Heteroaryl-Fused Triazapentalenes: Synthesis and Aggregation-Induced Emission
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Photophysical Measurements
2.2.1. Fluorescence in the Solid-State
2.2.2. Spectral Properties in Solution
2.3. Fluorescence in the Aggregated State
3. Materials and Methods
3.1. Chemical and Materials
3.2. Instrumentation
3.3. Synthesis
3.3.1. General Procedure for Palladium-Catalyzed Reaction 1
3.3.2. Palladium-Catalyzed Reaction 2 of Compound HetATAP 1
3.3.3. General Procedure for Palladium-Catalyzed Reaction 3
3.3.4. Experimental Details and Characterization Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Opsomer, T.; Dehaen, W. Developments in the chemistry of 1,3a,6a-triazapentalenes and their fused analogs [Internet]. In Advances in Heterocyclic Chemistry, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2022; Volume 137, pp. 25–70. [Google Scholar] [CrossRef]
- Nyffenegger, C.; Pasquinet, E.; Suzenet, F.; Poullain, D.; Guillaumet, G. Synthesis of nitro-functionalized polynitrogen tricycles bearing a central 1,2,3-triazolium ylide. Synlett 2009, 3, 1318–1320. [Google Scholar] [CrossRef]
- Nyffenegger, C.; Pasquinet, E.; Suzenet, F.; Poullain, D.; Jarry, C.; Léger, J.M.; Guillaumet, G. An efficient route to polynitrogen-fused tricycles via a nitrene-mediated N-N bond formation under microwave irradiation. Tetrahedron 2008, 64, 9567–9573. [Google Scholar] [CrossRef]
- González, J.; Santamaría, J.; Suárez-Sobrino, Á.L.; Ballesteros, A. One-Pot and Regioselective Gold-Catalyzed Synthesis of 2-Imidazolyl-1-pyrazolylbenzenes from 1-Propargyl-1H-benzotriazoles, Alkynes and Nitriles through α-Imino Gold(I) Carbene Complexes. Adv. Synth. Catal. 2016, 358, 1398–1403. [Google Scholar] [CrossRef]
- Legentil, P.; Chadeyron, G.; Therias, S.; Chopin, N.; Sirbu, D.; Suzenet, F.; Leroux, F. Luminescent N-heterocycles based molecular backbone interleaved within LDH host structure and dispersed into polymer. Appl. Clay Sci. 2020, 189, 105561. [Google Scholar] [CrossRef]
- Daniel, M.; Hiebel, M.A.; Guillaumet, G.; Pasquinet, E.; Suzenet, F. Intramolecular Metal-Free N−N Bond Formation with Heteroaromatic Amines: Mild Access to Fused-Triazapentalene Derivatives. Chem. A Eur. J. 2020, 26, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Sirbu, D.; Diharce, J.; Martinić, I.; Chopin, N.; Eliseeva, S.V.; Guillaumet, G.; Petoud, S.; Bonnet, P.; Suzenet, F. An original class of small sized molecules as versatile fluorescent probes for cellular imaging. Chem. Commun. 2019, 55, 7776–7779. [Google Scholar] [CrossRef] [PubMed]
- Katritzky, A.R.; Hür, D.; Kirichenko, K.; Ji, Y.; Steel, P.J. Synthesis of 2, 4-disubstituted furans and 4, 6-diaryl-substituted 2, 3-benzo-1, 3a, 6a-triazapentalenes. Arkivoc 2004, 2, 109–121. [Google Scholar]
- VOl, N.; Lynch, B.M.; Hung, Y.Y. Pyrazolo [1,2-a] benzotriazole and Related Compounds (1). J. Heterocycl. Chem. 1965, 2, 218–219. [Google Scholar]
