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Abstract: In the Kolmogorov Theory of Consciousness, algorithmic agents utilize inferred
compressive models to track coarse-grained data produced by simplified world models,
capturing regularities that structure subjective experience and guide action planning. Here,
we study the dynamical aspects of this framework by examining how the requirement of
tracking natural data drives the structural and dynamical properties of the agent. We first
formalize the notion of a generative model using the language of symmetry from group theory,
specifically employing Lie pseudogroups to describe the continuous transformations that
characterize invariance in natural data. Then, adopting a generic neural network as a proxy
for the agent dynamical system and drawing parallels to Noether’s theorem in physics,
we demonstrate that data tracking forces the agent to mirror the symmetry properties of
the generative world model. This dual constraint on the agent’s constitutive parameters
and dynamical repertoire enforces a hierarchical organization consistent with the manifold
hypothesis in the neural network. Our findings bridge perspectives from algorithmic
information theory (Kolmogorov complexity, compressive modeling), symmetry (group
theory), and dynamics (conservation laws, reduced manifolds), offering insights into the
neural correlates of agenthood and structured experience in natural systems, as well as the
design of artificial intelligence and computational models of the brain.

Keywords: algorithmic information theory (AIT); groups; Lie groups and pseudogroups;
Kolmogorov theory; symmetry; conservation laws; manifold hypothesis; neural networks;
AI; control theory; computational neuroscience; neurophenomenology

1. Introduction
Understanding the fundamental principles of agency—spanning cognition, planning,

valence, and behavior—and the shaping of subjective experience (perceived structure
and emotion) remains a central challenge in neuroscience and artificial intelligence (AI),
with broad socioethical ramifications beyond homo sapiens [1,2].

In a series of papers [3–9], we proposed a framework anchored in Algorithmic Infor-
mation Theory (AIT) to study the phenomenon of structured experience. This term refers to
the organized spatial, temporal, and conceptual structure of our subjective experience [10],
encompassing both our perception of the world and our self-awareness as agents engaged
with it, and serves as a critical bridge between first-person subjective experience and third-
person scientific perspectives. Named after Kolmogorov complexity (K), Kolmogorov
Theory (KT) posits that a key function of the brain is information compression [3,4]. This
ability to compress information is equivalent to having access to a model of the world—
unveiling its underlying structure—a critical foundation for cognition and the perception
of structured reality [5].
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KT is related to and complements existing theories such as Active Inference and Pre-
dictive Coding and intersects with themes like the Information Bottleneck, grounded in
Shannon Information theory [7,11–13]. AIT is the generalization of Shannon information
theory pioneered by Kolmogorov, Chaitin, and Solomonoff using computation theory
(Turing) [9,14,15]. While Shannon’s entropy provides a probabilistic approximation to
algorithmic complexity under noisy conditions [9,15,16], Kolmogorov complexity pro-
vides a universal, computation-theoretic lens whose role in defining and implementing
model building has been highlighted in related domains, including AI and compression
in Nature [16–18]. These principles resonate with the longstanding pursuit of simplic-
ity (low Kolmogorov Complexity), emphasized throughout history by thinkers such as
Pythagoras, Plato, Aristotle, Epicurus, Occam, Leibniz (with special clarity in his Discours de
métaphysique (1696), as pointed out by Chaitin [19], Newton, Hume, Kant, and Einstein [20].

Algorithmic agents are the central players in KT. They are defined as computational
constructs using compressive world models, goals, and planning to interact effectively
with their environment (Figure 1). Our definition of agent is inspired but not limited
to natural agents. It characterizes them as information-processing systems equipped
with features essential for evolutionary success: homeostasis (preservation of self) and,
ultimately, telehomeostasis (preservation of kin). Examples of agents include animals, plants,
and life in general, as well as properly designed AI systems combining a world modeling
engine, an objective function, and a planning module [6,7].

Definition 1. An algorithmic agent is an information processing system with an objective function
(goals) that interacts bidirectionally with the external world, inferring and running compressive
models, planning, and acting to maximize its objective function.

Agent elements of relevance to our discussion are the Modeling Engine and the Com-
parator, which evaluates model prediction errors by comparing model-generated data with
sensor data (see Figure 1). The existence of a Modeling Engine in the agent follows from
the Regulator Theorem, a key result in the field of cybernetics that states that “Every good
regulator of a system must be a model of that system” [21,22]. For a regulator to effectively
steer a system toward its goals, it must rely—implicitly or explicitly—on a model that
captures the system’s relevant properties. In AIT terms, this requirement manifests as high
mutual algorithmic information (MAI) between the agent and its environment, indicating
the degree to which they share the underlying algorithmic structure.

KT is both a theory of cognition (behavior, third-person observations) and experience
(phenomenology, first-person science), where the qualitative aspects of structured experience
(S) are associated with the algorithmic features of agent world models and their associated
valence (V) [8]. It hypothesizes that the presence of qualia of structured experience in algo-
rithmic agents emerges from the successful comparison of (compressive) model-generated
data with world data [4,6,7] and that the structure of all experience reflects the structure of
models. Since successful models reflect structure in world data, KT predicts that the struc-
ture of experience ultimately stems from the structure inherent in the underlying generative
model of world data. This raises the important challenge of characterizing the structure
of world data and its corresponding agent models, with a focus on compositionally and
recursion—key ingredients for compressive and efficient representations. But how is this
expressed in dynamical terms?
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Figure 1. KT’s algorithmic agent, symmetry, and dynamics. The algorithmic agent [6–8] inter-
acts dynamically with the World (structure, symmetry, compositional data). The Modeling Engine
(compression) runs the current Model (which encodes found structure/symmetry) and makes pre-
dictions of future (compositional, coarse-grained) data and then evaluates the prediction error in
the Comparator (world-tracking constraint monitoring) to update the Model. The Planning Engine
runs counterfactual simulations and selects plans for the next (compositional) actions (agent out-
puts). The Updater receives prediction errors from the Comparator as inputs to improve the Model.
The Comparator is a key agent element monitoring the success of the modeling engine in matching
input data. We reflect this process mathematically as a world-tracking constraint on the dynamics
(Equation (11); see also Section 4.4 and Appendix A).

The structure of models, central to KT, can be explored by instantiating the agent as a
dynamical system. This approach is well-suited because computation can be understood as
a dynamical process [23,24]—Turing machines can be interpreted as discrete dynamical
systems characterized by transitions between states evolving over time. From this perspec-
tive, models and other components of the agent are programs that are “run”, and model
and agent structure map directly onto dynamical structure [7,8], where dynamics refers to
the time evolution of variables in the agent program. The connection between algorithmic
and dynamical perspectives opens avenues for analytical methodologies. Tools such as
bifurcation theory, differential geometry, and topology provide insights into algorithmic
agents and the data they produce. These approaches are particularly relevant for exploring
the brain state dynamics and attractor landscapes that can deepen our understanding of
the mechanisms underlying neuropsychiatric phenomena and neurophenomenology [25],
as depicted in Figure 2.
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Figure 2. An illustration of the relationship between underlying mathematical model Structure,
Algorithm features (such as algorithmic complexity K, i.e., program length, compositionally, recursion,
cyclomatic complexity [26], etc.), Dynamics, first-person Experience (neurophenomenology), and in
more detail some of the tools used in studying Dynamics, i.e., stability theory, bifurcation theory, chaos,
geometry, topology, complexity (entropy, algorithmic), and symmetry, and Experience (including
psychophysics, phenomenology and AI methods to characterize the structure of experience).

Viewing the brain through the lenses of computation and compression provides valu-
able insights for both theoretical and empirical research. The computational viewpoint
of brain function directly suggests that the brain operates as a dynamical system with
unique computational and informational characteristics emerging at the critical points in
complex systems [24,27–30]. Criticality is increasingly recognized as a guiding principle
for understanding the brain’s complex behavior [7,31–44] (although some of its features,
e.g., power-law neuronal avalanches, may stem from other dynamical mechanisms [45–47]).
Neural systems are hypothesized to reach such states through evolutionary and develop-
mental mechanisms driven by homeostatic plasticity [25,48–51].

Regarding the role of compression, we have argued elsewhere that, from the perspec-
tive of natural agents, the world—defined as whatever is generating data on the other
side of the agent—is, to a significant extent, simple and compressible [6,7]. This assump-
tion, which mirrors the “unreasonable effectiveness of mathematics” [52] and Occam’s
razor [15,16], underlies our rationale for the definition of agents as systems seeking to derive
models of the world for survival, guided by a prior bias toward simplicity (compressibility,
in the algorithmic information-theoretic sense).

AIT provides the foundational definition of compression: Kolmogorov complexity is
defined as the length of the shortest program capable of generating a dataset (e.g., a stack
of images of a hand [15]). As we discuss here, compression fundamentally relies on the
presence of symmetry or invariance [3]. The ability to compress a dataset is equivalent to
having a model of the data, which implies the existence of patterns, invariances, or regu-
larities that can be exploited [5]. Intuitively, the length and structure of such a minimal
program or model will be closely related to the symmetries within the dataset. A model that
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successfully compresses data essentially builds on and reflects the underlying symmetries
or invariances. In this sense, the model is the invariant entity.

A variety of methodologies exist to characterize the structure of algorithms beyond
traditional Kolmogorov-style measures. Classical software engineering metrics (e.g., cyclo-
matic complexity, Halstead metrics, and Henry–Kafura’s information flow) capture factors
like control-flow branching, operator usage, and module coupling [26,53]. In addition to
these, one can examine recursion depth and nested compositionality [54], parallel or circuit
depth [55], and category-theoretic notions of compositional hierarchy [56]. Furthermore,
functional and inductive approaches highlight structures such as iterated function com-
position [57] and structural recursion [58], offering granular insights into how algorithms
decompose data and transform it through layered abstractions.

While structure in algorithms manifests as compositionality and recursion, we expect that
the dynamical systems arising from agent computations using these models—as observed
in their structure, behavior, or neural activity—inherit and reflect the structure derived
from the models. Consequently, by studying the relationship between the structure and
symmetries of world data, the computational features of the models being run by the agent
(model structure), the structure of neurophenomenological (first-person reports), behavioral,
and physiological data (third-person records), can shed light on the hypothesis that an
agent has (or at least reports) structured experience in a way that mirrors the structure of
the compressive models it uses to track (structured) world data.

As part of this ambitious research program, we focus in this paper on the relationship
between the structure of input (World) data and the computational (constitutive, structural) and
dynamical features of the successful world-tracking agent. Through this analysis, we aim to
provide a new perspective on phenomena such as changes in the complexity of neural
data [25,39–41,59] or the manifold hypothesis, which holds that natural data (including
neuroimaging data) lies on lower-dimensional manifolds in its embedding space [60–62].
We include insights from the compositional (hierarchical) nature of world data and neural
processing and the associated necessity of coarse-graining.

Since invariance, structure, and symmetry are central to the problem at hand, we are
naturally led to group theory and, more specifically, to the theory of continuous groups—
Lie groups and their generalization. Next, we provide an informal definition of Lie groups
and pseudogroups. Formal versions are provided in the Appendix B.

Definition 2. A Lie group can be thought of as a set of symmetries that forms both a group (where
we can combine symmetries and invert them) and a smooth manifold (so these operations behave
nicely in a “smooth” sense). Concretely, its group multiplication (g, h) 7→ gh and inverse g 7→ g−1

are smooth maps.
In a Lie pseudogroup, we only require this structure to hold locally on a manifold. In other

words, each transformation is only defined on a neighborhood within the manifold, but the usual
group properties (identity, composition, inverse) still apply wherever these neighborhoods overlap.

The fundamental principles of symmetry and Lie groups, which have provided the
foundation for modern physics, including relativity theory and quantum mechanics [63,64],
are now being adopted in machine learning (see, e.g., [65–69]) after pioneering work in
the context of convolutional networks [70,71]. This paper is a parallel development in the
context of KT and, as we shall see, with applications in both computational neuroscience
and machine learning.

In this paper, we provide a unifying framework to define and study structure across
three domains: computation (via AIT), dynamics, and subjective experience. Specifically,
we present a general model in which agents identify and exploit patterns in world data to
build compressive representations, drawing on AIT as a foundation for compositionality
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and recursive structures [15,16]. We link these AIT principles to invariance and symmetry,
introducing a Lie Generative Model that connects these ideas with Lie group theory and
pseudogroups [72,73]. By showing how symmetries in the environment constrain the
agent’s internal dynamics through a Comparator mechanism, we demonstrate that world-
tracking conditions naturally induce reduced manifold structures in the agent’s state space.

The main novel contributions of this work are: (i) establishing a formal correspondence
between compression-based theories of representation and Lie-theoretic approaches to
invariance; (ii) presenting a unified Lie Generative Model framework that captures how
environmental symmetries shape both the agent’s constitutive and dynamical structures;
and (iii) illustrating how these links inform compositional and recursive perspectives on
cognition and learning.

In the next sections, we start from the mathematical framework of Lie groups to formal-
ize the concept of structure and provide a definition of a generative model. This foundation
allows us to explore how the algorithmic simplicity of a model is linked to representations
of compositional or hierarchical Lie groups. We then demonstrate that neural networks,
such as feedforward networks, inherently acquire structural constraints from the symmetry
properties of the data they are trained on. Translating this to the context of recurrent
neural networks (RNNs) leads us to discuss the central role of symmetry and conserva-
tion laws, which provide the basis for the concept of compatible world-tracking constraints.
Building on this, we show that when a dynamical system aims to track the world, it is
compelled to mirror the symmetries present in the data. This mirroring results in structural
constraints and the emergence of reduced manifolds, which are lower-dimensional spaces
that encapsulate the system’s essential features while respecting the imposed constraints.
The compositional nature of world data gives rise to the notion of compositional or hier-
archical constraints and manifolds. Our discussion is high-level and does not distinguish
between natural and artificial neural networks, with implications for neuroscience, AI
design, and brain modeling.

2. Generative Models as Lie Groups
Prior work in computer vision has highlighted the role of symmetries in image data [74–76],

and in particular those associated with the group of rotations, translations, and dilations
in n-dimensional Euclidean space. These can be considered as an extension of the Special
Euclidean group SE(n) to include scaling transformations and are often referred to as the
Similarity group, denoted as Sim(n) [77]. We recall that groups act on manifolds to effect
transformations (see the Appendix A for various definitions).

Artificial neural networks used for classification can be understood as representing
invariance with respect to a group of transformations [5]. This group defines a structure under
which instances that are similarly classified form equivalence classes, capturing the shared
features or invariances among those instances. This perspective offers a principled way to
understand the representations learned by the neural network and the invariance properties
it might acquire during training, potentially facilitating the analysis and visualization of
the learned representations in terms of the group actions or guiding the design of network
architectures. We aim to extend these ideas to more general generative models—the starting
point in KT.

2.1. Classifying Model-Generated Cat Images

To make the discussion tangible but without loss of generality, we continue with the
example of a classifier or autoencoder of cat images. We will work with several mathemati-
cal objects: the universe of all images RX (with X the number of pixels), the subset of cat
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images (a very large or infinite set), a generative model of this set, and a symmetry group
G transforming cat images into cat images.

2.1.1. Generative Models

Our first assumption is that the space of cat images can be produced using a simple,
smooth, generative model of cat images mapping points from a (relatively) low-dimensional
manifold C (the compressed, “cat image latent space”) to a larger image space—see Figure 3.
This aligns with the view that the notion of “cat” is intrinsically a compressive model,
an invariance encoded as a generative model using a few parameters. We formalize this in
the following definition.

Definition 3. By a generative model of images, we mean a smooth function mapping points in the
M-dimensional configuration space manifold to X-dimensional image space, f : C → RX so that
Ic = f (c) ∈ RX for c ∈ C, with M << X.

