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Abstract: In the purification process of zinc hydrometallurgy, the spectra of copper and cobalt
seriously overlap in the whole band and are interfered with by the spectra of zinc and nickel, which
seriously affects the detection results of copper and cobalt in zinc solutions. Aiming to address
the problems of low resolution, serious overlap, and narrow characteristic wavelengths, a novel
spectrophotometric method for the robust detection of trace copper and cobalt is proposed. First,
the Haar, Db4, Coif3, and Sym3 wavelets are used to carry out the second-order continuous wavelet
transform on the spectral signals of copper and cobalt, which improves the resolution of copper and
cobalt and eliminates the background interference caused by matrix zinc signals and reagents. Then,
the information ratio and separation degree are defined as optimization indexes, a multi-objective
optimization model is established with the wavelet decomposition scale as a variable, and the non-
inferior solution of multi-objective optimization is solved by the state transition algorithm. Finally,
the optimal second-derivative spectra combined with the fine zero-crossing technique are used to
establish calibration curves at zero-crossing points for the simultaneous detection of copper and
cobalt. The experimental results show that the detection performance of the proposed method is
far superior to the partial least squares and Kalman filtering methods. The RMSEPs of copper and
cobalt are 0.098 and 0.063, the correlation coefficients are 0.9953 and 0.9971, and the average relative
errors of copper and cobalt are 3.77% and 2.85%, making this method suitable for the simultaneous
detection of trace copper and cobalt in high-concentration zinc solutions.

Keywords: zinc hydrometallurgy; continuous wavelet transform; derivative spectrophotometry;
multi-objective optimization; ultraviolet–visible spectroscopy

1. Introduction

The zinc hydrometallurgy process mainly includes roasting, leaching, purification,
and electrolysis. Firstly, zinc concentrate is roasted by boiling it to obtain zinc (Zn) oxide
and other metal oxides, such as cobalt (Co) oxide, copper (Cu) oxide, and nickel (Ni)
oxide [1–4]. Secondly, diluted sulfuric acid is used to add acid to the roasted product
for dissolution, and the solid residue of the acid-insoluble nonmetallic oxide is removed
through solid–liquid separation to obtain a neutral supernatant [5–8]. Then, based on the
zinc powder replacement method, the neutral supernatant is purified to remove impurities
such as copper, cobalt, and nickel [9–11]. Finally, the purified zinc sulfate solution is
electrodeposited to obtain high-quality solid zinc [12–14]. In the electrolytic process of zinc
hydrometallurgy, if the concentration of impure ions such as copper, cobalt, and nickel in
zinc sulfate solution exceeds the standard, the phenomenon of “plate burning” occurs, and
the current efficiency is significantly reduced by mild plate burning, while serious plate
burning leads to the shutdown and maintenance of the electrolytic cell [15–20]. Therefore,
the purification process is the key process of zinc hydrometallurgy. It is a prerequisite to
ensure the normal operation of the zinc hydrometallurgy process by accurately detecting
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the concentration of impurity ions in the electrolyte and then removing the impurity ions
based on the zinc powder replacement method. However, at present, enterprises still use
the manual offline analysis of the concentration of impurity metal ions in the electrolyte,
which is cumbersome and time-consuming and comes with delays in obtaining feedback
information; it is also impossible to optimize and adjust the process parameters of the
purification process in real time with this type of analysis [21–24]. Therefore, it is urgent to
realize the online detection of the concentration of impurity metal ions in a zinc electrolyte,
as this would provide a guarantee for the real-time control and optimal operation of
production processes.