- Albini, A.; Bettinetti, G.; Minoli, G. The effect of the p-nitro group on the chemistry of phenylnitrene. A study via intramolecular trapping. J. Chem. Soc. Perkin Trans. 2 1999, 2803–2807. [Google Scholar] [CrossRef]
- Albini, B.A.; Bettinetti, G.F.; Minoli, G.; Pietra, S. Singlet Oxygen Photo-oxidation of some Triazapentalenes. J. Chem. Soc. Perkin Trans. 1 1980, 0, 2–6. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Z.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740–1741. [Google Scholar] [CrossRef] [PubMed]
- Lian, X.; Sun, J.; Zhan, Y. Dibenzthiophene and carbazole modified dicyanoethylene derivative exhibiting aggregation-induced emission enhancement and mechanochromic luminescence. J. Lumin. 2023, 263, 120023. [Google Scholar] [CrossRef]
- Zhuang, Q.; Zeng, C.; Mu, Y.; Zhang, T.; Yi, G.; Wang, Y. Lead (II)-triggered aggregation-induced emission enhancement of adenosine-stabilized gold nanoclusters for enhancing photoluminescence detection of nabam—Disodium ethylenebis (dithiocarbamate). Chem. Eng. J. 2023, 470, 144113. [Google Scholar] [CrossRef]
- Liu, D.; Guo, X.; Wu, H.; Chen, X. Aggregation-induced emission enhancement of gold nanoclusters triggered by sodium heparin and its application in the detection of sodium heparin and alkaline amino acids. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 304, 123255. [Google Scholar] [CrossRef]
- An, Y.; Li, B.; Yu, Y.; Zhou, Y.; Yi, J.; Li, L.; Sun, Y.; Qiang, Z.; Liu, Y.; Wang, P. A rapid and specific fluorescent probe based on aggregation-induced emission enhancement for mercury ion detection in living systems. J. Hazard. Mater. 2024, 465, 133331. [Google Scholar] [CrossRef]
- Nelson, M.; Santhalingam, G.; Ashokkumar, B.; Ayyanar, S.; Selvaraj, M. Aggregation induced emission enhancement (AIEE) receptor for the rapid detection of Cu2+ ions with in vivo studies in A549 and AGS gastric cancer cells. Microchem. J. 2023, 194, 109294. [Google Scholar] [CrossRef]
- Nurnabi, M.; Gurusamy, S.; Wu, J.Y.; Lee, C.C.; Sathiyendiran, M.; Huang, S.M.; Chang, C.H.; Chao, I.; Lee, G.H.; Peng, S.M.; et al. Aggregation-induced emission enhancement (AIEE) of tetrarhenium (I) metallacycles and their application as luminescent sensors for nitroaromatics and antibiotics. Dalt. Trans. 2023, 52, 1939–1949. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wang, J.; Chen, W.; Gong, Y.; Zhuang, N.; Liang, H.; Xing, L.; Liu, Y.; Ji, S.; Zhang, H.; et al. Triphenylamine-functionalized multiple-resonance TADF emitters with accelerated reverse intersystem crossing and aggregation-induced emission enhancement for narrowband OLEDs. Adv. Funct. Mater. 2023, 33, 2211893. [Google Scholar] [CrossRef]
- Arshad, M.; AT, J.R.; Joseph, V.; Joseph, A. Selective detection of picric acid in aqueous medium using a novel naphthaldehyde-based aggregation induced emission enhancement (AIEE) active “turn-off” fluorescent sensor. J. Lumin. 2023, 258, 119818. [Google Scholar] [CrossRef]