We can locally represent the generative model using coordinates on the manifold,
which we refer to as ‘patch’ coordinates, denoted by θ ∈ RM, typically with M << X.
In this context, Iθ = f (θ) ∈ RX represents the image generated by the model, where M
is the number of parameters defining the model, and X is the number of pixels in the
generated image Iθ . Parameters are coordinates of cat space manifold C (locally RM)—cat
image configuration space.

A subset of the space of all possible images corresponds to the category of “cats”.
Suppose there is a group G that acts on the set of images of cats, or, equivalently, their
corresponding parameters in configuration (latent) space and transforms them into other
images of cats, formally defined as the maps G ×C → C, and G ×RX → RX , corresponding
to γ · θ = θ′ (configuration space) and γ · I → I′, with γ ∈ G (image space).

The largest group of transformations that can act on cat images while preserving their
structure is the group of automorphisms, which in this case refers to all possible permutations
of cat images [5]. Within this large group, there exists a specific subgroup known as the
diffeomorphism group, denoted as Diff(C). This subgroup is an infinite-dimensional Lie
group [78] that consists of smooth (i.e., continuously differentiable) transformations or
deformations of the configuration space manifold, mapping cat images to other cat images
through the generative model.

To further formalize the notion of a generative model, we start from a reference image
of a “cat” and define continuous transformations to other images of cats. A desirable
property of a generative model defined this way is that it should not depend on the
choice of a reference image—the concept of “cat” should not hinge on a specific canonical
cat. To achieve this, we impose a transitivity requirement, meaning that the group of
transformations must be able to link any cat image to any other cat image.

Since we can appeal to the infinite-dimensional group Diff(C), we know we can always
associate a Lie group with the generative model. However, to keep the generative model
simple, particularly by ensuring it has a finite number of parameters, we make the stronger
assumption that the generative world model of cat images can, at least locally, be associated
with a finite Lie group G.

Finite Lie groups capture the essence of continuous symmetries in a compact, finite-
dimensional form, making them highly amenable for theoretical study and practical com-
putation. In contrast to the general diffeomorphism group Diff(C), which is often infinite-
dimensional, finite Lie groups provide a structured approach to understanding global
behavior from local information near the group identity element. This makes them particu-
larly useful as candidates for simple generative models of world data, as they encapsulate
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key symmetries and invariances in a tractable manner through a few group generators.
They also capture naturally the algorithmic notions of recursion and compositionality.

Figure 3. Variations from canonical cat (left) or diatom (right). An illustration of cat and diatom
images (AI-generated in Ernst Haeckel’s style) derived from a central archetype (center) via the
transformative action of a Lie group in latent space. In such a generative model, any image can be
used as an archetype due to the transitivity of the acting group.

2.1.2. Recursion and Compositionally in Lie Group Action

To illustrate this, recall that a small transformation generated by a Lie group element γ

can be described as a perturbation around the identity element as γ = 1G + ϵT, where γ is a
group element representing a small transformation, 1G is the identity element representing
no transformation, ϵ is a small parameter representing the “size” of the transformation,
and T is an element of the Lie algebra, inducing infinitesimal transformations in the consid-
ered space (in our context, the “cat space”). This formulation offers a linear approximation
of γ in the vicinity of the identity element, utilizing the Lie algebra structure derived from
the Lie group.

Any element within the connected component of the identity can be represented as a
product of infinitesimally perturbed identity elements, denoted by γ = 1 + ∑k ϵkTk,

g = lim
n→∞

(
1 +

1
n ∑

k
θkTk

)n

= exp[∑
k

θkTk]. (1)

where θk are parameters and Tk are the generators of the Lie algebra [72]. If G is a con-
nected, compact matrix Lie group, the exponential map for G is surjective (covers the entire
group) [72]. This recursive expression encapsulates the fundamental property of Lie groups
that any group element can be decomposed into an (infinite) series of infinitesimal trans-
formations. Compositionality extends this by including the sequential action of different
group elements. In algorithmic terms, recursion is a for loop, and composition is a set of
nested for loops.

2.1.3. Lie Pseudogroups and Generative Models

However, in a topologically complex latent space, finite Lie groups (globally defined
transformations) may be too restrictive as they require a single structure acting globally. A
Lie pseudogroup, by contrast, focuses on partial transformations with restricted domains that
can be iteratively composed when their domains overlap, providing both local flexibility
and global reach. This is particularly suited for “walking” the latent space of a generative
model in iterative steps—chaining local diffeomorphisms across patches in a manner that
respects the underlying manifold structure. Consequently, a pseudogroup formalism often



Entropy 2025, 27, 90 9 of 54

emerges as the most robust solution to handling high-dimensional, topologically intricate
configuration spaces.

This motivates the following definition, closely related to the notion of a group of
transformations acting on a manifold (see the Appendix A):

Definition 4. An r-parameter generative model I = f (c), c ∈ C, is a (Lie) generative model if it
can be written in the form

I = f (c) = f (γ · c0) = γ · I0, γ ∈ G (2)

where c0 is an arbitrary reference point, I0 ∈ RX is an arbitrary reference image, f is a smooth
function, and G is an r-dimensional Lie pseudogroup.

For example, in the case of cat images in a particular manifold patch, we may write
f (θ) = h(γθ · P0) = γθ · I0, where h is a projection function (describing the operation of
a camera, which, for simplicity, we may assume to be fixed, with a uniform background,
etc.), and P0 is an arbitrary reference point-cloud capturing the 3D form of a particular
reference cat. In the second equality, I0 is the corresponding reference cat image, and γθ is
a representation of the group G on that object. The action of the group element γ varies
depending on the type of object it is applied to—whether a point cloud, an image, or a
parameter—resulting in different representations of the group for the same transformation.
For instance, when dealing with point cloud data and rotations, the group’s action can
be described by matrices, giving us a linear representation in a vector space. However,
linearity of representations may not generally hold—the representations found in natural
settings are often non-linear, outside the domain of classical representation theory [73]. Thus,
although we refer to the map from the latent (or object) space to sensor measurements (e.g.,
images) as an “induced representation”, it may generally be a non-linear group action—and,
due to the non-injectivity of the sensor projection, it may also be multi-valued.

The function f must be smooth to leverage the recursive and compositional nature
of the Lie action, ensuring that the resulting generative model is compressive (e.g., it
cannot be a giant look-up table). This connection ties the structure of the Lie generative
model to the notion of simplicity as defined by Kolmogorov complexity in algorithmic
information theory.

A Lie pseudogroup structure enables the navigation of the configuration space man-
ifold in a succinct manner. By using Lie groups, models can capture the essential char-
acteristics of objects in a mathematically rigorous and computationally efficient manner.
This approach facilitates both the understanding of the learned representations in neural
networks and the practical implementation of generative models.

The assumption of finite dimensionality is not restrictive when the generative model
depends on only one continuous parameter. This applies to processes associated with
rotations, translations, and dilations since these correspond to finite Lie groups. It also
holds for transformations of shape space, e.g., if the cat image generator source is a robot
with any number of rigid joints, which can be described using the special Euclidean
group SE(n) [79]. More broadly, while it is not always clear whether images generated
by models like generative neural networks or 3D modeling programs (e.g., Blender [80])
possess the group structure of a finite Lie group, generative models exhibiting transitivity,
smoothness, and a finite number of parameters may often be described by a finite Lie
pseudogroup [76,81,82]. We discuss the limitations of the finite-dimensional assumption in
Appendix C.

In summary, data produced by a generative model can always be locally generated by
a finite-dimensional Lie group. Some generative models admit global finite-dimensional
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Lie pseudogroup actions and are, therefore, Lie generative models in our definition. This
will hinge on the geometry of the generative model configuration space C. It is nevertheless
always possible to locally cast generative models as Lie generative models.

2.2. Implications of Invariance Under Group Action

To illustrate a Lie recursive and compositional generative model and study the im-
plications of invariance, imagine generating cat images by taking pictures of a jointed cat
robot (see Figure 4) for training a deep neural network classifier. In this context, invari-
ance means that when we apply transformations, such as rotations or pose changes that
do not alter the semantic identity of the object, the output of the model should remain
unchanged—i.e., the classifier should still recognize the object as “cat”. The robot’s varying
state is expressed through generative compositionality and is described by the Product of
Exponentials formula from robot kinematics [83],

T = ∏
n∈parents

e[Sn ]θn M (3)

where T ∈ SE(3) is the final position and orientation of the end effector (e.g., a particular
cat claw) in the special Euclidean group, θn is the vector of joint variables for the n-th joint,
[Sn] is the skew-symmetric matrix representing the screw axis of the n-th joint, e[Sn ]θn is the
matrix exponential representing the action of the n-th joint’s transformation, and M is the
initial (home) configuration of the end effector.

Figure 4. Cat robot and generated cat image. A representation of the generative model of a cat
derived from a robotic construction using the product of exponentials formula (Equation (3)) in robot
kinematics. The robot consists of a set of joints controlled by a Lie group. Left: cat robot using joints
to control pose and expression. Right, projection into an image using a camera. (These images are
themselves AI-generated).

Here, SE(3) is realized as a matrix Lie group, so the Lie algebra se(3) becomes a finite-
dimensional vector space of 4 × 4 matrices (with a specific block structure). Accordingly,
each joint’s screw axis [Sn] lies in se(3), and the map e[Sn ]θn is the usual matrix exponential
from the Lie algebra to the group. In this sense, we move from the manifold description of
SE(3) to its vector-space representation (the Lie algebra) for the sake of computational con-
venience.

In this sequential composition, the order of joint transformations is crucial and reflects
the non-commutative nature of the Lie group SE(3). Each joint’s transformation is applied
in a fixed sequence, ensuring that the resulting configuration accurately represents the
compounded effect of all joint movements. This ordered product does not assume that the
individual transformations commute; instead, it leverages the inherent structure of the Lie
group to maintain the correct spatial relationships between joints.
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To represent the full state of the robot, a similar expression is applied to each joint
and, by extension, to the entire robot. Each joint corresponds to a representation of a Lie
group, and the calculations—including those involving the generators—are compositional.
Leveraging this Lie-group compositional structure, we can generate an arbitrarily large yet
highly compressible dataset of robot pose images [5].

This principle may extend to other generative models of the world, such as more
realistic images of cats. Fundamental physical laws often exhibit symmetry principles,
such as covariance in general relativity or gauge invariance in quantum field theory. While
it is not immediately clear how these symmetries propagate after the coarse-graining of
phase space by an agent’s sensory system, it is plausible that they persist in some form.
Alternatively, natural selection may favor agents that coarse-grain the world in a way that
allows them to exploit compositional representations [9].

Our network classifier aims to output “1” if an image contains a cat and “0” oth-
erwise. While the universal approximation theorem [84] guarantees that a sufficiently
large network can approximate this classification function, it does not address how effi-
ciently such a network can learn. Neural networks achieve this task efficiently, as shown
in [85,86], if (1) the data are compositional and (2) the architecture leverages that compo-
sitionality through a sufficiently deep structure. The former hinges on the presence of a
succinct generative model—akin to having a “short program” (recursive, compositional) in
algorithmic information theory. The latter leads to the design of deep or truly recursive
architectures. The same reasoning applies to compressive autoencoders, where exploiting
compositionality enables learning compact latent representations.

The equations for a general feedforward neural network are

x(l+1) = h
(

W(l)x(l) + b(l)
)

, l = 0, 1, . . . , L − 1 (4)

where x(l) is the vector of neuron activations at layer l, W(l) and b(l) is the weight matrix
and bias vector at layer l, respectively, h( ) is the activation function applied element-
wise, and the input data are fed as x(0). The equations can be compactly expressed as
x = h(Wx+ b), where x is a vector encompassing the activations of all nodes in the network,
structured in a way that respects the layered organization of the network, and W is a block
matrix describing the connections between the nodes, including the weights associated
with each connection.

We require the classifier to be invariant under the action of the group G, whether it
is finite or an infinite Lie group. Specifically, if the network classifies a point θ ∈ C (via
the image Iθ generated using parameters θ) as a “cat”, it should also classify the point
γ · θ as a “cat” for any γ ∈ G. If the group is a finite Lie group, it is sufficient to study
the finite number of generators of the group—linear operators in the group’s Lie algebra.
An important property of Lie groups is that any element can be expressed in terms of actions
near the identity element, although this applies only to the part of the group connected
with the identity. The composition of group actions from elements near the identity covers
the connected part. The recursive nature of Lie groups ensures that to establish invariance
or equivariance of a function under group action, it is sufficient to verify this property
for the generators Tk. The behavior under infinitesimal transformations near the identity
informs the behavior under the full group action. However, for disconnected Lie groups,
invariance must be confirmed for each component separately.

A change in the input image from a class-preserving infinitesimal transformation will
propagate through the network and affect the state x. The transformation can be described
by ϵ where x → γ · x = x + δx, with δx = ϵ Tx, where δx is a small change in the state
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vector x, T is a linear transformation generator associated with the group action, and ϵ is a
small parameter. This induces the transformation

x′ = h(W(x + δx) + b) = h(W(x + ϵ Tx) + b), (5)

and we seek conditions under which the output of the network is invariant to first order
in ϵ. (See Figure 5).

Figure 5. Image classification task. Classification of cat images can be seen as learning the invariances
of a generative model. Such a network can also be implemented using an autoencoder of cat images
with a skip connection to detect anomalies.

Using the chain rule, we can express the transformation matrix at a given layer l in
terms of the transformation matrix at the input layer and the Jacobian matrices of the
transformations at all preceding layers,

Tl = Jl−1Wl−1 · Jl−2Wl−2 · . . . · J1W1 · T0 (6)

where Ji denotes the Jacobian matrix of the transformations at layer i, encompassing the
activation functions, and T0 is the transformation matrix at the input layer, the linear
approximation to Iθ = γθ · I0 ≈ h((1 + ϵ T0)θ0).

A necessary (but not sufficient) condition for the invariance of the neural network
output with respect to the group action is that there exists at least one layer l for which
the condition Jl · Wl · Tl xl = 0 holds for all cat image inputs (see [76] for similar reasoning
on the conditions imposed by symmetry). This ensures that the transformed state vector
xl + Tl xl remains in the null space of the weight matrix Wl at layer l, guaranteeing the
invariance of the state of this layer with respect to the transformations generated by the
group action. In other words, the space of cat images must be in the kernel of the operator
Tl for some layer l. This property propagates to higher layers, ensuring the network’s
output remains invariant to these transformations.

For the feedforward autoencoder, the analogous equivariance requirement is that the
transformation of the output matches that of the input, namely,

TN = JL−1WL−1 · JL−2WL−2 · . . . · J1W1 · T0 = T0 (7)

when acting on cat images. This sets an M-dimensional family of constraints on W requiring
that the matrix TN = JL−1WL−1 · JL−2WL−2 · . . . · J1W1 has the space of cat images as an
eigenspace corresponding to the unit eigenvalue. These are the necessary requirements for
invariance or equivariance under transformations.

Systems specifically designed for invariant behavior, such as convolutional networks
with pooling layers, explicitly implement some of the required symmetries. Generalizing
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this idea involves designing networks that “filter” data across group orbits (e.g., such
as translations or rotations), then analyze the results (e.g., computing the maximum or
the average) [66], or using data augmentation techniques, or finding fundamental archi-
tectural principles for group invariance [87]. The success of hierarchical, recursive, deep
architectures reflects this principle [60,65].

In summary, imposing invariance of the classification of data produced by a gen-
erative model leads to equations that constrain the weight parameter matrix under trans-
formations associated with the generative model. This approach is valuable for designing
neural networks—where the weight equations can be enforced in the loss function during
training—provided the generators are known. Conversely, these principles can be useful for
inferring symmetries underlying world data from the structure of networks trained on it.