Ultraviolet–visible spectrometry has been widely used in low-concentration detec-
tion because of its high detection accuracy, the short period required, the fact that it is
a simple analysis method, its strong on-line detection ability and its real-time feedback
ability [25–28]. In order to realize the simultaneous detection of impurity ions of copper
and cobalt in high-zinc solutions, it is necessary to choose the optimal chromogenic reaction
system to allow the polymetallic ions to be detected from different complexes, so that the
spectral characteristics between ions will be more obvious and can appear at a greater
resolution. The chromogenic reaction system mainly includes a chromogenic agent and
buffer [29,30]. After a lot of experiments, our team chose Nitroso R salt as the chromogenic
reagent and acetic acid–sodium acetate (pH = 5.5) as the buffer reagent. However, in the
purification process of zinc hydrometallurgy, there are some difficulties in detecting the
concentration of polymetallic impurity ions in zinc sulfate solution by ultraviolet–visible
spectrometry: (1) the concentration ratio of matrix zinc to impurity metal ions is as high
as 105, and the spectral signal is seriously masked; (2) the chemical characteristics of
polymetallic ions are similar, the effective band is narrow, and the spectral characteristic in-
formation is concentrated, which makes the spectral signals overlap and interfere seriously;
(3) with the increase in particle density in solution, the absorption rate and transmittance
of incident light are affected, which leads to serious deviation in the relationship between
the absorbance and concentration of the mixture by the Beer–Lambert law; (4) under the
effects of instrument circuit noise, light source fluctuation, matrix zinc ion interference, and
other factors, there are problems of range overflow and poor resolution, so it is difficult to
obtain polymetallic spectral signals online [3,31–33]. These problems pose great challenges
to the simultaneous determination of polymetallic impurity ions in high-zinc solutions.

In order to solve the problems of low sensitivity, serious spectral overlap, and narrow
effective spectral bands of copper and cobalt in highly concentrated zinc solutions, a novel
spectrophotometric method for the robust detection of trace copper and cobalt is proposed.
First, Haar, Db4, Coif3, and Sym3 wavelets are used to carry out the second-order continuous
wavelet transform on the spectral signals of copper and cobalt, improving the resolution of
copper and cobalt and eliminating the background interference caused by matrix zinc signals
and reagents. Then, the information ratio and separation degree are defined as optimization
indexes, the multi-objective optimization model is established with the wavelet decomposi-
tion scale as a variable, and the non-inferior solution of multi-objective optimization is solved
by the state transition algorithm. Finally, the optimal second-derivative spectra combined
with the fine zero-crossing technique are used to establish calibration curves at zero-crossing
points for the simultaneous detection of copper and cobalt [34–39]. The experimental results
show that the detection performance of the proposed method is far superior to the partial
least squares and Kalman filtering methods, and it is suitable for the simultaneous detection
of copper and cobalt in high-concentration zinc solutions.

2. Theory
2.1. Derivative Spectrophotometry

In zinc sulfate solutions, the sensitivity of copper and cobalt is low, the effective band
is narrow, and the spectral signal is completely covered by the zinc signal. Therefore,
derivative spectrometry is used to solve the problem of complete coverage of the copper
and cobalt spectral signals. According to the spectral characteristics of the mixed solution,
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when the wavelength exceeds 500 nm, the absorbance of zinc and nickel are almost constant
and approach zero. Therefore, in the wavelength range of 500–600 nm, the absorbance of
the mixed solution is given as

Aλi = εM,λi CM + εN,λi CN+Ad, (1)

where CM and CN represent the concentrations of Cu and Co, and εM,λi and εN,λi indicate
the absorptivity of Cu and Co at wavelength λi, respectively. Aλi indicates the absorbance
of the mixed solution, and Ad stands for background interference (including the absorbance
of zinc and nickel). The derivation of Equation (1) is as follows

d(Aλi )

dλ
=

d(εM,λi CM)

dλ
+

d(εN,λi CN)

dλ
+

d(A d)

dλ
. (2)

Since Ad changes very slowly with the wavelength, it can be considered a constant.
Equation (2) can be expressed as

d(Aλi )

dλ
=

d(εM,λi CM)

dλ
+

d(εN,λi CN)

dλ
. (3)

In Equation (3), the derivative spectra of the four mixtures of Zn, Cu, Co, and Ni
depend entirely on the concentrations of Cu and Co and have nothing to do with the concen-
trations of Zn and Ni. Therefore, the derivative spectra obtained can completely eliminate
the absorbance contributions of Zn and Ni. By using the zero-crossing technique, at the
zero-crossing wavelength of Co, the derivative spectra of the mixture is only proportional
to the concentration of Cu. Similarly, at the zero-crossing wavelength of Cu, the derivative
spectra of the mixture is only proportional to the concentration of Co. Therefore, derivative
spectrometry combined with the zero-crossing technique can obtain the calibration curves
of Cu and Co and realize the simultaneous detection of Cu and Co in zinc solutions.