- Turelli, M.; Ciofini, I.; Wang, Q.; Ottochian, A.; Labat, F.; Adamo, C. Organic compounds for solid state luminescence enhancement/aggregation induced emission: A theoretical perspective. Phys. Chem. Chem. Phys. 2023, 25, 17769–17786. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, H.; Huang, Z.; Jia, Q. Fluorometric and colorimetric dual-mode sensing of α-glucosidase based on aggregation-induced emission enhancement of AuNCs. J. Mater. Chem. B 2024, 12, 1550–1557. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Peng, Q.; Shuai, Z.; Fang, W.; Wang, Y.; Luo, Y. Aggregation-enhanced luminescence and vibronic coupling of silole molecules from first principles. Phys. Rev. B 2006, 73, 205409. Available online: https://api.semanticscholar.org/CorpusID:121544093 (accessed on 12 May 2006). [CrossRef]
- Liu, J.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced Emission of Silole Molecules and Polymers: Fundamental and Applications. J. Inorg. Organomet. Polym. Mater. 2009, 19, 249–285. [Google Scholar] [CrossRef]
- Zhao, Z.; He, B.; Tang, B.Z. Aggregation-induced emission of siloles. Chem. Sci. 2015, 6, 5347–5365. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, Y.; Liu, J.; Cheng, X.; Sun, J.Z.; Qin, A.; Tang, B.Z. A novel pyridinium modified tetraphenylethene: AIE-activity, mechanochromism, DNA detection and mitochondrial imaging. J. Mater. Chem. B 2018, 6, 1279–1285. [Google Scholar] [CrossRef]
- Dong, Y.; Lam, J.W.Y.; Qin, A.; Liu, J.; Li, Z.; Tang, B.Z.; Sun, J.; Kwok, H.S. Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light-emitting diodes. Appl. Phys. Lett. 2007, 91, 011111. [Google Scholar] [CrossRef]
- Ito, F.; Fujimori, J.I.; Oka, N.; Sliwa, M.; Ruckebusch, C.; Ito, S.; Miyasaka, H. AIE phenomena of a cyanostilbene derivative as a probe of molecular assembly processes. Faraday Discuss. 2017, 196, 231–243. [Google Scholar] [CrossRef]
- Bhongale, C.J.; Chang, C.W.; Lee, C.S.; Diau, E.W.G.; Hsu, C.S. Relaxation dynamics and structural characterization of organic nanoparticles with enhanced emission. J. Phys. Chem. B 2005, 109, 13472–13482. [Google Scholar] [CrossRef] [PubMed]
- Itami, K.; Ohashi, Y.; Yoshida, J.I. Triarylethene-based extended π-systems: Programmable synthesis and photophysical properties. J. Org. Chem. 2005, 70, 2778–2792. [Google Scholar] [CrossRef]
- Ziółek, M.; Filipczak, K.; Maciejewski, A. Spectroscopic and photophysical properties of salicylaldehyde azine (SAA) as a photochromic Schiff base suitable for heterogeneous studies. Chem. Phys. Lett. 2008, 464, 181–186. [Google Scholar] [CrossRef]
- Arcovito, G.; Bonamico, M.; Domenicano, A.; Vaciago, A. Crystal and molecular structure of salicylaldehyde azine. J. Chem. Soc. B Phys. Org. 1969, 0, 733–741. [Google Scholar] [CrossRef]
- Sirbu, D.; Chopin, N.; Martinić, I.; Ndiaye, M.; Eliseeva, S.V.; Hiebel, M.A.; Petoud, S.; Suzenet, F. Pyridazino-1,3a,6a-triazapentalenes as versatile fluorescent probes: Impact of their post-functionalization and application for cellular imaging. Int. J. Mol. Sci. 2021, 22, 6645. [Google Scholar] [CrossRef]