3. The Agent as a Dynamical System
Although feedforward networks can be viewed as dynamical systems, their computa-

tional capacity is constrained by a fixed number of sequential evaluation steps. A broader
perspective, bridging both algorithmic and biological paradigms, arises from the use of
ordinary differential equations (ODEs), which have the potential to instantiate universal
Turing machines [88–90]. Differential equations can be interpreted as recursive neural
networks (RNNs), modeling continuous dynamics similarly to recursive processes in NNs.
This analogy becomes particularly clear when the ODE equations are discretized.

While the algorithmic perspective defines the agent as a program or Turing machine
exchanging information with the environment, the dynamical view describes it less ab-
stractly (but equivalently) and in a manner that makes more clear its connections to physics
and biology—e.g., as a human brain or a neural network running on hardware. As a
dynamical system, the agent is characterized by state variables and rules governing state
transitions as a function of an external parameter denominated as physical time.

We define some terminology used in what follows. The phase space in dynamical
systems theory is a multidimensional manifold (see Appendix A for mathematical details)
where each point specifies the state of the system (the necessary and sufficient information
to project the state in time). Finally, by the geometry of the phase space, we refer loosely to the
structure and properties of the subspace of dynamical trajectories in space, including the
presence of any special points or areas, such as attractors or repellors.

3.1. General Model

A general model of the state of neurons or other elements of a dynamical system receiv-
ing external inputs can be written in the form of a multidimensional ordinary differential
equation (ODE),

ẋ = f
(
x; w, η(t)

)
(8)

with x ∈ RX is a highly dimensional state variable representing the activity of neurons
or neuron populations (e.g., membrane potential or firing rate) and where w stands for
connectivity parameters (and maybe others). For example, in a model of the human brain,
each coordinate may represent the average firing rate of populations of neurons (a neural
mass model) or a more detailed ternary code of silences, spikes, and bursts in each cell [91].
This finite-dimensional equation can be generalized to a partial differential equation (a
neural field equation), but these details are not essential in what follows.

The input term η(t) reflects inputs from the world represented as an external forcing
independent of the agent’s state that makes the equations non-autonomous (i.e., explicitly
time-dependent). We can imagine it representing random kicks to the trajectory or a
more steady, purposeful forcing received by agent sensors (we provide a generalization
of this model to include inputs and outputs reflecting interaction with World dynamics in
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Appendix A). External inputs—which, from the perspective of a Universal Turing machine,
can be viewed as reprogramming the agent—can force changes in the state trajectory or even
drive the system’s landscape through dramatic topological transitions [25,92]. For instance,
such changes in topology can be induced by time-varying parameters associated with
bifurcations in the system.

We call Equation (8) the “fast time” dynamics equation [25], as it governs dynamics at
short time scales (seconds), where connectivity parameters w are assumed to be constant
(in reality, w may be dynamic at slower time scales, reflecting plasticity phenomena). This
equation fixes a dynamical landscape, the geometry of trajectories in phase space defined by
the set of ODEs. More precisely, the landscape is the manifold defined by the motion of
trajectories in the phase space manifold (with local coordinates x ∈ Rn). The dynamical
landscape is determined by the form of the function f () and parameters w.

While we focus on deterministic ODEs for clarity in this work, future research will
explore the implications of explicitly modeling η(t) as a stochastic process. The external
input η(t) in our model can be extended to stochastic processes, leading to a stochastic dif-
ferential equation (SDE) framework. For instance, η(t) could follow an Ornstein–Uhlenbeck
process, introducing biologically realistic noise into the dynamics. This extension allows
the exploration of noise-induced phenomena, such as stochastic bifurcations, attractor
transitions, and resonance, adding richness to the system’s behavior.

3.2. Conserved Quantities and Symmetries

Let us focus now on the case where η(t) is constant or very slowly varying compared
to the other dynamics. In the context of dynamical systems, symmetry is a transformation
that maps a solution of the ODEs into another or, equivalently, maps the set of solutions into
itself. More precisely, by the symmetry of an ODE, we mean that there is a group G such
that for all elements γ ∈ G, if x is a solution to the equations, then γ · x, a transformation of
x specified by the group element, is also a solution to the ODE.

Since the only indeterminacies in the solutions to the ODEs are the initial conditions,
we can also view symmetries as the action of a group on the initial conditions manifold (in-
tegration constants). Symmetries partition the solution space (or initial condition manifold)
into orbits under the group action. If the group acts transitively on that space, then, indeed,
one can map any solution to any other. Otherwise, solutions lie in distinct orbits, and only
solutions within the same orbit can be mapped into each other. Identifying symmetries in a
system simplifies its analysis by organizing solutions into equivalence classes under the
symmetry group. Because solutions within each class can be mapped into one another by
the group action, it suffices to study one representative solution per class, with the group
element labeling how solutions transform within that class.

Symmetries can be categorized as discrete or continuous, and in the latter case they are
described by local Lie groups. Paralleling the implications of Noether’s theorem [63,64,93],
the existence of symmetries can help in analyzing and solving ODEs. For example, the exis-
tence of a continuous symmetry means that we can locally define a coordinate system in
which some of the coordinates do not appear in the equations other than in the derivatives
(they are cyclic) [93]. Furthermore, there is a deep connection between symmetries and
conservation quantities, as we now describe. (See Figure 6).
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Figure 6. Group acting on solutions space and the (generalized) Noether’s theorem. The action of a
group on ODE trajectories can be used to provide a labeling system for them. A reference solution
trajectory se(t) (e is the identity element in G) is moved to sγ under the action of element γ ∈ G. This
gives rise to conserved quantity C(s), which is labeled by group elements (functions from phase
space to group elements after the choice of some reference solutions—convention). [Figure inspired
by the illustration of the action of the Galois group on polynomial equation solutions in Tom Leinster’s
Galois Theory (Figure 2.1) [94]].

A conservation law is a map from solutions to a manifold. For example, energy con-
servation is a map from solutions to Newton’s equations to real numbers. Momentum
conservation is a map from solutions to R3.

The relationship between symmetry and conservation laws can be understood as
follows. If a system is invariant under the action of a group G, then for any solution
x(t), applying a group element γ ∈ G yields another solution, γ · x(t). Consequently,
one can label every solution by the group element needed to map a reference solution
(corresponding to the identity element e ∈ G) to it.

Under standard uniqueness conditions (guaranteed by the Picard–Lindelöf/Cauchy–
Lipschitz Theorem [95]), trajectories in phase space do not intersect—apart from the trivial
case of time-translation symmetry in autonomous ODEs. Hence, each point on a trajectory
can be uniquely associated with a specific group element (disregarding temporal transla-
tions in autonomous systems). This induces a mapping from phase space to the group that
remains constant along each trajectory. That constant constitutes the conserved quantity
associated with the system’s symmetry. This construction parallels Noether’s statement:
continuous symmetries imply conserved quantities.

Thus, we can think of this process as the act of creating a structured labeling system for
the solution space and then the phase space, using the group. The group labels, as the output
of functions from phase space to group elements, are the conserved quantities.

To illustrate this, consider the equation ẋ = 0 with x ∈ R. It displays translational
symmetry: if x(t) is a solution, then x(t) → x̃(t) = x(t) + δx is also a solution. The group’s
action is to translate solutions along the x-axis (phase space is 1D in this example). The con-
served quantity is C(x) = x = x0, which is shifted by the action of the group, C → C + δx.
We provide more simple examples of symmetry transformations that shift associated
conserved quantities in Appendix F.

Finally, a well-known example in classical mechanics is the Kepler problem (two-body
problem in celestial mechanics), an autonomous ODE in six-dimensional phase space,
where a (bound) solution may be classified using conserved quantities corresponding
to symmetries: the shape of an ellipse (eccentricity), its size (the energy or total angular
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momentum, one parameter), and the orientation of the plane containing it (three param-
eters). The latter results from the rotational symmetry of the problem and allows for the
classification of the solutions with the orientation of the plane (the angular momentum).
We can think of the specification of a solution in a constructive way: specify first the energy
(one parameter) and eccentricity (one parameter) of an ellipse with its major axis along
the x-axis and a minor axis in the y-axis. Then, rotate this plane in 3D (three parameters
from the SO(3) or, equivalently, the SU(2) group). The existence of these five conserved
parameters in the Kepler problem or in other similar central potential problems stems from
the symmetries of the equations (the O(4) group) [96].

More generally, N-dimensional ODEs have N − 1 conserved quantities (essentially
functions of the constants of the motion; see Appendix F). An ODE with constraints (an
algebraic differential equation) has solutions if the constraints are functions of the constants
of the motion (and hence constant). The conserved quantities can be used to create, at least
locally, new coordinates, which are then constant and act as (group) labels of solutions.
The symmetry of the equation is associated with transformations that shift these constants.

4. The World-Tracking Condition
Because of the time-dependent input term, it appears difficult to say very much about

the behavior of the fast-time Equation (8). However, there are two important elements of
the model that we can leverage. Namely, we assume that:

1. Agent inputs are generated by simple rules (the world is inherently simple), i.e., by a
hierarchical generative model as discussed above.

2. The agent is able to “track” its inputs, i.e., use an internal generative model to
approximately match them.

We now analyze the mathematical consequences of these statements.
First, the assumption that world data are the product of a simple generative model—as

discussed in the previous sections—implies that the constrained dynamics of the agent can
be studied from the point of view of symmetry. We may think of the external world as
providing stochastic but structured input to the dynamic system.

Second, one of the objectives of the agent is to track world data through the implemen-
tation of the world model in its modeling engine, which is to be compared with the data
(this task is carried out by the Comparator in the KT agent model; see Figure 1).

To make this comparison meaningful, there must be a readout from the agent’s internal
state that matches the tracked world data. This necessity imposes a dynamical constraint
on the system: the agent’s internal states must evolve so that their readouts correspond to
the external inputs. This constraint ensures that the agent’s internal dynamics are aligned
with the environment, enabling accurate tracking and adaptation.

As we will see, the implications of world-tracking are, in fact, twofold. On the one
hand, the dynamics of the system are constrained to lie in reduced manifolds. On the
other, the architecture of the equations implementing world tracking needs to satisfy some
requirements, as we already saw above in the simpler case of a feedforward classifier.

4.1. Constrained Dynamics I

We begin with a simple toy model to study the role of symmetry and conservation laws.
Consider the constrained system of differential equations (or differential algebraic equation [97]),

ẋ = 0

ẏ = 1

x = C (9)
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The first two equations are regular ODEs, and the last is a constraint (C is an arbitrary
parameter), a toy world-tracking condition. These equations happen to be solvable for any
value of C, because the general solution to the ODE subsystem is

x = A

y = t + B (10)

Thus, it is possible to select the integration constants A and B that satisfy the constraint. This
occurs because the constraint is not independent of the conserved quantities of the system.
The same conclusion follows if the third equation in (9) is replaced by f (x) = C, for any
function f such that C is in its range.

Another way to view the compatibility of the equations is that the ODE subsystem
displays translational symmetry in x, with the symmetry x → x + ϵ. This means that if x is
a solution to the differential equations, then so is x + c, for any constant c. Hence, we can
shift the trajectory x by any value we wish and still obtain a valid solution to the ODE.

Conserved quantities in an ODE, such as x = C above, can be used to create new
coordinates with zero derivatives, which manifest the symmetry, just like x in our example.
The symmetry group shifts solutions across the conservation surface, i.e., it shifts the
constant associated with the conserved law. Further examples are provided in Appendix F.

4.2. Constrained Dynamics II

Consider next an agent watching a moving human hand generated by some simple
physics-based computational model, as we described in [7]—see Figure 7.

We represent the retina image by I = Iθ ∈ RY, with Y the number of “pixels” in the
retina (e.g., Y = 106, the approximate number of fibers in the optic nerve [98]) and θ ∈ RM a
small set of parameters reflecting the state of about M = 102 ligaments and tendons (as may
be generated by a realistic animation [99], for example). Although the space of all possible
images has a large dimensionality Y, the space of all hand-generated images has a much
smaller dimensionality M << Y. More precisely, the points in image space corresponding
to hand images lie in an M-dimensional manifold embedded into a Y-dimensional box.

The agent is equipped with a brain consisting of a large network of neurons, and the
brain state specified by x ∈ RX (X is very large, there are about 1.6 × 1010 neurons and
about 1.5 × 1014 synapses in the human cerebral cortex [100,101]). The dimensions of
the brain, pixel, and model space are drastically different. There are many more neurons
(or synapses) than data points (pixels) and very few model parameters (hand shape and
orientation parameters), M << Y << X.

The generative nature of images can be understood as the action of a continuous
group G on the parameter set of the hand model and, therefore, of the images, γ · Iθ = Iγ·θ .
This equation states that the action of the group on image space can be understood as its
action on hand parameter space. The set of all possible hand images (the hand manifold) is
invariant under the action of G. This set is also equivalent to the semantic notion or the
algorithmic pattern of “hand”.
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Figure 7. Agent tracking a computer-generated moving hand. (a) An agent is observing and tracking
a moving human hand generated by some simple physics-based computational model (such as
Blender [99]). (b) World tracking neural network, where the input is compared to the read out—see
Equation (11). We don’t detail here how the Comparator is implemented in the network or how its
output is used to regulate the network—see Section 4.4 for a more in-depth discussion. (The image in
(a) is AI-generated).

We return to Equation (8), which becomes ẋ = f
(

x; w, Iθ(t)
)
, where we have expressed

the model inputs as η(t) = Iθ(t) (the image may be preprocessed in some way before its
input to the network—e.g., the agent may be tracking only some features of the image, not
trying to match every pixel in the image —but this is not important here).

Unless θ is fixed, our equation is non-autonomous. Even so, the range of possible
inputs is now greatly constrained by their simple generative nature. This facilitates the
agent’s task, which is modeling and (approximately) matching these inputs. We represent
this by the world-tracking constraint: there is a projection from neural states to inputs—the
neural state variable x carries a representation of the inputs via some projection operator
(a variable selector or projector in practice) p(x). Putting this together with the neural
dynamics equation, we have the world-tracking neurodynamics equations (WTNE)

ẋ = f
(
x; w, Iθ(t)

)
p(x) ≈ Iθ(t) (11)

with the inputs Iθ(t) produced by the generative model and some parameter dynamics (see
Figure 8).

This a differential algebraic equation (it consists both of differential equations and alge-
braic constraints). It will not have a solution for an arbitrary set of fixed weights w: once
the input is fixed, the system dynamics and, therefore, p(x) are determined, which will not,
in general, match the inputs.

In fact, even in the case of a static input, the only way to satisfy the constraint is if the
constraint is a conserved quantity in disguise,

d
dt
(p(x)− Iθ) = 0 (12)

We may relax the problem by asking for approximate tracking, as indicated by the “≈”
symbol in the second equation. This may be implemented by replacing the constraint with
an equation of the form ||Iθ(t) − p(x)||2 < ϵ. We may also relax the problem by asking for
approximate tracking after transient behavior (the constraint is then seen as a Lyapunov
function of the ODE; see Section 4.4).
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Figure 8. World-tracking neurodynamics. Tracking the world, represented here by a set of frames
of a moving hand, is essentially the task of a compressive autoencoder, which can be described
by Equation (11). The top panel displays a feedforward autoencoder, while the bottom provides a
more general recurrent (RNN) autoencoder (connections going backward are added to highlight the
potential use of predictive coding). Both realizations display an algorithmic information bottleneck
(latent space), where input data are mapped to generative model parameter space.