2.2. Multi-Objective Optimization Model

With derivative spectrophotometry, it is easy to amplify the noise signal, so this paper
uses the approximate derivative method based on the continuous wavelet transform (CWT).
Because the wavelet function and decomposition scale of the continuous wavelet transform
affect the peak amplitude and peak position of spectral signals, in order to further improve
the sensitivity and separation of the Cu and Co derivative spectral signals, a multi-objective
optimization model is established with the wavelet decomposition scale as a variable and
the information ratio and separation degree as optimization indexes. The information ratio
is used to characterize the sensitivity and interference degree of the ion to be measured,
and the separation degree is used to characterize the overlapping resolution between the
metal ions to be measured.

When the absorbance of the ion to be measured at a certain wavelength is greater than
that of other ions, the wavelength is called the effective wavelength point. The more effective
the wavelength points, the higher the sensitivity of the ion to be measured. Therefore, the
information ratio is defined as the ratio of the effective wavelength number to the total
wavelength number, where the effective wavelength number is obtained by the absorbance
ratio matrix of the spectral signal, and the formula is as follows:

yAbs_ratiok×n =



yAbs11

k
∑

i=1
yAbsi1

· · · yAbs1n

k
∑

i=1
yAbsin

...
. . .

...
yAbsk1

k
∑

i=1
yAbsi1

· · · yAbskn

k
∑

i=1
yAbsin


(4)
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In Equation (4), the absorbance data are all from the mixed solution of Cu and Co at
the same concentration in a high-concentration zinc solution. If the ratio of the absorbance
of the ion to be measured to the total absorbance is greater than 0.5, the corresponding
wavelength is the effective wavelength, so that the number of all effective wavelengths can
be counted; then, the information ratio of the ion to be measured can be calculated.

In order to measure the overlapping resolution of spectral signals, the separation
degree is used to evaluate the peak separation degree of Cu and Co. Separation degree is
defined as the ratio of the peak spacing to the peak width sum of Cu and Co. The greater
the separation degree, the smaller the interference between Cu and Co.

In Figure 1, PCu and PCo represent the peak positions of Cu and Co, and WCu and WCo
represent the half-peak widths of Cu and Co, respectively. The separation degree RP is
defined as

RP =
|PCu − PCo|
WCu + WCo

. (5)
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Figure 1. Schematic diagram of peak position resolution.

The greater the value of RP, the higher the resolution of the spectral peaks. When
0 ≤ RP < 1, the spectral signals of Cu and Co overlap. When RP ≥ 1, it shows that the
spectral signals of Cu and Co are completely separated.

In the derivative spectral signal of Cu and Co, with the decomposition scale x as
the decision variable and the information ratio F(x) and separation degree G(x) as the
optimization objectives, the multi-objective optimization models are expressed by the
following Formulas (6) and (7), respectively.

max J1(x) = F1(x) ,
max J2(x) = G(x) ,
s.t. 10 ≤ x ≤ 100 .

(6)

max J1(x) = F2(x) ,
max J2(x) = G(x) ,
s.t. 10 ≤ x ≤ 100 .

(7)

where F1(x) represents the information ratio of Cu, F2(x) indicates the information ratio of
Co, and G(x) stands for the separation degree of Cu and Co. The state transition algorithm
(STA) is a global optimization method which can quickly find the global optimal solution
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and avoid falling into local optimal solution. In this paper, the state transition algorithm
(STA) is used to solve the multi-objective optimization model.

3. Results and Discussion
3.1. Spectral Characteristics

Figure 2 shows the original spectral signals, spectral pretreatment signals, first-
derivative spectra, and second-order derivative spectra of Zn, Cu, Co, and Ni in zinc
sulfate solution, in which the concentration of zinc is 20 g/L, and the concentrations of Cu,
Co, and Ni are all 1.2 mg/L.
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Figure 2. Experimental spectral signals and their derivative spectral signals. (a) The original spectral
signals. (b) Spectral pretreatment signals. (c) First-order derivative spectra. (d) Second-order
derivative spectra.

