

To evaluate the selectivity of Co-MOF for the detection of DMY, the interference
test was done by adding mineral and metal ions and flavonoid analogs similar to dihy-
dromyricetin to a 0.1 M PBS (pH 6.5) solution containing 10 µM DMY. The current changes
of 10 µM DMY in the presence of different interfering substances were examined by adding
several potentially interfering substances, including NaCl, KCl, MgSO4, CaSO4, glucose
(Glu), quercetin (Qct) and genistein (Gnt). The current changes of DMY in the presence of
different interfering substances were recorded, and each experiment had to be repeated
more than five times to ensure the accuracy of the experiment.

As implied in Figure 10, the results show that the interference of NaCl, KCl, MgSO4,
CaSO4, Glu, Que and Gnt on DMY (10 times in concentration) was within 5%, which
were not significant and within the permissible range, indicating that the proposed Co-
MOF/GCE demonstrated significant selectivity for DMY. Although myricetin is one of
the main ingredients, the content of myricetin is 4–5 times lower than the content of DMY,
and the peak potential is apart from the DMY. Therefore, the proposed Co-MOF/GCE is
believed to be a good strategy for the selectivity of DMY.
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2.6. Analysis of Ampelopsis grossedentata Sample

Using a freshly prepared electrode, DMY in the Ampelopsis grossedentata sample was
detected to assess the proposed method’s practical applicability. The contents of DMY were
determined by adding 10 µL of the pretreated Ampelopsis grossedentata sample solution in
0.1 M PBS (pH 6.5) solution, and then the detection was carried out by the DPV method,
followed by the spiked recovery experiments. The results are listed in Table 3. Results show
that the Co-MOF/GCE exhibited a strong electrochemical response to DMY. The same
sample was also subjected to the HPLC technique. The standard’s test was used to compare
the analytical findings from the HPLC method and the suggested method. The experiment
was conducted with an Agilent 1260 Series liquid chromatography equipped with a UV–
Vis detector set at 290 nm and a Hypersil C18 column (250 mm × 4.6 mm × 5.0 µm). The
mobile phase consisted of methanol and 0.1% phosphate solution (28:72, v/v) flowing at
a rate of 1.0 mL min−1, while the injection volume was 10 µL. The column temperature
was 25 ◦C.

Table 3. Determination of DMY in Ampelopsis grossedentata by Co-MOF/GCE and HPLC.

No.

Co-MOF/GCE
HPLC
(µM)Detected

(µM)
Added
(µM)

Total
(µM)

Recovery
(%)

1 3.005 5 8.155 103 3.213
2 3.545 5 9.072 111 3.447
3 3.277 5 8.840 111 3.283

The results demonstrated that the Co-MOF/GCE electrochemical sensor showed
significant utility and superior performance in the determination of DMY content, proving
that the sensor could be applied to the determination of real samples.

3. Materials and Methods
3.1. Reagents

DMY, (>98.0%, AR), quercetin (>98.5%, AR) and genistein (>97.0%, AR) were pro-
vided by Aladdin Reagent Co., Ltd. (Shanghai, China). Cobalt nitrate hexahydrate
(Co(NO3)2·6H2O), 1,4-benzenedi-carboxylic acid, N,N-dimethylformamide (DMF), ethanol
(C2H5OH), potassium ferricyanide (K4(Fe(CN)6)), potassium ferricyanide (K3(Fe(CN)6)),
potassium chloride (KCl), potassium dihydrogen phosphate (KH2PO4) and dipotassium
hydrogen phosphate (K2HPO4) were obtained from Sinopharm Chemical Reagent Co.,
Ltd. (Shanghai, China). All reagents used in the experiment were of analytical grade.
KH2PO4 and K2HPO4 diluted in deionized water were used to make phosphate buffer
solution (PBS).

The Ampelopsis grossedentata sample was purchased from Youfenglai Selenium Eco-
agriculture Technology Co., Ltd. (Enshi, China).

3.2. Instruments

A CHI-660E electrochemical workstation (Chenhua, Shanghai, China) was used to
record the electrochemical measurements. The reference electrode was an Ag/AgCl (KCl
saturated) electrode, while the counter electrode was a platinum electrode. The Co-MOF
modified GCE (Co-MOF/GCE, Φ = 3 mm) was used as the working electrode. The source
of all the electrodes was Chenhua Co., Ltd. Using an EDS (Oxford, UK), an FEI Inspect
F50 SEM (Thermo Fisher, USA), G2 XPS (Thermo Fisher, USA), D8-A25 XRD (Bruker,
Germany) and a VERTEX-70 FTIR (Bruker, Germany), the morphology and structure of the
synthesized materials were characterized.
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3.3. Synthesis of Co-MOF

The synthesis of Co-MOF was as per previous literature with a little modification [43].
First, 1.310 g Co(NO3)2·6H2O and 0.249 g 1,4-benzenedi-carboxylic acid were slowly added
to 30 mL DMF and stirred at room temperature for 30 min. Then, the mixed solution was
transferred into a 50 mL Teflon-lined autoclave and reacted at 150 ◦C for 12 h. After the re-
action, the product was washed by DMF and ethanol, respectively. Finally, the centrifugally
dried and pink powder Co-MOF was collected for the subsequent characterizations.

3.4. Preparation of Co-MOF/GCE Sensor

Before being used, the bare GCE was polished with alumina powder on chamois
leather and then submerged in anhydrous ethanol and deionized water for 3 min, respec-
tively. Using 0.5 M sulfuric acid solution, CV was used to activate the bare GCE. The dried
electrode was coated with 6 µL of Co-MOF dispersion solution (1 mg mL−1), which was
designated as Co-MOF/GCE.

3.5. Pretreatment of Actual Samples

Since the ethanol extract of DMY can improve the efficacy [44], the Ampelopsis grosseden-
tata samples received pretreatment in compliance with the literature [45]. A total of 1 g
of Ampelopsis grossedentata samples were combined with 10 mL ethanol (75%) for 10 min.
Centrifugation was used to extract the Ampelopsis grossedentata supernatant. In order to
conduct a spiking experiment, some Ampelopsis grossedentata samples and a certain volume
of DMY standard concentration solution were mixed in 0.1 M PBS (pH 6.5).

3.6. Electrochemical Measurements

Each modified electrode was electrochemically characterized using 0.1 M KCl as the
supporting electrolyte and 5 mM (Fe(CN)6)3−/4− as the redox probe. The CV experiments
were performed in the potential range from –0.2 to +1.0 V at the scanning rate of 100 mV s−1.
The potential parameter of DPV experiment was from 0 to +1.4 V, the amplitude was 0.05 V,
the pulse width was 0.06 s and the pulse period was 0.5 s. EIS was conducted at the open
circuit voltage with the amplitude of 0.005 V and a frequency range from 1 Hz to 105 Hz.

4. Conclusions
Based on the synthesis of Co-based MOF, a sensitive electrochemical sensor (Co-

MOF/GCE) for DMY assessment was developed in this work. The Co-MOF/GCE has
exceptional sensitivity and greatly boosts the electro-oxidation peak current of DMY. The
prepared Co-MOF/GCE electrochemical sensor demonstrates a broad linear detection
range of 0.20–100 µM with a low detection limit of 0.07 µM. The proposed sensor is also
very stable and reproducible, making it suitable for application in the determination of
DMY in Ampelopsis grossedentata.
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