Another way to view Equations (11) is as an autoencoder of the input function,
i.e., with the input Iθ(t) approximately equal to the output p(x), as outlined in Figure 8.
The network implementation is recurrent and reminiscent of architectures in Reservoir
Computing [102–104], but it can also represent a feedforward system such as a variational
autoencoder [105]—or something in between, as in Figure 8. In this machine-learning
context, we rewrite the WTNE autoencoder equation as

ẋ = f
(
x; w, Iθ(t)

)
w = arg min

w

∫
dt||p(x(t; w))− Iθ(t)||2 (13)

where the dataset used for training is the generated image space discussed above.
In what follows, we assume the problem has been solved, with the w parameters

adjusted to provide such a solution (through some training process). We will also work
with Equation (11) rather than Equation (13) for the sake of simplicity, although we should
keep in mind that, in a real scenario, only approximate solutions will be possible.

To represent explicitly the role of Comparator, we can provide an alternative formu-
lation in dynamical systems’ terms with more details on the world-tracking equations,
where the Comparator computes the error between the model and the data (see Figure 1)
and feeds it back to adjust the dynamics so that the constraint is met after a transient
period. We describe the dynamics and the approximate constraint in the general WTNE
(Equation (11)) using the notion of the Lyapunov function. Lyapunov stability is a method
for analyzing the behavior of dynamical systems near an equilibrium. It uses a Lyapunov
function, which acts like an “energy” measure. If this function is non-increasing over time,
the system is stable: small disturbances won’t cause it to diverge far from equilibrium.
When the Lyapunov function strictly decreases, the system converges to a stable point or a
minimum. However, if the function remains constant along certain trajectories, the system
may not settle at a point but instead exhibit periodic or orbiting behavior. With this at hand,
we define the dynamic world-tracking problem. World tracking problem formalization:
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Agent dynamics (i.e., the equation structure, weights, etc.) need to satisfy the equivariant
equations

ẋ = f (x; w, Iθ(t)) (14)

V̇ ≤ 0 (15)

where V(t) is a Lyapunov function capturing the role of the Comparator,

V =
1
2

ETE (16)

E(t) = p(x)− Iθ(t) (17)

Here x represents the state variables of the agent system, w denotes the system parameters
or weights, Iθ(t) is the Lie-generated time-varying input from the environment, parame-
terized by θ(t), p(x) is the model’s output (readout) based on the current state x, and E(t)
is the error computed by the Comparator. The goal is to achieve world-tracking after
transient behavior. As usual, these equations are to be equivariant under the action of
the Lie group. The Lie group control structure of time-varying input plays a key role in
making the problem feasible by setting constraints on the equation parameters, including
the weights w.

4.3. The Fixed Input Problem

The projection operator g in Equation (11) restricts the dynamics of the state x through
dim(I) = Y time-dependent constraint equations. The conditions set by the equations must
be met with fixed weights w no matter what the world is doing as long as it is under the
control of the generative process. In particular, if the inputs are constant (the hand is not
moving or moving very slowly), we have, for any θ,

p(x) = Iθ (18)

This implies that the dynamics are characterized by a large set of conserved quantities
pn(x) = Cn, n = 1, ..., Y (which may not all be independent, of course). Since p is a variable
selector, this means that some of the x elements will be constant (the network readout
layer). The trajectories in phase space will, therefore, lie in a reduced manifold defined by
the coordinates p(x) = C.

The existence of conserved quantities (constraints) implies the ODE has symmetry
associated with them (see Appendix F). This implies the parameters w will satisfy some
relations. Another way of seeing this is that the only possible way of having a solution to
Equation (11) is if the world-tracking constraint is compatible with the conserved quantities
in the ODE—not an independent new constraint, which would force the dynamics to be
a single point. Expressed in (local) canonical coordinates, the world-tracking constraint
must be a function of the cyclic (conserved) canonical variables. The world tracking
condition requires that the system encode some conservation laws, which translate into
local canonical variables where the variables corresponding to the conserved quantities are
constant, i.e., Q̇n = 0. This subspace constitutes a center manifold with zero eigenvalues.
This means that the generator of world inputs must be part of the symmetry group of the
ODE system. Finally, as we saw, approximate symmetries can be achieved in steady state.

Finally, Equation (18) has to hold for any value of θ. Since this constraint is associated
with the dynamics, ẋ = f (x; w, Iθ), this imposes conditions on the w structure of the
equations, as we discuss next.
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Covariance of the Equations

To analyze the general case where the network is capable of tracking any fixed image
generated by the group, we now split the variables x into two blocks, x = (z, u), where
u are the variables involved in the world-tracking constraint (see Figure 7). With some
abuse of notation, since u = Iθ is constant (u̇ = 0), we can write the generic fixed image
world-tracking equations without explicit reference to u as

ż = fz
(
z; w, Iθ

)
Iθ ≈ u = σ(wuz) (19)

where for simplicity, we assume a feedforward read-out layer with an element nonlinearity,
with p(x) = σ(wuz) = u (recall that p is a variable selector operator selecting u, a small
subset of ∼ 106 x variables). We use the approximate symbol in the second equation to
allow for transients and approximate matching.

We assume the system is symmetric, i.e., we assume that, given the input Iθ , z is a
solution, then so is γ · z with input γ · Iθ , that is,

d
dt
(γ · z) = fz

(
γ · z; w, γ · Iθ

)
γ · I0 ≈ σ(wuγ · z) (20)

This is simply a consequence of the input tracking constraints and the Lie-generative nature
of the world model. The agent is able, by definition, to track any version of the hand images
(recognizing them as “hands”).

The action of the Lie group on z may be nonlinear, but the condition applies to an
arbitrary infinitesimal transformation γ = 1 + ϵkTk(z), i.e., in the linear regime (with T
a linear operator; see [69] for a more formal mathematical discussion). These operators
commute with time differentiation (Tk(z) act on configuration space), hence

γ · fz
(
z; w, Iθ

)
= fz

(
γ · z; w, γ · Iθ

)
γ · σ(wuγ · z) ≈ σ(wuγ · z) (21)

for an infinitesimal transformation. Expanding γ = 1+ ϵkTk(z), we can write a pair of such
equations for each generator Tk (linear operator) since ϵ is arbitrary and the generators
linearly independent.

Covariance under the Lie group transformations, Equation (21), imposes specific
conditions on the weights w. These conditions ensure that the dynamics ż = fz(z; w, Iθ) are
consistent with the symmetry properties of the system and the desired conservation laws
(world tracking constraints).

As a consequence of the world tracking constraints associated with inputs from a gen-
erative model, we see that the number of conservation laws or constraints is proportional to
the number of group generators. This is because each generator of the Lie group introduces
constraints through its action on the output variables u. A group with a large number of
generators will impose tighter constraints (and more conservation laws) on the possible w
space.

4.4. Tracking Time-Varying Inputs

Here, we extend the analysis to the situation where the inputs change in time but at a
long time scale compared to neural dynamics to allow for transient phenomena to complete.
As the input image moves slowly through changes in the M-dimensional parameters θ in
the generative model, the reduced manifold of trajectories will also shift. Through this
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process, the manifold will increase its dimensionality, but it can only acquire a maximum
of M extra dimensions. Because the world model is assumed to be simple, i.e., with M
small, even in the case where the parameters θ are dynamic, the invariant manifold of the
tracking system will remain dimensionally constrained.

The fact that images are generated by a simple model using a few parameters compared
to the dimensionality of image space is crucial. In the example above, we analyzed the case
where the image does not vary in time, i.e., a static input. If, on the contrary, the image is
fully dynamic (each pixel varying in time independently of the others), there would be no
reduction of the dimension of the trajectory space. There would be as many constraints as
pixels, but they would be time-dependent, and possibly, no satisfactory weights w would
be found in such a case. It is the intrinsic low-dimensionality of data generation that allows
almost all the constraint equations to independently contribute conserved quantities: the
image Iθ lies in a small dimensional manifold, and the operator g must project x into it.

The world-tracking equations are expected to hold in an approximate way and only
after a transient time. As in the simple example in Appendix F.3, it may be the case that
the world-tracking constraints are realized as attractors in the dynamics. In the case of
a dynamics input generated by dynamical parameters in the generative model, we can
expect to see an approximate match of the output to the input only after a transient period
of time.

So far, we have not discussed how the agent system can track changing inputs. We
now provide a potential solution to the problem in the form of a specific structure for
Equation (14), assuming that only the error is used by the network using proportional
feedback [106],

ẋ = h
(
x; w

)
+ K̂E(t) (22)

where K̂ is a linear feedback gain operator that determines the influence of the error on the
system’s dynamics.

The time derivative of V is V̇ = ETĖ. Substituting the dynamics of Ė from Equation (22):

Ė =
∂g
∂x
[
h
(

x; w
)
+ K̂E(t)

]
−

dIθ(t)

dt
(23)

To ensure V̇ ≤ 0, the feedback gain K̂ must be designed such that

ET
(

∂g
∂x

[
h
(
x; w, Iθ(t)

)
+ K̂E(t)

]
−

dIθ(t)

dt

)
≤ 0 (24)

Proper selection of K̂ will ensure that V(E) is non-increasing, thereby driving E(t)
towards zero asymptotically. The choice of this operator will reflect the Lie group structure
of the system since these equations need to be equivariant. We leave this analysis for
further work.

Finally, these equations correspond to the fast-time equations in Ruffini et al., 2024 [25].
The Comparator error data stream E(t) will feed the slow-time connectodynamics equa-
tions to govern the slow change of the structural parameters w, ẇ = g(w, x, E(t)),
with g(w, x, 0) = 0.

In summary, this section extends the previous analysis of static inputs to the case
of slowly varying signals mediated by the Lie group action, showing that even when
the environment undergoes incremental changes, the low-dimensional structure of the
generative model and equivariance can provide a tractable path for world-tracking with
an appropriate selection of weights and gain operator. Thus, the same principles that
apply to static generative scenarios—namely, leveraging low-dimensional structure and
compositional transformations—remain central for handling time-varying inputs. This
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completes the foundations laid in earlier sections, formalizing how compositional and
equivariant mechanisms enable agents to track and compress real-world complexity in
both static and slowly evolving contexts.

4.5. Coarse-Graining, Hierarchical Constraints, and Manifolds

An important idea in the algorithmic agent framework is that all cognitive processes—
modeling, planning, and objective function evaluation—are inherently hierarchical (com-
positional) [7]. This means decision-making and goal-setting occur in layers, ranging from
simple actions to complex behaviors. This hierarchical organization naturally finds its
origin in the multi-scale structure of real-world data, enabling effective modeling and
decision-making. To ensure survival with limited resources, the agent must employ coarse-
graining to transform complex, uncompressible data into a simpler, compressed form while
retaining a non-trivial structure [9]. Techniques like spatiotemporal averaging, spectral
decomposition, compressive sensing, and dimensionality reduction achieve this by reorga-
nizing data at various levels of abstraction. This perspective aligns with the concept of the
brain processing information through hierarchical coarse-graining, as supported by research
in the visual [107,108] and auditory systems [109]. A similar approach is utilized by deep
neural network architectures, including convolutional neural networks [65,70].

At each processing level, details are aggregated and abstracted to form higher-level
representations. World-tracking at different levels corresponds to different scales of coarse-
graining, progressively reducing the complexity of the system while preserving essen-
tial features. Since lower-level constraints (e.g., “it’s furry”) must be compatible with
higher-level constraints (“it’s a cat”), there is a natural nested structure of constraints and
corresponding manifolds (which also induces an inclusion relation among their tangent
spaces). World tracking can be achieved through a hierarchy of constraints {Ci}k

i=1, each
corresponding to a specific coarse-graining level. The constraints are nested and must be
compatible, meaning each lower-level constraint operates within the subset of the state
space defined by the higher-level constraints.

We can formalize this concept in a simplified manner (reality is undoubtedly more
complex, involving parallel threads of constraints, for example) through a sequence of
coarse-graining operators {Gi}k

i=1, where each operator Gi : Rn → Rni maps the fine-grained
state vector x to a coarse-grained state vector yi, with yi = Gi(x) (ni < n). Each yi represents
the system at a specific level of abstraction, capturing variables relevant at that scale. For
each level i, there is a corresponding hierarchical constraint Ci on yi, expressed as Ci(yi) = 0.
Constraints reflect the agent’s world model at different levels, ensuring that the dynamics
of the coarse-grained variables align with expected behaviors.

Lower-level constraints must be compatible with higher-level constraints. This means
that the solution set of a lower-level constraint Ci+1 is a subset of the solution set of
the higher-level constraint Ci. Formally, {x ∈ Rn | Ci+1(Gi+1(x)) = 0} ⊆ {x ∈ Rn |
Ci(Gi(x)) = 0}. Nesting ensures that as we move to lower levels (higher indices), the con-
straints become more specific, refining the state space within the context defined by higher-
level constraints.

As an example, consider a visual perception task with a high-level constraint C1: the
agent recognizes that the object is a cat—see Figure 9. This constraint reduces the state
space to the manifold M1 of all possible cats, which is still high-dimensional.
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Figure 9. Hierarchical modeling: step-by-step drawing of a cat demonstrating hierarchical constraints:
starting with the basic form of a cat (“it’s a cat”), refining it with more specific features, and finally
adding details like “has white fur and blue eyes”, progressively narrowing the state space to match
more specific characteristics. (Image is partially AI-generated).

To this, we can add a lower-level constraint C2: the agent further discerns that the
cat is white with blue eyes. This constraint reduces the state space to a submanifold M2

within M1, containing only white cats with blue eyes. Here, the lower-level constraint C2

is compatible with the higher-level constraint C1, as all white cats with blue eyes are indeed
cats, M2 ⊆ M1. Thus, higher-level constraints define broad categories or contexts (e.g.,
recognizing an object as a cat), while lower-level constraints provide additional specificity
(e.g., identifying the cat’s color, hair type, etc). The nested structure ensures that all lower-
level processing is coherent with the higher-level understanding, leading to efficient and
accurate modeling of the world. The hierarchical framework of constraints is related to
compositional Lie groups characterizing the invariant properties of the symmetries of the
equations. In particular, the hierarchical constraints (Ci) on agent dynamics correspond
to conserved quantities associated with the symmetries of the ODEs represented by a
hierarchical Lie group structure.

By imposing these hierarchical, compatible constraints, the original high-dimensional
phase space Rn is reduced in a sequence of nested manifolds, forming what we may call a
hierarchical or compositional manifold,

Rn = M0
C1−−→ M1

C2−−→ M2
...−→ Mk, (25)

where each manifold is defined recursively as

Mi = {x ∈ Mi−1 | Ci(Gi(x)) = 0}, for i = 1, 2, . . . , k, (26)

with M0 = Rn. Each manifold Mi satisfies all constraints up to level i, ensuring that
the agent’s internal states remain consistent with both high-level goals and fine-grained
observations. This recursive structure ensures that Mi ⊆ Mi−1,, reflecting the increased
specificity of constraints at lower levels (this also induces an inclusion relation among their
tangent spaces).

The sequence of compositionally compatible constraints leads, in turn, to a sequence of
nested manifolds, each representing the state space under the accumulated constraints up
to that level. The agent’s dynamics are thus confined to a reduced hierarchical manifold, en-
suring that its internal states remain consistent with both high-level goals and fine-grained
observations. This mirrors the hierarchical organization of the brain or deep artificial
networks, where a nested structure of coarse-grained models synthesizes a multilevel
emergent view of the world.
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5. Discussion
In this paper, we first assumed that agent inputs from the world are generated by

simple, hierarchical rules (i.e., that the world is inherently simple in algorithmic terms),
i.e., by a hierarchical (compositional) Lie generative model, and that the agent can track its
inputs, i.e., encodes an internal generative model to approximately match data, perhaps
after transients. From this, we showed that

1. As a dynamical system, the successful agent displays conserved quantities—with
dynamics in a reduced hierarchical manifold—corresponding to the world-tracking
constraints generated by a Lie group. For dynamical inputs, this stability is achieved
after initial transients, captured by a Lyapunov function (see Section 4.4).