Figure 2a shows the experimental spectral signals of Zn, Cu, Co, and Ni. Because the
concentration of Zn in zinc sulfate solution is much greater than those of Cu, Co, and Ni,
the absorbance of Zn is much greater than that of Cu and Co at 350–500 nm, resulting in
low sensitivity and poor linearity of Cu and Co. When the wavelength exceeds 500 nm,
the spectral absorbance of Zn and Ni is close to zero and tends to be unchanged, but
the spectral signals of Cu and Co overlap seriously, and especially, the copper spectral
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signals are seriously covered by the cobalt spectra, which leads to the low sensitivity of
copper signals.

Figure 2b shows the spectral signal pretreated by the adaptive wavelet threshold
method, which is used to eliminate random noise during instrument measurement and
improve the accuracy and repeatability of detection. Figure 2c shows the first-derivative
spectra by the continuous wavelet transform. The Haar wavelet is used to approximate the
derivative of the original spectral signal. When the wavelength is greater than 500 nm, the
derivative spectra of Zn and Ni are close to zero, thus shielding the interference from Zn and
Ni. In addition, the overlapping spectral signals of Cu and Co begin to separate, especially
the characteristic information of Cu begins to stand out. In some wavelength bands, the
absorbance of Cu is greater than that of Co, which is no longer completely covered by the
cobalt signal, but the sensitivity of copper in the whole band is still low. Figure 2d shows
the second-order derivative spectra obtained by the continuous wavelet transform. The
overlapping signals of Cu and Co are obviously separated. In the wavelength range of
520–550 nm, the spectral peak of copper is completely exposed and is no longer covered
by the cobalt signal, and the sensitivity is significantly improved. Therefore, the second-
order derivative spectra can separate the overlapping signals of Cu and Co, reduce mutual
interference, highlight the spectral peak information significantly, and especially improve
the sensitivity of copper.

3.2. Second-Order Derivative Spectra of Copper and Cobalt

The first-order continuous wavelet transform uses the Haar wavelet to approximate
the derivative, which is mainly used to shield the influence of Zn and Ni and eliminate
the interference from the reagent background. The spectral signal of the second-order
continuous wavelet transform is used to separate the overlapping signals of Cu and Co to
the greatest extent and reduce the interference between them, thus significantly improving
the sensitivity and linearity of Cu and Co. The difficulty of the second-order continuous
wavelet transform lies in the choice of the wavelet function and the decomposition scale.
For copper and cobalt spectral signals, when the wavelet decomposition scale is fixed at
20, the continuous wavelet transform with different wavelet functions produces different
results, as shown in Figure 3.
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Figure 3 shows the derivative spectral signals of Cu and Co by the continuous wavelet
transform with different wavelet functions. Figure 3a shows that when the Haar wavelet is
used for the continuous wavelet transform, the derivative spectral signals of Cu and Co
have characteristic peaks at 509 nm and 573 nm, respectively. Figure 3b shows that when the
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Db4 wavelet is used for the continuous wavelet transform, the derivative spectral signals of
Cu and Co have characteristic peaks at 525 nm and 508 nm, respectively. Figure 3c shows
that when the Coif3 wavelet is used for the continuous wavelet transform, the derivative
spectral signals of Cu and Co have characteristic peaks at 540 nm and 517 nm, respectively.
Figure 3d shows that when the Sym3 wavelet is used for the continuous wavelet transform,
the derivative spectral signals of Cu and Co have characteristic peaks at 545 nm and 520 nm,
respectively. As can be seen from Figure 3, the derivative spectral signals obtained by the
continuous wavelet transform with different wavelet functions are completely different,
and the biggest difference lies in the amplitude and position of the characteristic peaks of
the spectral signals. Therefore, in order to improve the overlapping peak separation of Cu
and Co, it is necessary to choose the optimal wavelet function.

3.3. Optimization Index

In order to solve the problem of the serious overlap of Cu and Co and the low sen-
sitivity of the copper ion, the overlapping peak separation method based on derivative
spectrometry is used. In order to further improve the sensitivity and resolution of the
derivative spectral signals of Cu and Co, a multi-objective optimization model was estab-
lished with the information ratio and separation degree as optimization indexes and the
wavelet decomposition scale as the variable. Among them, the information ratio is used
to characterize the sensitivity and interference degree of the ions to be measured, and the
separation degree is used to characterize the overlapping resolution between the metal ions
to be measured.