- Ghosh, S.; Bedi, A.; Zade, S.S. Thienopyrrole and selenophenopyrrole donor fused with benzotriazole acceptor: Microwave assisted synthesis and electrochemical polymerization. RSC Adv. 2015, 5, 5312–5320. [Google Scholar] [CrossRef]
- Pathoor, R.; Bahulayan, D. Synthesis of large Stokes shift and narrow emission indole-triazole-carboxamide peptidomimetics via MCR-click strategy. Tetrahedron Lett. 2016, 57, 2360–2366. [Google Scholar] [CrossRef]
- Wang, Y.; Opsomer, T.; de Jong, F.; Verhaeghe, D.; Mulier, M.; Van Meervelt, L.; Van der Auweraer, M.; Dehaen, W. Palladium-Catalyzed Arylations towards 3,6-Diaryl-1,3a,6a-triazapentalenes and Evaluation of Their Fluorescence Properties. Molecules 2024, 29, 2229. [Google Scholar] [CrossRef]
- Gorelsky, S.I.; Lapointe, D.; Fagnou, K. Analysis of the concerted metalation-deprotonation mechanism in palladium-catalyzed direct arylation across a broad range of aromatic substrates. J. Am. Chem. Soc. 2008, 130, 10848–10849. [Google Scholar] [CrossRef]
- Lai, Q.; Liu, Q.; Zhao, K.; Shan, C.; Wojtas, L.; Zheng, Q.; Shi, X.; Song, Z. Rational design and synthesis of yellow-light emitting triazole fluorophores with AIE and mechanochromic properties. Chem. Commun. 2019, 55, 4603–4606. [Google Scholar] [CrossRef] [PubMed]
HetATAP | R | Yield (%) | ||
---|---|---|---|---|
a | b | c | ||
2 | H | 53 | 13 | 66 |
3 | OMe | 47 | - a | 62 |
4 | COOEt | 35 | - a | 51 |
5 | N(Me)2 | 30 | - a | 73 |
λabs,max (nm) | λem,max (nm) | Stokes Shift (cm−1) | ΦF (%) | |
---|---|---|---|---|
HetATAP1 | 460 | 584 | 4600 ± 50 | 10 |
HetATAP2 | 525 | 576 | 1680 ± 50 | 5 |
HetATAP3 | 520 | 570 | 1680 ± 50 | 12 |
HetATAP4 | 520 | 571 | 1710 ± 50 | 20 |
HetATAP5 | 485 | 588 | 3610 ± 50 | 5 |
λabs(nm)/ε (cm−1·M−1·10−3) | λems (nm)/ФF (%) | ||||||
---|---|---|---|---|---|---|---|
Tol | THF | ACN | DW99 | THF | ACN | DW99 | |
HetATAP1 | 407/49.4 | 402/41.1 | 398/35.4 | 388/31.7 | 463/0.2 | 450/0.2 | 461/0.5 |
HetATAP2 | 441/35.1 | 438/38.4 | 433/36.0 | 429/10.6 | - | - | 541/8.0 |
HetATAP3 | 445/30.4 | 441/34.0 | 436/30.0 | 415/14.6 | 469/0.1 | - | 541/2.3 |
HetATAP4 | 450/59.3 | 446/59.3 | 443/52.9 | 428/18.0 | - | - | 568/13.1 |
HetATAP5 | 456/34.9 | 454/34.1 | 449/30.7 | 423/13.1 | - | - | 565/2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Pham, T.C.; Huang, J.; Wu, J.; Dehaen, W. Heteroaryl-Fused Triazapentalenes: Synthesis and Aggregation-Induced Emission. Molecules 2025, 30, 156. https://doi.org/10.3390/molecules30010156
Wang Y, Pham TC, Huang J, Wu J, Dehaen W. Heteroaryl-Fused Triazapentalenes: Synthesis and Aggregation-Induced Emission. Molecules. 2025; 30(1):156. https://doi.org/10.3390/molecules30010156
Chicago/Turabian StyleWang, Yingchun, Thanh Chung Pham, Jianjun Huang, Junfeng Wu, and Wim Dehaen. 2025. "Heteroaryl-Fused Triazapentalenes: Synthesis and Aggregation-Induced Emission" Molecules 30, no. 1: 156. https://doi.org/10.3390/molecules30010156
APA StyleWang, Y., Pham, T. C., Huang, J., Wu, J., & Dehaen, W. (2025). Heteroaryl-Fused Triazapentalenes: Synthesis and Aggregation-Induced Emission. Molecules, 30(1), 156. https://doi.org/10.3390/molecules30010156