2. The constraints force structural symmetries in the dynamical system constitutive
equations that meet them: the agent carries the symmetries of the world generative
model. This is encoded in the structural elements of the dynamical system (the ws in
our formulation).

World-tracking conditions are satisfied by specialized, symmetric networks, as the gov-
erning equations must maintain (approximately) conserved quantities that are compatible
with the required outputs. Conversely, constraint (symmetry) breaking, as detected by the
agent in the Comparator (Figure 1), allows the agent to identify anomalies or novel patterns,
prompting updates to its internal models and engaging in learning and adaptation.

If the inputs are static, dynamics will lie in a reduced manifold, as determined by
the constraints of world tracking. If the inputs vary slowly—following the rules of a
generative world model—the dimension of the reduced manifold will increase, but only
slightly compared to the embedding neural dimension. If inputs violate the world model,
on the other hand, tracking will fail, and the dynamics may no longer be constrained.

Our analysis thus links the manifold hypothesis with world tracking and symmetry
principles. Empirical observations of dynamics in natural systems indicate that data
trajectories typically lie in a manifold of dimensionality much lower than RX (the invariant
manifold), which we also loosely identify with the latent space when using autoencoders
to compress neural data. The manifold hypothesis posits that high-dimensional data,
such as world data collected from sensory systems (e.g., images) or neuroimaging, can be
compressed into a reduced number of parameters (latent space [110]) due to the presence
of a low-dimensional manifold within the high-dimensional phase space [60,62,111,112].
Such manifolds can take various forms, such as attractors and unstable manifolds.

Because the data-generating processes we consider are inherently low-dimensional,
our analysis provides a link with the manifold hypothesis in agent-generated data: large-scale
data sets (be they high-dimensional images or neural recordings) often occupy manifolds
of significantly lower dimension than the raw data space would suggest [60,62,111,112].
Here, we see that if data truly arise from a compositional world model, then an agent
tracking those data automatically inherits such a manifold structure in its own state space,
effectively compressing high-dimensional inputs into a smaller number of effective degrees
of freedom.

Finally, this compositional view also suggests a hierarchical structure of manifolds
when world data are generated at multiple, nested scales of abstraction, yielding the
notion of a hierarchical manifold. This hierarchical perspective emphasizes how multiple
levels of coarse-grained, low-dimensional constraints can collectively shape both world
data and agent dynamics, providing different spatiotemporal scales of shared algorithmic
information (see, e.g., [113] for related concepts in the Shannon information theory context).
From this vantage, compositional world data and the act of tracking them together naturally
realize the manifold hypothesis in both observational data and in an agent’s neural (or
computational) trajectories.
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Reduced hierarchical data manifold embody the inherent simplicity of the underlying
generative models that produce the observed data, as well as the effectiveness of a world-
tracking system in learning these models. This observation supports the manifold hypothesis
as it manifests in world-tracking systems.

5.1. Symmetry, Groups, and Algorithmic Complexity

Does group action encompass the general notion of compression—finding short pro-
grams (i.e., with low Kolmogorov Complexity)? Under what conditions does the existence
of a highly compressive generative model imply the presence of underlying symmetries
described by a group (or generalization of)? Although rigorously answering this will
require bridging abstract algebra and algorithmic information theory, the intuition is
straightforward: a compressive (short) program capable of generating a large dataset will
involve repeating an operation (recursion) or a sequence of operations (compositionality)
multiple times.

This suggests that in a compressive model, the recursive action of a Lie group in
configuration/latent space is represented economically in the construction of the generative
function. In particular, if the image-generating function is a huge lookup table, there will
be no compression despite the reduction of dimensionality from image to latent space. The
recursive property of Lie groups, where complex elements are constructed through repeated
applications of simple algebraic operations, mirrors foundational concepts in algorithmic
information theory and recursive function theory. Compositionality in this context refers to
the combined action of different generators.

The presence of a Lie group structure in a generative model significantly influences its
algorithmic complexity. If one can navigate a configuration space with a Lie group, any
function on that space—including a generative model—can be manipulated using the Lie
group’s generators. This approach can be highly efficient. By generating a single instance
within our model, we can apply the Lie group’s transformations in small, discrete steps to
produce a diverse set of outputs.

As we saw, this process is inherently recursive and compositional, hence enabling a
compressive representation. The program only needs to encode the initial instance of
the object and the transformation rules derived from the Lie group’s generators, thus
enabling the generation of a vast array of images through a sequence of incremental,
systematic transformations.

Finally, we recall that the compositional sparsity of the underlying target function (i.e.,
the world)—the task to be learned—is the key principle behind the success of machine
learning, particularly deep learning architectures such as CNNs or transformers [85,114].
Compositional sparsity, the idea that a function can be computed through the composition
of functions, each with a constituent function of low dimensionality [115], is equivalent in
algorithmic terms to efficient computability, that is, computability in polynomial time [114].
Thus, algorithmic and computational complexity notions may converge on the role of Lie
action in generative (compressive) models.

In summary, we highlighted the relationship between algorithmic complexity and Lie
groups, which stems from compressive models aiming to capture and recreate complex
data structures through recursion and compositionality and the natural connection of these
and Lie group action.

5.2. Connections with Empirical Observations

Symmetry is an example of an algorithmic feature that systems that compute the same
function must share, regardless of their specific implementation. This implies that natural
agents such as human brains implement symmetries inherent in world data within their
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architecture and, in turn, generate data with conserved quantities. This translates into
reduced dimensionality dynamics in invariant manifolds and may explain complexity
features observed in neuroimaging data across brain states and neurological or psychiatric
disorders. Techniques like topological data analysis may help uncover further correlates
of structured experience with applications in consciousness research in natural and artifi-
cial systems.

The fundamental predictions from studying the role of symmetry in agent dynamics
pertain to the structural constraints of its constitutive equations and to the emergence of
reduced manifolds, reflecting the structure of compositional data the agent is tracking.

The simplicity associated with a generative model may manifest in different ways.
For instance, an efficient autoencoder of neural data from a brain exposed to time-varying
world inputs could regenerate the dynamics using a latent parameter space whose di-
mension approximately matches the dimension of the world-generative model configura-
tion space.

Furthermore, the Comparator mechanism enables the emergence of Mutual Algorith-
mic Information (MAI) between the agent and the world, which KT postulates [6,7]. By
aligning internal models with external data, the Comparator highlights how constraints in
world-tracking impact the structure of reduced, invariant manifolds in neural dynamics.
These manifold structures, in turn, are expected to vary with brain states and environmental
conditions, influencing neuroimaging data across different states of consciousness (awake,
REM, NREM) [110], under anesthesia, minimally conscious (MCS) or unresponsive wakeful
state (UWS), Locked-In Syndrome (LIS), epilepsy, or Alzheimer’s disease (AD) [116], which
should display different latent space features, including dimensionality (compressibility,
complexity), or exhibit task dependence (e.g., eyes open or closed). This can be attributed,
at least in part, to the world-tracking features associated with brain state or task and moti-
vates the hypothesis that structured experience is associated with the successful match of
data and model at the Comparator [6–8].

Constrained dynamics may also provide the context for phenomena such as increased
EEG slow-frequency power in the eyes-closed state (and reduced complexity [117]), anes-
thesia, or completely locked-in syndrome (CLIS, where patients shift toward slower fre-
quencies and lower signal complexity) [118,119], all of which are characterized by clamp-
ing down (setting to a null fixed value) world inputs. This may either reflect suppres-
sion of Comparator outputs or the active tracking of a predicted static input. On the
other extreme, the perspective of constrained dynamics may explain how psychedelics,
which interfere with sensory processing, disrupt the Comparator and modeling process
(Equations (14)–(17)), with network dynamics departing from the normative invariant
manifold. Such a departure manifests as an increase in complexity and reduction in alpha
power [39,40,51,120–124].

For data analysis, approaches such as deep learning autoencoders are well-suited for
uncovering latent spaces associated with brain dynamics. Complementing this, topological
data analysis can reveal structural features of reduced manifolds. These techniques could
provide new insights into how different states compress or expand neural dynamics,
providing insights into underlying brain symmetries and their breakdown in pathology.
Complexity measures, like the Lempel-Ziv algorithm, can help quantify the intrinsic
dimensionality of these manifolds, revealing symmetry-related information processing
characteristics [15,125].

Finally, while we have focused here on how compositional data-tracking gives rise
to constrained dynamics, the same logic applies to the generation of compositional outputs
by the agent, such as motor actions. Recent research has uncovered low-dimensional
neural manifolds that capture significant neural variability across various brain regions and
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experimental conditions [126–135]. These manifolds, defined by correlated neural activity
patterns of neural activity—referred to as “neural modes”—are proposed to generate motor
behavior through their time-dependent activation [126,130].

This research will benefit from a similar analysis of artificial systems, as discussed next.

5.3. Connections with Neurophenomenology

The emergence of reduced manifolds governed by Lie pseudogroups, as described in
the context of agent-world interactions, offers a link to neurophenomenology. When an
agent tracks compositional data from the environment, its internal dynamics are constrained
to invariant manifolds reflecting the structure of the data. In this framework, these reduced
manifolds shape the qualia—the fundamental units of structured experience associated
with the agent’s perception of reality.

Neurophenomenology, which seeks to bridge first-person experiential phenomena
with third-person neural dynamics, can provide methods to validate this perspective.
Structured experiences can be viewed as arising from the agent’s successful alignment
of internal models with world data, as mediated by the Comparator mechanism. This
suggests combining the characterization of brain states by the geometry and topology of
the underlying neural manifolds, which reflect the agent’s interaction with its environment
together with phenomenology methods [136] for the characterization of the structure of
experience—see Figure 2.

The integration of psychophysics, phenomenology, and AI methods [137], such as nat-
ural language processing (NLP) [138–140], offers a powerful approach to characterizing the
structure of experience. Psychophysics provides quantitative tools to link physical stimuli
with subjective perception, while phenomenology delves into the qualitative aspects of
experience, emphasizing first-person reports and the lived reality of consciousness. AI
methods like NLP can bridge these domains by analyzing and modeling linguistic data,
enabling the systematic study of subjective descriptions. This combination allows for a
multi-dimensional exploration of structured experience, where psychophysics anchors the
investigation in measurable variables, phenomenology enriches it with introspective depth,
and AI scales and systematizes the analysis, revealing patterns and latent structures in expe-
riential data. Together, these tools provide a framework for advancing our understanding
of the dynamics and features of structured experience.

5.4. Discovering Structure

In this paper, we have discussed the implications of using compressive models of gen-
erative world data, but we have not touched on the fundamental issue of how these models
are discovered. A potential insight in this direction is that recursion and compositionality
are the key features of algorithmics [5].

Recent research indicates that deep neural networks inherently favor low-complexity,
compositional data structures, enabling them to identify and represent underlying symme-
tries without explicit prior knowledge. This intrinsic bias allows for effective generalization
across various domains, supporting the unification of diverse tasks within a single learning
algorithm [141,142]. The hierarchical and compositional nature of deep networks facilitates
efficient approximation of complex functions, mitigating the curse of dimensionality and
enhancing performance on tasks with compositional structures [85,86,114,143]. These char-
acteristics underscore the adaptability and efficiency of deep learning models in processing
structured, real-world data.

Neural networks can learn to detect group structure (Lie algebras) from training data,
and extracting invariances remains an active research area. Moskalev et al. [76] propose
a two-step procedure: (i) train a network on a task requiring invariance, and (ii) extract
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the Lie algebra that underlies this learned symmetry. Their Lie Group Generators (LieGG)
method builds a polarization matrix from the network’s input-output relationship, applies
singular value decomposition, and identifies near-zero singular values that correspond to
the basis of the learned Lie algebra. For instance, on rotation MNIST, LieGG recovers the
rotation symmetry and uses metrics like “symmetry variance” and “symmetry bias” to
assess how thoroughly the network has internalized this invariance.

Recent advancements have introduced additional methods for discovering symmetries
and invariances in data using neural networks. For example, LieSD (Lie Symmetry Discov-
ery) identifies continuous symmetries by analyzing the gradients and outputs of trained
neural networks, demonstrating its utility in tasks like the two-body problem and top quark
tagging [144]. Similarly, LaLiGAN (Latent LieGAN) learns a latent space representation
where nonlinear symmetries become linear, enabling the discovery of intrinsic symme-
tries in high-dimensional systems [145]. Another approach, Lie Algebra Convolutional
Networks (L-conv), uses Lie algebras instead of groups to construct group-equivariant
architectures, facilitating symmetry discovery and connection to physical principles like
conservation laws [146]. These methods extend the capabilities of LieGG, enabling the
exploration of both geometric and more abstract symmetries in neural networks.

Another perspective is exploring the topology of Lie groups [147] (and, more generally,
Lie pseudogroups), which provides an essential framework for understanding the ways in
which agents track and encode structured data in their internal dynamics. In particular,
based on topological data analysis, properties such as connectedness and the presence of
non-trivial loops or higher-dimensional “holes” (often characterized by Betti numbers) can
inform how a neural system might transition among configurations or maintain stable
invariants in response to environmental inputs. Within neurophenomenology, such topo-
logical features of the agent’s internal manifold—mirroring the underlying compositional
actions of a Lie group—can shape how perceptual states coalesce into coherent experiences.

5.5. Applications in AI and Neurosynthetic Agent Design

In artificial intelligence (AI) and computational neuroscience, symmetry constraints are
pivotal in guiding model design by imposing structural limitations that reflect the symme-
tries inherent in World interaction tasks. These symmetry principles can be incorporated as
regularization terms to reduce parameter degeneracy or structurally (e.g., convolutional net-
works), enhancing model robustness and efficiency. From the earliest developments of deep
networks [65,70,71,148] to current advancements, symmetry-driven approaches continue
to shape and fuel research into more adaptable and efficient models [66,68,76,81,149].

Whole-brain computational models and digital twins [150] are neurosynthetic neural
networks characterized by a very large number of parameters that are difficult to adjust
given the limited available neuroimaging data. Just as with artificial neural networks,
enforcing symmetry and conserved quantities with low dimensionality, we can reduce
the parameter space’s degeneracy when fitting models to data [151]. Additionally, when
parameters are known, the system’s dynamics can be explored through its symmetry
properties. Analyzing the number, dimension, structure, and stability of the system’s
attractors (using eigenvalue and bifurcation analysis) provides insight into its long-term
behavior [73,93] and computational capabilities, including multistability, metastability,
and criticality [31,37,152,153].

For instance, whole-brain models need to reflect the spatial-temporal symmetries
and sensory-motor contingencies inherent in the data they process [154]. This includes
fundamental transformations like translations and rotations. Such considerations will
become increasingly important as whole-brain models are developed to interact with
external inputs and generate outputs, whether in classification tasks or motor actions.
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An important part of this program is to characterize more general world symme-
tries and translate them into generative world models and Lie groups. An approach to
attack this may be the use of deep learning models that can produce the appropriate latent
spaces or derive the Lie group generators from networks that have been trained on world
data [67,69,76]. The discovery of these attractors can be used to explore the mutual algo-
rithmic information between data and dynamical attractors in the artificial system (or in
the human brain).

Finally, symmetry considerations can serve as a regularization principle, instrumen-
talizing a bias towards simplicity. By demanding that models remain as symmetric as
possible while fitting empirical data, we implement a form of Occam’s razor, promoting sim-
pler, more generalizable models. This principle is particularly relevant for brain-inspired
networks, where preserving computational simplicity can improve interpretability and
robustness [73].

6. Conclusions
In past work, we put forth the idea that because agents possess and run models of

the World, there is significant Mutual Algorithmic Information (MAI) between the agent
and the world [6]. In this paper, this idea is made concrete in dynamical terms using the
language of group theory: the agent, viewed as a dynamical system, encodes symmetries
that reflect the structure of world data.