Under different decomposition scales, the separation degree of overlapping peaks of
spectral signals obtained by the second-order continuous wavelet transform is different, so
the information ratio of ions to be measured is also different. If the decomposition scale is
represented by x, the information ratio of copper is represented by F1(x), the information
ratio of cobalt is represented by F2(x), and the spectral peak separation of Cu and Co is
represented by G(x). Commonly used wavelets are Haar, Db4, Coif3, and Sym3. The fitting
function of the information ratio for copper under different wavelet bases is shown in
Figure 4, and the fitting accuracy is shown in Table 1. The fitting function of the information
ratio for cobalt under different wavelet bases is shown in Figure 5, and the fitting accuracy
is shown in Table 2.
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Table 1. Fitting accuracy of copper information ratio F1(x).

Wavelet
Function SSE R-Square Adjusted

R-Square RMSE

Haar 4.441 × 10−5 0.9941 0.9968 0.005332
Db4 3.036 × 10−5 0.9956 0.9981 0.002884

Coif3 0.0002908 0.9932 0.9944 0.007526
Sym3 0.0004756 0.9911 0.9916 0.009109
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As can be seen from Table 1, the fitting accuracy of the copper information ratio is
good, reaching above 0.99 under different wavelet functions, and the root mean square
error (RMSE) is very small. As can be seen from Figure 4, the distribution of the copper
information ratio is completely different under different wavelet functions. Figure 4a uses
the Haar wavelet function. With the increase in the decomposition scale, the information
ratio of copper changes very sharply, and the information ratio value is higher when the
decomposition scale is 30–60. Figure 4b shows the use of the Db4 wavelet function. The
overall information ratio of copper shows a decreasing trend, and the maximum value is
only 0.28. Figure 4c shows the use of the Coif3 wavelet function. The information ratio
fluctuates greatly, and the information ratio changes slowly when the decomposition scale
is greater than 50. Figure 4d shows the use of the Sym3 wavelet function. The information
ratio decreases rapidly. Because of the low sensitivity of copper, it is seriously masked by
cobalt at the same concentration, so the information ratio of copper after the second-order
wavelet transform is small.

From Table 2, it can be seen that the fitting accuracy of the cobalt information ratio is
good and is as high as 0.99 or above under different wavelet functions. Figure 5 shows the
fitting function of the information ratio for cobalt under different wavelet functions. As can
be seen from Figure 5, under different wavelet functions, the information ratio of cobalt
generally has a higher value, because the sensitivity of cobalt is better than that of copper,
so there are more effective wavelengths.
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Figure 6 shows the fitting function of the separation degree of Cu and Co under
different wavelet functions. From Table 3, it can be seen that the fitting accuracy of the
separation degree G(x) of Cu and Co are good.
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Figure 6. Fitting function of separation degree of copper and cobalt under different wavelet functions.

Table 3. Fitting accuracy of separation degree G(x).

Wavelet
Function SSE R-Square Adjusted

R-Square RMSE

Haar 8.754 × 10−5 0.9958 0.9973 0.002877
Db4 0.0003667 0.9922 0.9945 0.007905

Coif3 0.0001732 0.9943 0.9956 0.003562
Sym3 6.252 × 10−5 0.9971 0.9978 0.001304

3.4. Non-Inferior Solution of Multi-Objective Optimization

The state transition algorithm (STA) is used to solve two constrained multi-objective
optimization models of Cu and Co, and non-inferior solution sets of Cu and Co under
different wavelets are obtained according to the STA algorithm. Figure 7 shows the non-
inferior solution sets of Cu and Co by using the Haar wavelet. Figure 8 shows the non-
inferior solution sets of Cu and Co by using the Db4 wavelet; Figure 9 shows the non-
inferior solution sets of Cu and Co by using the Coif3 wavelet; Figure 10 shows the
non-inferior solution sets of Cu and Co by using the Sym3 wavelet. Because the spectral
signals of Cu and Co overlap seriously, the sensitivity of Co is higher than that of Cu at
the same concentration, so it is more inclined towards the non-inferior solution with large
spectral peak separation in the non-inferior solution sets. Cu has low sensitivity, so it is
more inclined towards the non-inferior solution with a large information ratio. Therefore,
according to the spectral characteristics of Cu and Co, when the Haar wavelet is used for
the continuous wavelet transform, the optimal decomposition scale of copper is x = 30, and
that of cobalt is x = 67; When the Db4 wavelet is used for the continuous wavelet transform,
the optimal decomposition scale of copper is x = 55, and that of cobalt is x = 42. When the
Coif3 wavelet is used for the continuous wavelet transform, the optimal decomposition
scale of copper is x = 60, and that of cobalt is x = 53. When using the Sym3 wavelet for the
continuous wavelet transform, the optimal decomposition scale of copper ion is x = 47, and
that of cobalt ion is x = 69.
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3.5. Derivative Spectral Correction Curve

The Haar, Db4, Coif3, and Sym3 wavelets are used to carry out the second-order
continuous wavelet transform on the spectral signals of Cu and Co, and the state transition
multi-objective optimization algorithm is applied to solve the optimal decomposition scale
of Cu and Co under different wavelet bases, which can effectively improve the resolution
of the copper and cobalt overlapping signals. In this paper, the second-order continuous
wavelet transform combined with the zero-crossing technique can be used to establish the
calibration curves of copper and cobalt, as shown in Figures 11–14.
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As can be seen from Figures 11–14, the spectral signals of Cu and Co are processed by
the Haar, Db4, Coif3, and Sym3 wavelet functions, and the concentrations of Cu and Co
can be determined simultaneously by combining the zero-crossing technology. Figure 11
shows the second-derivative spectra of Cu and Co, which are obtained by the Haar wavelet.
Figure 11a shows that the optimal decomposition scale x is 30, which is beneficial for
establishing the calibration curve of Cu at the zero-crossing wavelength (529 nm) of Co.
Figure 11b shows that the optimal decomposition scale x is 67, which is beneficial for
establishing the calibration curve of Co at the zero-crossing wavelength (573 nm) of Cu.
Figure 12 shows the second-derivative spectra of Cu and Co, which are obtained by the Db4
wavelet. Figure 12a shows that the optimal decomposition scale x is 55, which is beneficial
for establishing the calibration curve of Cu at the zero-crossing wavelength (554 nm) of
Co. Figure 12b shows that the optimal decomposition scale x is 42, which is beneficial
for establishing the calibration curve of Co at the zero-crossing wavelength (531 nm) of
Cu. Figure 13 shows the second-derivative spectra of Cu and Co, which are obtained by
the Coif3 wavelet. Figure 13a shows that the optimal decomposition scale x is 60, which
is beneficial for establishing the calibration curve of Cu at the zero-crossing wavelength
(516 nm) of Co. Figure 13b shows that the optimal decomposition scale x is 53, which
is beneficial for establishing the calibration curve of Co at the zero-crossing wavelength
(542 nm) of Cu. Figure 14 shows the second-derivative spectra of Cu and Co, which are
obtained by the Sym3 wavelet. Figure 14a shows that the optimal decomposition scale x
is 47, which is beneficial for establishing the calibration curve of Cu at the zero-crossing
wavelength (513 nm) of Co. Figure 14b shows that the optimal decomposition scale x
is 69, which is beneficial for establishing the calibration curve of Co at the zero-crossing
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wavelength (562 nm) of Cu. Therefore, the calibration curves of Cu and Co can be obtained
by derivative spectrometry combined with zero-crossing technology, and the simultaneous
detection of Cu and Co in zinc solution can be realized. The correction equations of Cu and
Co under different wavelet functions are shown in Table 4.

Table 4. Statistical parameters of Cu and Co calibration curves under different wavelet bases.