The historical trajectory of group theory—the mathematical theory of symmetry—
is a testament to its fundamental role in shaping the landscape of modern mathemat-
ical and physical sciences. From its initial development by Évariste Galois and Paolo
Ruffini [155–157]—who, to unveil the algebraic symmetries governing polynomial equa-
tions, created the seeds of group theory—to the works of Sophus Lie [73,93], who extended
these concepts into the role of continuous groups in differential equations, group theory
is rich in its fruits. The subsequent epoch, marked by Emmy Noether’s transformative
theorem [63,64], cemented the profound connection between symmetries and conservation
laws, further elucidating the inherent simplicity underlying complex natural phenomena
and driving the development of General Relativity and the Standard Model in physics.

These historical milestones underscore the enduring quest for understanding through
the lenses of simplicity and symmetry, to which we hope this paper contributes. As we
have discussed here through the model of the algorithmic agent (KT), the convergent
principles of algorithmic simplicity and symmetry can yield useful insights into the nature
of artificial and natural intelligence and the deep connections between mathematics and
the phenomenology of structured experience.
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Appendix A. Equations for a Turing Pair
The general equations for a Turing pair—a description of the interaction of the agent

and world—implemented as a network dynamical system are given by the autonomous
system

ẋ = fx
(
x; wx, ηy

)
ηx = ox(x)

ηy ≈ gx(x)

ẏ = fy
(
y; wy, ηx

)
ηy = oy(y) (A1)

Or, explicitly providing the Comparator equation with the Lyupanov function,

ẋ = fx
(
x; wx, ηy

)
E = ηy − gx(x)

V̇ ≤ 0, V = ETE

ẏ = fy
(
y; wy, ηx

)
ηy = oy(y) (A2)

These equations express the idea that the outputs of a subsystem are the inputs of the
other. They include the agent’s world-tracking condition. Here, x is a multidimensional
variable capturing the state of the agent, and y captures the state of the world. The ws
are connectivity weights in the network (or other parameters), and the ηs represent the
outputs of a subsystem, which become inputs for the other. The o functions are variable
selectors of the subset of variables that become outputs. Finally, gx is a variable selector (or,
more generally, readout function) in the agent that is to match the inputs from the world
(the world-tracking subsystem). The third equation, ηy = gx(x), or its Lyupanov version
(allowing for transients), captures the world-tracking condition.

Appendix B. Notes on Lie Groups
Appendix B.1. Definitions

Definition A1. A group is a set G together with a group operation, usually called multiplication,
such that for any two elements g and h of G, the product g · h is again an element of G. The group
operation is required to satisfy the following axioms:

1. Associativity. If g, h, and k are elements of G, then

g · (h · k) = (g · h) · k.

2. Identity Element. There is a distinguished element e of G, called the identity element, which
has the property that

e · g = g = g · e

for all g in G.
3. Inverses. For each g in G, there is an inverse, denoted g−1, with the property

g · g−1 = e = g−1 · g.
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Definition A2. An m-dimensional manifold is a set M, together with a countable collection of
subsets Uα ⊆ M, called coordinate charts, and one-to-one functions xα : Uα → Vα onto connected
open subsets Vα ⊆ Rm, called local coordinate maps, which satisfy the following properties:

1. The coordinate charts cover M: ⋃
α

Uα = M.

2. On the overlap of any pair of coordinate charts Uα ∩ Uβ, the composite map

xβ ◦ x−1
α : xα(Uα ∩ Uβ) → xβ(Uα ∩ Uβ)

is a smooth (infinitely differentiable) function.
3. If x ∈ Uα, x′ ∈ Uβ are distinct points of M, then there exist open subsets W ⊆ Vα, W ′ ⊆ Vβ

with xα(x) ∈ W, xβ(x′) ∈ W ′, satisfying

x−1
α (W) ∩ x−1

β (W ′) = ∅.

Definition A3. An r-parameter Lie group is a group G which also carries the structure of an
r-dimensional smooth manifold in such a way that both the group operation

m : G × G → G, m(g, h) = g · h, g, h ∈ G,

and the inversion
i : G → G, i(g) = g−1, g ∈ G,

are smooth maps between manifolds.

In general, a Lie group G will be realized as a group of transformations of some
manifold M with each group element g ∈ G associated with a map from M to itself [73].
It is important not to restrict our attention solely to linear transformations. Moreover,
the group may act only locally, meaning that the group transformations may not be defined
for all elements of the group nor for all points on the manifold.

Definition A4. Which is the domain of definition of the group action and a smooth map

Ψ : U → M

with the following properties:

1. If (h, x) ∈ U , (g, Ψ(h, x)) ∈ U , and also (g · h, x) ∈ U , then

Ψ(g, Ψ(h, x)) = Ψ(g · h, x).

2. For all x ∈ M,
Ψ(e, x) = x.

3. If (g, x) ∈ U , then (g−1, Ψ(g, x)) ∈ U and

Ψ(g−1, Ψ(g, x)) = x.

(Note that except for the assumption of the form of the domain U , part (c) follows directly from parts
(a) and (b)).
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For brevity, we will denote Ψ(g, x) by g · x, and the conditions of this definition take
the simpler form:

g′ · (h · x) = (g′ · h) · x, g, h ∈ G, x ∈ M,

whenever both sides of this equation make sense.
In many real-world applications, no single global finite-dimensional group acts tran-

sitively on the entire manifold. One thus moves to Lie pseudogroups, which allow local,
overlapping symmetries that need not glue into a single global group.

Definition A5. A Lie pseudogroup G on a smooth manifold M is a collection of local diffeomor-
phisms ϕ : U → V, where U, V ⊆ M are open subsets, satisfying the following properties:

1. Identity: The identity map id : U → U for any open subset U ⊆ M belongs to G.
2. Closure under composition: If ϕ : U → V and ψ : V → W belong to G, then their

composition ψ ◦ ϕ : U → W also belongs to G.
3. Closure under inversion: If ϕ : U → V belongs to G, then its inverse ϕ−1 : V → U also

belongs to G.
4. Closure under restriction: If ϕ : U → V belongs to G and U′ ⊆ U, V′ = ϕ(U′), then the

restriction ϕ|U′ : U′ → V′ also belongs to G.
5. Lie structure: The local diffeomorphisms in G are solutions of a system of finite-order partial

differential equations defined on M, ensuring G has the structure of a smooth (Lie) manifold.

Appendix B.2. Important Theorems

This theorem shows that smoothness implies that the behavior of a Lie group is already
specified in any small patch containing the identity. In a sense, Lie groups are “cyclical”:
all the elements can be obtained by repeated action of a subset.

Theorem A1 ([73]). Let G be a connected Lie group and U ⊆ G a neighborhood of the identity.
Also, let

Uk = {g1 · g2 · . . . · gk : gi ∈ U}

be the set of k-fold products of elements of U. Then

G =
∞⋃

k=1

Uk.

In other words, every group element g ∈ G can be written as a finite product of
elements of U.

Furthermore, if G is a connected, compact matrix Lie group, the exponential map for G
is subjective (covers the entire group) [72].

Related to this, one can show that there is a one-to-one relationship between a local
Lie group and the Lie algebra that describes its behavior near the identity (v. Theorem 1.54
in [73]). The latter can be fully described by a set of constants (the structure constants of
the Lie algebra). Thus, finite Lie groups are intrinsically simple objects.

We next address the issue of local transitivity (transitivity of a Lie group action on a
manifold indicates that the group can map any point of the manifold to any other point).

Theorem A2 (Local Transitivity). Let C be the configuration space manifold. For any point
p ∈ C, there exists a neighborhood Up around p and a Lie group Gp such that Gp acts transitively
on Up and transforms the local configurations of images within this neighborhood.

Proof. We need to show the existence of a Lie group that acts transitively on a local patch
around any point p in C. At any point p in C, there exists a tangent space TpC, which
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captures the infinitesimal displacements around p. This tangent space is a vector space,
and its dimension is the same as the dimension of C. The general linear group GL(n,R),
where n is the dimension of TpC, can act on TpC by matrix multiplication. This action is
transitive since for any two vectors v, w in TpC, there exists a matrix M in GL(n,R) such
that M · v = w. By the above point, around every p, there exists a local action of a Lie
subgroup of GL(n,R) that acts transitively on a local patch Up around p in C. We can take
Gp to be this Lie subgroup. Hence, for every point p in C, we have found a Lie group Gp

that acts transitively on a local patch Up around p.

Remark A1. For connected, compact matrix Lie groups, the exponential map is even surjec-
tive [72], ensuring every group element arises from exp(g). This link between local (near the
identity) and global structure also appears in the equivalence of a local Lie group and its Lie alge-
bra [73] (Theorem 1.54). This theorem shows that smoothness implies that the behavior of the group
is already specified in any small patch containing the identity. In a sense, Lie groups are “cyclical”:
all the elements can be obtained by repeated action of a subset.

For the case of Lie pseudogroups, a similar theorem is available [158]:

Theorem A3 (Transitivity of a Lie Pseudogroup [158]). Let G be a Lie pseudogroup acting
on a connected manifold M. Suppose G is locally transitive (i.e., for every p ∈ M, there exists a
neighborhood Up ⊂ M where G acts transitively). Then G is globally transitive on M.

Sketch of Proof. The connectedness of M and the closure properties of G (under com-
position and inversion) ensure that local transitivity patches extend across overlapping
neighborhoods. Iterating these transformations chains together local symmetries to cover
the entire manifold, yielding global transitivity.

In the classical setting, if a finite-dimensional Lie group G acts transitively on a manifold
L, then L is globally a homogeneous space of the form G/H, where H is the stabilizer
subgroup of a chosen reference point. This immediately constrains the dimension of L,
dim(L) = dim(G)− dim(H), and endows L with the same topology as the coset space
G/H.

Theorem A4 (Global Transitivity Implies Homogeneous Space). Let G be a finite-dimensional
Lie group acting transitively on a connected manifold L. Then L can be identified with the ho-
mogeneous space G/H, where H is the stabilizer (isotropy subgroup) of a chosen point in L.
Consequently,

dim(L) = dim(G)− dim(H),

and L inherits the topology (and a compatible smooth structure) of the coset space G/H.

Remark A2. This classical result underpins much of Lie group geometry and the Erlangen Program.
However, many real-world manifolds fail to admit a single globally transitive group—particularly
when the underlying space is topologically nontrivial or the relevant symmetry transformations
apply only locally.

To accommodate more general situations, one turns to Lie pseudogroups, which as
we saw, describe symmetries as local invertible transformations defined on overlapping
patches rather than a single global group. While each local patch may still look like a
quotient of a (finite- or infinite-dimensional) group by a subgroup, these patches need not
glue together to form a single, globally transitive space. Instead, one obtains a “locally
homogeneous” structure that can be formalized through G-structures, Cartan geometry,
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or (G, X)-structures. In these frameworks, each region of the manifold locally resembles a
homogeneous model G/H, with transition functions lying in G. The result is that locally,
one retains much of the classical Lie-group geometry. In contrast, globally, the manifold’s
topology can exhibit a richer or more complicated form than a single homogeneous quotient.

Finally, while certain finite-dimensional Lie pseudogroups are well-understood—
particularly those arising from classical, well-studied Lie groups and geometries—there
is no complete classification of all finite-dimensional Lie pseudogroups in full generality.
Furthermore, restricting to a finite-dimensional Lie pseudogroup may be inadequate to
“walk” through every possible configuration space of a given dimension, particularly when
the space is topologically or geometrically complex. In such cases, one typically needs an
infinite-dimensional pseudogroup (or its associated groupoid of germs) to achieve the full
local-to-global flexibility required for navigating these manifolds.

When a global Lie group G acts transitively on M, we get the classical homogeneous-
space identification M ∼= G/H. By contrast, in the pseudogroup setting, each neighborhood
may locally resemble a homogeneous model G̃/H̃, but these local models need not glue
consistently into a single global quotient. Instead, one obtains a locally homogeneous structure
formalizable via G-structures or Cartan geometry [159,160].

Dimension and Classification

• Finite-Dimensional Pseudogroups: Certain classes of finite-dimensional Lie pseu-
dogroups (e.g., isometry groups, projective groups) are well-studied. However, there
is no complete classification of all finite-dimensional Lie pseudogroups, reflecting their
richness and the vast variety of PDEs that can define them.

• Infinite-Dimensional Pseudogroups: In highly complex or topologically intricate man-
ifolds, one typically needs infinite-dimensional pseudogroups (or their groupoid of
germs) to navigate the space fully.

Appendix B.3. Finite-Dimensional Lie Groups vs. Lie Pseudogroups and Moduli Stacks

In the main text, we emphasize that generative models are best described using Lie pseu-
dogroups, which handle local symmetries on overlapping patches of a manifold [158,161].
However, to appreciate the full generality and power of this approach, it is beneficial to
relate it to the classical framework of finite-dimensional Lie groups and the modern concept
of moduli stacks [162].

When a finite-dimensional Lie group G acts transitively on a connected manifold L, L
can be identified with the homogeneous space G/H, where H is the stabilizer subgroup
of a chosen reference point. This identification constrains the dimension and topology
of L, with dim(L) = dim(G)− dim(H), and L inherits the smooth structure of the coset
space G/H [72,73]. However, many real-world configuration spaces do not admit such
globally transitive group actions, especially when dealing with complex topologies or
localized symmetries.

To address these complexities, we can adopt the framework of Lie pseudogroups,
which allow for locally defined symmetry transformations that do not extend to a single
global group action. This local flexibility is essential for modeling configuration spaces with
intricate or non-uniform symmetry structures. The appropriate mathematical language to
encapsulate this setup is that of moduli stacks. A moduli stack M = [X/G] represents the
quotient of a configuration space X by a Lie pseudogroup G, retaining detailed information
about local stabilizer subgroups and ensuring that the manifold’s topology and geometry
are accurately captured [162].

By framing configuration spaces as moduli stacks, we recognize that symmetries in
data are often local and may involve complex stabilizer structures. Consequently, neural
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networks or agents tasked with learning such data must internalize these local symmetries
to generalize effectively. This necessitates that network parameters or architectures im-
plicitly encode the transformations corresponding to these symmetries, whether through
weight-sharing schemes, equivariant layers, or other structural constraints. The moduli
stack framework thus provides a rigorous foundation for understanding how and why
neural networks must learn and represent a wide range of symmetries to perform robustly
across diverse data transformations.

The (global) transitivity theorem Theorem A3 of Lie Pseudogroups states that local
transitivity on each neighborhood suffices to ensure that the action is transitive throughout
the entire connected manifold M. From a geometric perspective, this result implies that the
manifold M can be effectively covered by (possibly overlapping) homogeneous patches.
Consequently, one can now describe the entire space as a moduli stack—a formalism that
keeps track of these local homogeneous models and the gluing data between them:

Theorem A5 (Local Transitivity and Moduli Stacks). Let G be a Lie pseudogroup acting on
a connected manifold M. If G is locally transitive (i.e., for every point p ∈ M, there exists a
neighborhood Up ⊂ M where G acts transitively), then the configuration space M can be described
as a moduli stack [M/G]. Each local patch Up is modeled by a homogeneous space Gp/Hp, where
Gp is a local Lie group and Hp is its stabilizer subgroup.

Sketch of Proof. Given the local transitivity of G, each neighborhood Up around a point
p ∈ M resembles a homogeneous space Gp/Hp. The moduli stack [M/G] effectively
stitches together these local homogeneous models, preserving information about the local
stabilizers and ensuring that the global topology of M is accurately represented.