Calibration Curve
Parameters

CWT (Haar) CWT (Db4) CWT (Coif3) CWT (Sym3)

Cu Co Cu Co Cu Co Cu Co

Wavelength (nm) 529 573 554 531 516 542 513 561
Linear range (mg/L) 0.5−5 0.3−3 0.5−5 0.3−3 0.5−5 0.3−3 0.5−5 0.3−3

Slope 1.5518 2.9840 −1.3853 2.0076 1.9505 1.7413 −1.8463 −3.1337
Intercept 0.5330 0.0808 −0.2912 0.3055 0.2980 0.2803 −0.4760 −0.1229

Correlation coefficient (R2) 0.9952 0.9926 0.9896 0.9957 0.9915 0.9963 0.9931 0.9949
LOD (mg/L) 0.0829 0.0968 0.1087 0.0809 0.0991 0.0788 0.0862 0.0852
LOQ (mg/L) 0.2733 0.3198 0.3589 0.2642 0.3271 0.2575 0.2846 0.2814

As can be seen from Table 4, compared with the Db4, Coif3, and Sym3 wavelets, the
copper ion has the highest accuracy in the calibration curve established by the Haar wavelet,
with the detection limit (LOD) of 0.0829, the quantitative detection limit (LOQ) of 0.2733,
and the correlation coefficient (R2) of 0.9952, which indicates that the copper ion has a lower
detection limit and better linearity when using the Haar wavelet. Compared with the Haar,
Db4, and Sym3 wavelets, the calibration curve of the cobalt ion by using the Coif3 wavelet
has the highest accuracy, with a detection limit (LOD) of 0.0788, a quantitative detection
limit (LOQ) of 0.2575, and a correlation coefficient (R2) of 0.9963, which indicates that the
cobalt ion has a lower detection limit and better linearity when using the Coif3 wavelet.
Therefore, the Haar wavelet and Coif3 wavelet are selected to detect the concentrations of
Cu and Co by derivative spectrometry, respectively.

3.6. Simultaneous Determination of Copper and Cobalt

In order to verify the effectiveness of the proposed spectrophotometric method, partial
least squares (PLS) and Kalman filter spectrophotometry are used to compare and analyze
the performance, and the experimental data of copper and cobalt are detected. The maxi-
mum relative error, average relative error, root mean square error of calibration (RMSEC),
root mean square error of prediction (RMSEP) and correlation coefficient (R2) are used as
evaluation indexes of the model, and the performance of different modeling methods is
compared as follows.

From Table 5, it can be seen that the detection performance of the proposed spectropho-
tometric method is much better than PLS and Kalman filtering methods. Due to the low
sensitivity and narrow spectral effective band of copper and cobalt in high-concentration
zinc solutions, the PLS and Kalman filtering methods have poor performance, and the
average relative error is more than 10%, which cannot meet the industrial detection re-
quirements. The prediction results of copper and cobalt concentration by the proposed
spectrophotometric method are shown in Table 6, and the calibration curves of the predicted
concentrations and the actual concentrations are shown in Figure 15.

As can be seen from Table 6, the RMSEP values of copper and cobalt are 0.098 and
0.063, respectively. The maximum relative error of copper is 5.20%, the average relative
error is 3.77%, the maximum relative error of cobalt is 4.46%, and the average relative error
is 2.85%. As can be seen from Figure 15, the predicted concentrations of copper and cobalt
ions are very close to the actual concentrations, and the correlation coefficients (R2) are
0.9953 and 0.9971, respectively. The experimental results show that the detection accuracy
of the proposed spectrophotometric method for copper and cobalt meets the requirements
of actual production and is suitable for the simultaneous detection of copper and cobalt in
high-concentration zinc solutions.
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Table 5. Performance comparison of different modeling methods.

Detection Ion Evaluating Indicator PLS Kalman Filtering The Proposed
Method

Cu

Maximum relative error 18.57% 15.43% 5.20%
Average relative error 13.35% 12.71% 3.77%

RMSEC 0.894 0.629 0.154
RMSEP 0.752 0.534 0.098

Correlation coefficient 0.9886 0.9915 0.9953

Co

Maximum relative error 14.39% 13.58% 4.46%
Average relative error 11.73% 10.62% 2.85%

RMSEC 0.694 0.529 0.109
RMSEP 0.427 0.376 0.063

Correlation coefficient 0.9928 0.9942 0.9971

Table 6. Prediction results of simultaneous detection of copper and cobalt.