Hence, once Theorem A3 establishes global transitivity, we may interpret the manifold
as a stacky quotient [M/G], which fully encodes the local structure (including stabilizers)
of each patch. While an ordinary quotient M/G would collapse all orbits to points, losing
local symmetry information, the stack formalism preserves such data, leading to a richer
geometric description of the action throughout M.

Summary

While finite-dimensional Lie groups provide a powerful framework for understanding
symmetries in homogeneous spaces, their global applicability is limited in complex or
topologically intricate manifolds. Lie pseudogroups, complemented by the moduli stack
formalism, offer a more flexible and comprehensive approach to modeling and analyzing
symmetries in such settings. This enriched language not only captures local symmetries
with finite-dimensional parameters but also integrates seamlessly with the nuanced topol-
ogy of real-world configuration spaces, making it an indispensable tool for studying neural
network symmetries and their structural implications.

Appendix B.4. Action of a Lie Group on a Manifold

The implications of Lie groups being generated by “repeating an operation many
times” are profound. They imply that group elements can be written as exponentials of
operators. Such exponential operators, in turn, have important properties.

For example, if f (z) is invariant under an infinitesimal transformation (1 + ϵT),
so that

f ([1 + ϵT]z) = f (z)

then for small ϵ, the function f does not change to first order in ϵ. This implies that the Lie
derivative of f with respect to the generator T is zero, LT f = T · ∇ f = 0. If this invariance
holds for all infinitesimal transformations, then by repeating the process infinitely many
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times, which can be conceptualized as taking the limit as ϵ becomes infinitesimally small
and the number of applications goes to infinity, one would see f to be invariant under the
finite transformation generated by exponentiating T, that is eϵT :

lim
n→∞

f ([1 +
ϵ

n
T]nz) = f (eϵTz) = f (z)

More generally,
f (eϵTz) = f (eϵz·T·∇z) = eϵz·T·∇ f (z)

The second equality can be checked using a Taylor expansion or can be justified by checking
it to first order and using the limit expression of the exponential as a repeated action of the
operator. The first, which provides the connection with the tangent space of the Lie group,
follows trivially from ∇izj = δ

j
i , so that ϵz · T · ∇z = ϵz · T.

Thus, one can inspect the behavior of a function under infinitesimal transformations
to infer some properties of the finite ones. Let v̂ be the operator associated with the vector
field v, as in v = ∑n ξn∂/∂zn, then the Lie series of a function f (z) at a point z can be
expressed as:

f (evz) =
∞

∑
n=0

1
n!

vn f (z) ∼ ev̂ f (z)

where v̂n denotes the n-th power of the Lie derivative operator v̂ acting on the function
f , and the symbol ∼ denotes that the series on the right is the Lie series expansion of the
left-hand side with some abuse of notation.

The 1D case is a special instance where the manifold is R, and the Lie group is the
group of translations on R. The Lie algebra element is T = ∂

∂x , and the exponential map
corresponds to adding λ to the argument of f :

eλ ∂
∂x f (x) = f (eλ ∂

∂x x) = f (x + λ).

This is the standard Taylor series expansion of f about x, which is the flow of f under the
action of the translation group.

Appendix B.5. Invariance and Equivariance

To describe the coordinated behavior of transformations induced by a group on differ-
ent spaces, the terms invariance and equivariance are often used. The latter is the most general
one, indicating that objects in different spaces transform appropriately under the action
of the group. Specifically, they may carry different representations, but a commutative
diagram linking the actions of the group in both scenarios exists. This can be represented
as a commutative diagram,

X Y

X′ Y′

f

g· g·

f ′

In the diagram, X and Y are spaces, f is a function from X to Y, and g represents the
group action. The transformed spaces and functions are denoted by X′ and f ′ respectively.
The diagram commutes, meaning that starting from any object and following any path
through the diagram results in the same outcome.

In more detail, for a function f : X → Y and a group action g, the function f is said to
be equivariant under the action of the group if the following relationship holds:

f (g · x) = g · f (x)
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This means that applying the group action g to the input x and then applying the function
f is equivalent to first applying the function f to x and then applying the group action g to
the result.

For a function f : X → Y and a group action g, the function f is said to be invariant
under the action of the group if the following relationship holds:

f (g · x) = f (x)

This means that applying the group action g to the input x does not change the output
of the function f . In other words, the function’s value remains unchanged or “invariant”
under the transformation. It is worth noting that invariance can be considered a special
case of equivariance where the transformation on the output space is the identity operation.

Appendix B.6. Further Notes on Lie Groups

The original inspiration sources for Lie were differential equations. But this is now
unfortunately mostly forgotten [73]: the associated Lie groups are not particularly elegant.
E.g., (a) non-semi-simple nor solvable, (b) typically acting nonlinearly on the underlying
space, outside (linear) representation theory, and (c) may even be only locally defined
near identity.

The full range of applicability of Lie groups to differential equations is yet to be
determined [73].

Lie discovered that for continuous groups, the complicated nonlinear conditions
of invariance of a system under group transformations can be replaced by equivalent
but far simpler linear conditions associated with infinitesimal transformations under the
generators of the group [73].

Infinitesimal symmetry conditions—the defining equations of the symmetry group—
can usually be solved [73]. Once this is done, one can (a) construct new solutions from
known ones (this provides the means for defining equivalent classes of solutions), (b) clas-
sify families of differential equations that depend on parameters or other form factors [73].

Normally, all other things being equal, one seeks the most symmetric equations
possible (simplicity) [73].

In the case of ODEs, invariance under a one-parameter symmetry group implies that
the order of the ODE can be reduced by one (in the first-order case, it can be solved by
quadrature). Multiparameter symmetry engenders further reductions in order, but quadra-
ture alone is not sufficient to solve them [73].

Symmetry can lead to unique bifurcation phenomena. Hopf bifurcations in symmetric
systems can result in synchronized oscillations among a group of neurons due to symmetry
constraints. This synchronization can be crucial for understanding phenomena like coherent
neural oscillations in the brain. In essence, the presence of symmetry in neural networks
can impact the conditions and characteristics of Hopf bifurcations. The idea is that the
network’s symmetries play a role in shaping the bifurcation phenomena and the resulting
synchronized oscillations observed in neural systems. The exact mathematical details
of how symmetries influence Hopf bifurcations would depend on the specific network
structure and equations governing the neural dynamics.

When a dynamical system possesses certain symmetries, it can constrain the eigen-
vectors of the Jacobian matrix A. Symmetry can force some of the eigenvalues of A to be
degenerate, meaning they have repeated values. The reason for this degeneracy lies in
the symmetry-induced constraints on the dynamics. Symmetry often implies that there
are multiple equivalent directions or modes of perturbation around an equilibrium point.
These equivalent directions correspond to eigenvectors associated with the degenerate
eigenvalues. Mathematically, the degenerate eigenvalues represent directions in which



Entropy 2025, 27, 90 39 of 54

the linearized system’s behavior is indeterminate due to the symmetry-related constraints.
They indicate that there are multiple possible linear combinations of these eigenvectors
that result in equivalent perturbations. Eigenvalue degeneracy can be associated with
bifurcation points where the stability of the equilibrium point changes, and new dynamical
behaviors emerge as system parameters vary. The degeneracy of eigenvalues can lead to
complex dynamics, such as limit cycles or pattern formation.

It is important to distinguish symmetry in the equations from symmetries in the state
or the solution, which may be affected by asymmetry in the initial conditions or external
inputs (symmetry breaking).

Symmetry in Equations (Mathematical Symmetry): This refers to the inherent sym-
metries or invariances present in the mathematical equations that describe the system’s
dynamics. These symmetries are independent of initial conditions (ICs) or external inputs
and are related to the structure of the equations themselves. For example, if the equations
exhibit translational symmetry, it means that the system’s behavior remains the same when
spatial coordinates are shifted.

Symmetries in the State or Solutions (Physical Symmetry): This relates to the actual
configurations or states that the system can adopt as solutions to the equations. These
symmetries are observable and depend on the initial conditions, external inputs, and the
system’s dynamics. Symmetry in the state implies that the observable patterns or config-
urations of the system exhibit certain symmetrical properties. These symmetries can be
influenced by asymmetries in ICs or external inputs.

The key point is that while the equations themselves may possess symmetries, the ac-
tual behavior or state of the system may or may not exhibit these symmetries, depending
on the specific conditions and inputs. External factors, such as uneven initial conditions or
spatially varying external inputs, can break the symmetry of the system’s state, leading to
the emergence of patterns and symmetry-breaking phenomena like Turing bifurcations.

Symmetry Breaking is a fundamental concept in understanding how complexity and
spatial patterns emerge in natural systems, particularly in the context of spatially extended
systems and phenomena like Turing bifurcations. It refers to a phenomenon where the
physical state or solutions of a system deviate from or do not exhibit the symmetries that
are present in the mathematical equations governing the system. In classical systems,
symmetry breaking can arise due to the interplay between asymmetric initial conditions
(ICs) or external inputs and the system’s response to these factors (in quantum systems,
quantum fluctuations can also break the symmetry). This response is often governed by
intrinsic nonlinear dynamics within the system. However, it is crucial to note that the
nonlinearities in the equations themselves do not inherently break symmetry; rather, they
can amplify or manifest asymmetries introduced by the initial conditions or external inputs.

Appendix C. Are All Lie Generative Models Finite-Dimensional?
Suppose we have a generative model for some dataset. This means that we can gener-

ate variants of the same object in the dataset. The dataset itself or its model can both be seen
as that which remains constant, e.g., “catness”. Thus, we talk about symmetry, continuous
transformations (perhaps discrete ones, too) that leave the essence of the object (catness,
or the dataset) invariant. We also expect that it is possible to rewrite the generative model
using any coordinate system: there is no particular choice of coordinates in configuration
space that is better than others, there is no particular origin, and no special cat.

The notion that a generative model can be described by a finite Lie group highlights
the importance of symmetry and smoothness in modeling natural data. When a model
exhibits these properties, it allows us to understand and navigate the configuration space
in a structured and efficient manner, which is particularly useful in practical applications.
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If natural data can be captured in a latent space—a lower-dimensional representation
where complex relationships are simplified—we can choose an arbitrary point in this
latent space as a reference. This is the case with neuroimaging data, which includes
complex brain activity patterns obtained from techniques like fMRI or EEG. Embedding
such data in a latent space (e.g., processed using a variational autoencoder [110]) reveals
underlying structures and patterns not immediately apparent in the high-dimensional raw
data. By studying the relationship between displacements in different directions around
the reference point in the latent space, we can gain insights into how variations in the data
correspond to meaningful changes in brain activity. If this can be defined by a Lie group (at
least locally), then this relationship should be independent of the choice of the reference
point. For example, the structure of the group rotations in the latent space of cat images
should act independently of the choice of the reference cat.

We can refine the requirements for associating such a group with a generative model as
follows. Let C be a smooth manifold. We say that C admits a point-transitive finite-dimensional
Lie subgroup of Diff(C) if there exists a finite-dimensional Lie subgroup G ⊆ Diff(C) such
that for any two points x, y ∈ C, there exists g ∈ G such that g · x = y. In the case of 1D
manifolds, every connected, smooth manifold is diffeomorphic either to R or to S1, the circle.
For both these types, there exists a finite-dimensional Lie subgroup of the diffeomorphism
group that acts point-transitively. Specifically, translations generate such a group for
R, and rotations for S1. Thus, any generative model using these 1D manifolds is a Lie
generative model.

However, not all configuration space manifolds have the property of finite Lie transi-
tivity. Mostow’s Rigidity theorem [163] provides insights into point-transitive actions on
surfaces (2D manifolds) [164]. According to the theorem, a 2D manifold C without boundary
admits a point-transitive Lie group action if and only if C is a plane, sphere, cylinder, torus,
projective plane, Möbius strip, or Klein bottle. As we move to higher-dimensional mani-
folds, a comprehensive classification similar to Mostow’s theorem becomes increasingly
complex. Nevertheless, certain partial classifications and criteria exist that specify the
conditions under which a manifold allows a transitive Lie group action.

For hyperbolic surfaces of genus g > 1, no Lie group exists that can act transitively
on the entire manifold. This reflects the lack of global symmetry inherent to such spaces,
which contrasts with the high degree of symmetry seen in spherical or flat geometries
where Lie groups can act transitively. While these manifolds are locally homogeneous, their
global structure breaks this symmetry, making them navigable only through local actions
described by pseudogroups. Mostow’s Rigidity Theorem reinforces this insight by showing
that the geometry of hyperbolic manifolds is uniquely determined by their fundamental
group, which does not admit the symmetry required for a transitive Lie group action.

Despite the difficulties in finding the conditions for the existence of global finite Lie
groups acting transitively on a given manifold, transitivity can be expected in local Lie
group action. The proof for global transitivity requires specific properties or structures on C.
Establishing global transitivity is equivalent to showing that for any two points c1, c2 ∈ C,
there exists an element in the Lie group that can transform c1 into c2. Mostow’s theorem
suggests there are deep links between the geometry of C and the algebraic structure of
groups acting transitively on it.

Mostow’s theorem suggests wider deep links between the geometry of a manifold
C and the algebraic structure of groups acting transitively on it. When a Lie group G
acts transitively on a manifold C, the manifold can often be described as a homogeneous
space C ∼= G/H, where H is the stabilizer subgroup of a point in C. The topology of C
is intimately connected to the topology of G and H. For example, the dimensionality of
C corresponds to the co-dimension of H in G, while the connectedness of C reflects the



Entropy 2025, 27, 90 41 of 54

transitivity of the connected component of the identity in G. Moreover, the geometry of C,
such as its curvature, imposes constraints on the structure of G, influencing properties like
compactness and the existence of certain representations [164].

For pseudogroups, which generalize the concept of Lie group actions to local trans-
formations, the relationship becomes more nuanced. A pseudogroup can act locally on C,
adapting to its geometry in ways that global Lie group actions cannot. The topology of C
interacts with the infinitesimal generators of the pseudogroup, which are often solutions to
partial differential equations governing local symmetries [73,158]. Unlike global actions,
pseudogroups are particularly suited to manifolds with local symmetries, such as foliated
manifolds or those with varying curvature.

These relationships illustrate the profound interplay between algebra and geometry,
where the structure of C constrains the algebraic properties of G, and for pseudogroups,
influences the nature of local transformations. This connection underscores the central
role of symmetry in understanding both global and local manifold properties, providing a
bridge between differential geometry and algebraic structures.

Appendix D. Groups, Turing Machines, and Generative Models
In the discrete context, the analog of Lie groups is finitely generated groups, where

a finite set of generators produces all elements, with cyclic groups representing cases
generated by a single element. Here, we discuss the idea that Turing machines implicitly
use groups, or some relaxed versions of them such as monoids [165], for computation.

Can we think of Turing machines, and hence computation, as a branch of group the-
ory? While the practicality and exact mapping pose significant challenges, the conceptual
framework offers intriguing possibilities for future research in computational theory and
artificial intelligence.

Group theory, a branch of abstract algebra, deals with the study of groups that are
sets equipped with a binary operation that satisfies certain axioms: closure, associativity,
identity, and invertibility. This mathematical framework can be applied to studying com-
putational models, such as Turing machines, particularly in understanding the symmetry
and structure of computational processes.

To begin analyzing this, we will use the three-tape Turing machine [166] with a
finite private tape, which can be conceptualized as a generative model. In this model,
the machine’s states and the states of the private tape could be interpreted as elements of a
group. The transition from one state to another, governed by the machine’s rules and the
symbols on the tapes, can be analogized to a group operation.