No.
Actual Value (mg/L) Predicted Value (mg/L) Relative Error (%)

Zn Cu Co Cu Co Cu Co

1 2.1 × 104 0.50 0.60 0.513 0.619 2.60 3.17
2 2.2 × 104 1.00 1.20 1.052 1.227 5.20 2.25
3 2.3 × 104 1.50 1.80 1.571 1.846 4.73 2.56
4 2.4 × 104 2.00 2.40 1.942 2.443 2.90 1.79
5 2.5 × 104 2.50 3.00 2.419 2.959 3.24 1.36
6 2.6 × 104 3.00 0.30 2.894 0.312 3.53 4.00
7 2.7 × 104 3.50 0.90 3.357 0.861 4.09 4.33
8 2.8 × 104 4.00 1.50 4.187 1.567 4.68 4.46
9 2.9 × 104 4.50 2.10 4.677 2.133 3.94 1.57

10 3.0 × 104 5.00 2.70 5.138 2.618 2.76 3.04

Average relative error (%) 3.77 2.85
RMSEP 0.098 0.063
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4. Experimental Method
4.1. Apparatus and Reagents

All chemicals were analytical reagents and needed no further purification. Deionized
water was used for dissolution and dilution in the experiment. By using water as the
solvent, 50 g/L zinc, 12.5 mg/L copper, 12.5 mg/L cobalt, and 12.5 mg/L nickel stock
solutions were prepared. Then, standard solutions were prepared from the stock solution by
continuous dilution as required. Sodium acetate buffer (pH = 5.5) was prepared by mixing
the proper volumes of pure acetic acid and sodium acetate. Nitroso R salt solution (0.4%)
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was prepared as the chromogenic reagent, and hexadecyl trimethyl ammonium bromide
(0.01 mol/L) was used as the stabilizer solution. A Beijing Puxi T9 Spectrometer was used
to measure spectral data in the laboratory. The spectrophotometer was a high-sensitivity
ultraviolet–visible spectrophotometer, equipped with a high-performance PMT receiver
and special grating and mixed with a C-T monochromator and double beams; thus, it had
high dynamic range and a good signal-to-noise ratio.

4.2. Procedures

In a 25 mL calibration flask, we added standard solutions of zinc, copper, cobalt, and
nickel in different proportions, as well as 7.5 mL of acetic acid–sodium acetate buffer solu-
tion (pH = 5.5) and 5.00 mL of Nitroso R salt solution, and diluted them to the calibration
scale with appropriate volumes of distilled water. A blank solution was prepared in the
same way. The final concentration range of zinc was 20–30 g/L; for copper, 0.5–5.0 mg/L;
for cobalt, 0.3–3.0 mg/L; and for nickel, 0.6–6.0 mg/L. A spectrometer was used to measure
the spectral signal of the mixed solution of multi-metal ions against a high-zinc background,
and it scanned at intervals of 1 nm in the wavelength range of 350 nm to 600 nm. All mea-
sured spectra are taken as the average of 5 repeated measurements. A total of 40 groups
of mixed solutions in different proportions were prepared for spectral modeling. Among
them, 30 groups of mixed solutions were used as the calibration set, and 10 groups were
used as the prediction set.

5. Conclusions

In the purification process of zinc hydrometallurgy, the concentrations of copper and
cobalt are much lower than that of matrix zinc, which leads to the serious masking of copper
and cobalt signals by the matrix zinc signal and low sensitivity. Moreover, due to the similar
chemical characteristics of polymetallic ions, the spectral signals overlap seriously. Aiming
at the problems of low sensitivity, serious spectral overlap, and narrow effective band
of copper and cobalt, a novel spectrophotometric method was developed to successfully
detect the concentration of copper and cobalt in high-concentration zinc solutions. The
proposed method uses the approximate derivative of the continuous wavelet transform
to separate the spectral peaks and improve the resolution of copper and cobalt. Taking
the information ratio and the separation degree as optimization indexes and the wavelet
decomposition scale as a variable, a multi-objective optimization model is established, and
the state transition algorithm is applied to solve the non-inferior solution to determine
the optimal wavelet decomposition scale, thus improving the sensitivity and separation
of copper and cobalt. By using derivative spectrometry combined with the zero-crossing
technique, the calibration curves of copper and cobalt were established at fine zero-crossing
points. The results show that the detection performance of the proposed method is far
superior to the PLS and Kalman filtering methods, and the detection accuracy of copper
and cobalt meets the requirements of actual production. The work proposed here is an
interesting and promising attempt in the robust detection of trace copper and cobalt in
high-concentration zinc solutions and may be applied to more fields.
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