A three-tape Turing machine is an extension of the standard Turing machine model
with three separate tapes: the input tape, the output tape, and a private (or work) tape.
Each tape has its own tape head for reading and writing. It can be formally defined as a
7-tuple (Q, Σ, Γ, δ, q0, qaccept, qreject) where:

• Q is a finite set of states.
• Σ is a finite input alphabet that does not contain the blank symbol ⊔.
• Γ is the tape alphabet, where ⊔ ∈ Γ and Σ ⊆ Γ.
• δ : Q × Γ3 → Q × Γ3 × {L, R, S}3 is the transition function. Here, L, R, and S denote

left shift, right shift, and no shift on the tapes, respectively.
• q0 ∈ Q is the initial state.
• qaccept ∈ Q is the accept state.
• qreject ∈ Q is the reject state, distinct from the accept state.

The machine operates as follows:

• The input tape contains the input string and is read-only.
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• The output tape is used to write the output and is write-only.
• The private tape is used for intermediate computations and can be both read from and

written to.
• The transition function δ dictates the machine’s actions based on the current state and

the symbols under the tape heads. It specifies the next state, the symbols to write on
each tape, and the movements of the tape heads.

• The computation begins in the initial state q0 and proceeds according to the transition
function until the machine enters either the accept state qaccept or the reject state qreject.

The challenges in mapping Turing machines to group theory are

• Closure: Ensuring that the combination of any two states (or actions) results in another
valid state within the system.

• Associativity: The sequence of transitions must not affect the final state of the machine,
a non-trivial property to verify in computational processes.

• Identity and Invertibility: Identifying a state that acts as an identity element, and for
each state, an inverse state, can be complex in the context of a Turing machine.

The minimal requirement is that of composition. We can relax the other two, and in-
stead of groups, we have more general algebraic structures. A magma, or groupoid, is a
foundational concept where a set is equipped with a binary operation, with the only re-
quirement being closure. An extension of this is a semigroup, which is an associative magma,
meaning the binary operation is associative. Building upon this, a monoid is essentially a
semigroup that includes an identity element but does not necessarily have inverses for
all its elements. Finally, a group is a monoid where every element has an inverse, thus
completing the hierarchy from the most general structure (magma) to the more specialized
one (group). While the concepts of Lie algebras and exponential maps are not directly
applicable to magmas, semigroups, and monoids in the way they are to Lie groups, there
are efforts and research in mathematics to explore analogous or related structures in these
broader contexts.

For example, the concept of monoids becomes necessary when dealing with com-
putational systems where inverses are not available, such as cellular automata like Rule
110 [167]. A monoid is an algebraic structure similar to a group but does not require every
element to have an inverse. In Rule 110, the evolution operator T that updates the cellular
configuration lacks an inverse because the process is generally irreversible—the previous
state cannot be uniquely determined from the current state.

The power of recognizing the monoid structure in Rule 110 lies in understanding how
the repeated application of a simple rule can generate highly complex behavior. Despite the
simplicity of the rule (a single generator T), the iterative process Tn produces rich dynamics
that are capable of universal computation (Rule 110 is Turing complete). This highlights that
even without the full framework of group theory, the presence of an underlying algebraic
structure like a monoid is sufficient to capture the essence of the system’s generative
process.

Appendix E. Symmetry in ODEs: Abstract vs. Traditional Definitions
Symmetry plays a fundamental role in the analysis and solution of ordinary differential

equations (ODEs). In this section, we present an abstract definition of symmetry based on
transformations of initial conditions (ICs) and compare it with the traditional definition that
involves transformations of variables. We demonstrate that both definitions are equivalent
in their ability to map solutions to solutions while preserving the form of the ODE and
explore the structure of the resulting symmetry groups, highlighting that they can be either
abelian or non-abelian, depending on the system.
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Olver’s Definition of Symmetry of PDEs [73,168]

Definition A6 (Olver). Consider a general system of nth order (partial) differential equations

∆ν(x, u(n)) = 0, ν = 1, . . . , m

in p independent variables x = (x1, . . . , xp), and q dependent variables u = (u1, . . . , uq), with u(n)

denoting the derivatives of the u’s with respect to the x’s up to order n. In general, by a symmetry
of the system (1), we mean a transformation that takes solutions to solutions.

The most basic type of symmetry is a (locally defined) invertible map on the space of
independent and dependent variables:

(x̄, ū) = g · (x, u) = (Ξ(x, u), Φ(x, u)).

Such transformations act on solutions u = f (x) by pointwise transforming their
graphs; in other words, if Γ f = {(x, f (x))} denotes the graph of f , then the transformed
function f̄ = g · f will have the graph

Γ f̄ = {(x̄, f̄ (x̄))} = g · Γ f ≡ {g · (x, f (x))}.

Definition A7. A local Lie group of transformations G is called a symmetry group of the system
of partial differential Equations (1) if f̄ = g · f is a solution whenever f is.

Abstract Definition of Symmetry for ODEs

Here, we provide an alternative definition of symmetry for ODEs. As it turns out, it is
closely aligned with that of Olver for PDEs [73,168]. Consider an autonomous ODE of the
form:

ẋ = f (x),

where x ∈ Rn is a vector of dependent variables, and f : Rn → Rn is a smooth function.
Let x(t; x0) denote the unique solution of the ODE with the initial condition x(0) = x0.

The mapping from the initial condition x0 to the solution x(t; x0) establishes a one-to-
one correspondence between initial conditions and solutions due to the existence and
uniqueness theorems for ODEs.

Definition A8 (Definition of symmetry for ODEs). A symmetry of the ODE is any bijective
transformation γ acting on the initial conditions x0, such that:

x0 7→ x′0 = γ · x0,

which induces a transformation of the solution:

x(t; x0) 7→ x′(t) = x(t; x′0) = x(t; γ · x0).

Since each initial condition corresponds to a unique solution, any bijective transfor-
mation γ on x0 automatically maps a solution to another solution that satisfies the same
ODE, ẋ′ = f (x′). The transformation γ preserves the form of the ODE by ensuring that
x′(t) satisfies the original differential equation.

The set of these transformations forms a Lie group, the group of diffeomorphisms
of the manifold of initial conditions. Under some conditions, the Lie group has a finite
number of generators.
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Appendix F. Conserved Quantities and Canonical Variables
In this section, we provide some background on the theory of symmetries and con-

straints in ODEs. Let us consider, for simplicity, a well-behaved autonomous system of X
equations and unknowns,

ẋ = f (x; w) (A3)

with a smooth function f and x = (x0, ..., xX−1). The solution involves X integration
constants. Paraphrasing the classical argument in Landau and Lifschitz [169], since the
equations of motion for such a closed system do not involve time explicitly, the choice of
the origin of time is entirely arbitrary, and one of the arbitrary constants in the solution of
the equations can always be taken as an additive constant t0 in the time, and the solution
written as x = x(t + t0, C), with C ∈ RX−1.

We can use one of these X equations to (at least locally) express t + t0 as a function of
x and the rest of the constants. We can think of the corresponding component of x, say x0,
as the “clock” (this is actually what real clocks are), and we write t + t0 = u(x0, C). (We
could, in fact, use an additional coordinate to represent time by adding a corresponding
phase space coordinate, e.g., by adding some physical mechanism such as a particle moving
in space, so that ẋ0 = 1 and x0 = t + t0).

Substituting this, the solution can then be written as xn = xn(x0, C) for the other X − 1
components. Thus, we have X − 1 constraints,

Φn(x) = xn − xn(x0, C) = 0, n = 1, ..., X − 1 (A4)

that the solutions must satisfy [169].
Since solutions cannot cross, one may expect a one-to-one correspondence between

C’s and solutions. However, this may fail when the constants of the motion are implicitly
defined through non-injective functions. In cases where a constant of motion Q(x) is
expressed in terms involving non-injective functions, such as Q(x) = sin(C), the map from
solutions to constants of motion is no longer one-to-one, leading to multivalued mappings.

Up to this multivalued ambiguity, we can now use the X − 1 equations in (A4) to
express the remaining Cs as a function of x. We thus obtain X − 1-independent constants
of the motion,

Cn = Qn(x) n = 1, ..., X − 1 (A5)

so Q̇ = 0. We may rewrite this more rigorously by choosing a fixed branch of the solution.
Therefore, any given solution in X dimensional space is constrained by X − 1 con-

served quantities, (Integrable systems in the context of differential equations are distin-
guished by the presence of a full set of analytic constants of motion, equal in number to
the system’s degrees of freedom [170]. These constants are not only independent but also
in involution (i.e., their Poisson brackets vanish), a condition ensuring their functional
independence. This concept extends beyond the mere existence of integration constants in
solutions to ordinary differential equations, as discussed by Landau. In integrable systems,
these analytic constants facilitate a detailed characterization of the system’s dynamics,
often allowing the motion to be confined to an invariant torus in the phase space and
enabling the system to be solved by quadratures. This precise structure of constants of
motion imbues integrable systems with a degree of solvability and predictability uncom-
mon in more general dynamical systems), which results, as we already knew from the start,
in one-dimensional trajectories.

There cannot be any further independent conserved quantities unless the solution is a
fixed point, but any combination of constants of the motion is a constant of the motion.
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While the autonomous system of equations defined by ẋ = f (x; w), where f is a
smooth function, allows us to find X − 1 conserved quantities Qn(x), it is crucial to consider
the differentiability of these quantities across the entire phase space. Evaluating the time
derivatives of these constants of the motion, we have

Ċn = ∑
m

∂Qn

∂xm
ẋm = ∑

m

∂Qn

∂xm
fm(x) = 0, (A6)

implying the conservation of Cn over time. However, this expression entails potential
singular points where components of f (x) vanish or where the partial derivatives ∂Qn

∂xm
become singular, rendering Qn(x) not well-defined. These singular points introduce barri-
ers to implementing a global change of coordinates in phase space using these conserved
quantities, as they may not be differentiable at these points.

When it is possible to find such canonical variables globally, the system is called
integrable. An integrable system is one for which it is possible to find as many independent
constants of motion as degrees of freedom, which allows for the system to be solved
exactly through analytic methods. These constants of motion are typically associated with
symmetries of the system. Integrability is a strong condition and is typically hard to achieve
or prove for most systems, especially when going beyond two degrees of freedom.

Appendix F.1. Some Examples

Consider the forced non-relativistic particle, ẍ = a, or, in first-order form

ẋ = p

ṗ = a

If x(t) is a solution, then x(t) → x̃(t) = x(t) + δx is also a solution. The transformation
p(t) → p̃(t) = p(t) + δp, x(t) → x̃(t) = x(t) + δp t, is also a symmetry, since

˙̃x = ẋ + δp = p̃
˙̃p = a

so, the overall symmetry of the ODE system is

x(t) −→ x̃(t) = x(t) + δpt + δx

p(t) −→ p̃(t) = p(t) + δp

The solution to the equations with a = 0 is p = p0 and x = t + t0, for arbitrary constants p0

and t0. Following the argument above, we have t + t0 = x (the x coordinate can be used as
a natural clock) and the conservation law C(x, p) = p = p0. The symmetry transformation
shifts C by δp.

It is instructive to consider the case a ̸= 0. Here, we have translational invariance
without momentum conservation. Again, we use a variable as a clock, this time p/a = t+ t0,
and express the solution as a function of the clock and constants of integration,

x =
∫

p dt =
∫

a(t + t0) dt =
1
2

at2 + at0t + C̃ =
1
2a

p2 + C

The conserved quantity is C = x − 1
2a p2. The symmetry transformation shifts C by

C̃ − C = ∆C = δx − 3(δp)2

2a
.
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Appendix F.2. A Not-So-Simple Example of Constrained Dynamics

Consider the constrained ODE (differential algebraic equation)

ẋ1 = x2

ẋ2 = −x1

x2
1 + x2

2 = C2 (A7)

This problem has a solution because the general solution to the first two equations is

x1 = A sin(t + t0)

x2 = A cos(t + t0)

for any constant A, which automatically guarantees that x2
1 + x2

2 = A2. Hence, because the
constraint is compatible with the conserved quantities of the ODEs, finding a solution to the
three equations is possible. Adding an incompatible constraint, e.g., x1 = 1, would force
fixing the time variable t because the intersection of the trajectory with the constraint would
be a single point. For more clarity, we may express the system of equations in symmetry
manifesting canonical coordinates (polar coordinates, in this case, corresponding to x1 and x2),

ϕ̇ = 1

ṙ = 0

r2 = C2 (A8)

A solution is possible because of the second equation, which manifests the invariance of
the ODE component to rescaling of the variables (changes in radius, with generator ∂/∂r)—
translations of r, r → r + ϵ—with its associated conserved variable r. Again, the conserved
variable corresponds to a center manifold (zero real part eigenvalue of the system).

Appendix F.3. Approximate Symmetry After Transients

If the second equation were instead ṙ = −(r − C), we would have the constraint
holding in steady state after transient dynamics,

ϕ̇ = 1

ṙ = −(r − C)

r2 → C2

The equations encode the desired constraint value, and they are no longer translational
invariant (in r). Rather, a simultaneous translation of r and C leaves the ODE system
invariant. We can think of C as an input and the equation r → C as a post-transient
constraint. The solution is r = C + ae−t → C. If C changes slowly compared to the
transient time scale, the equations will still hold. The input, instead of the initial conditions,
implements the group control on the solution space.

This equation has a Lyapunov function, which is also invariant under a simultaneous
translation of r and C, namely V = (r − C)2/2 ≥ 0, since V̇ = ṙ(r − C) = −(r − C)2 ≤ 0.
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Another example of how to achieve long-term symmetry (after transients die out) is

ϕ̇ = 1

ṙ = y

ẏ = −y

r2 → C2

which is equivalent to

ϕ̇ = 1

ṙ = ae−t

r2 → C2

with solution r = C − ae−t. The trick is to make the equations for r evolve in time to
the desired form, ṙ → 0, which then delivers the desired properties of symmetry and
conservation law. In this case, unlike the previous one, the constraint satisfied is a function
of the initial conditions. The Lyupanov function is V = r2/2 ≥ 0, since V̇ = ṙr = ae−tr ≤ 0
for a < 0.

Appendix F.4. Transition to Canonical Coordinates

To advance our understanding of the relationship between symmetry and conserved
quantities, we ignore the difficulty of differentiability and assume we can transition to
a local “canonical” coordinate system, where each coordinate but one (x0(t)) remains
constant, corresponding to the conserved quantities identified previously. Representing
these coordinates as Qi, with i ranging from 1 to X − 1, we have the transformed system
represented as

Q̇i = 0, i = 1, . . . , X − 1,

with only one active coordinate evolving with time. The solutions are x0 = x0(t) for
some function x0 and Qi = Ci. Clearly, any transformation that maps a solution to
Qi → Q′

i = Qi + hi(Qi) generates a new solution, i.e., is a symmetry of the ODE. The new
solutions is simply (x0(t + t0, C′), Q′).

In the canonical coordinates, each conserved quantity engenders a one-parameter
symmetry characterized by transformations of the form

Qi → Qi + ϵi, i = 1, . . . , X − 1,

yielding a Lie group with X − 1 parameters.
The generators of these symmetries, fundamental to our discussion, can simply be

denoted by partial derivative operators with respect to the respective coordinates,

Vi =
∂

∂Qi
.

These generators capture the symmetry properties of the system, satisfying commutation
relations indicative of the independence of the conserved quantities given by

[Vi, Vj] = 0,
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The action of the group on the solution (x0, Qi) can be described through the transforma-
tions (x0 is left unaffected),

Q → Q′ = (1 + ϵVn) · Qi = Qi + ϵδni

with δni being the Kronecker delta. That is, the effect of the transformation is a shift of the
constants of the motion. Note that (x0, Q′) is also a solution to the ODE since Q̇′ = 0. This
demonstrates that Vn is the generator of a one-parameter group of symmetries representing
translations in the canonical coordinates.

In summary, we established that in a non-trivial X-dimensional first-order autonomous
ODE, one can exploit time invariance to identify precisely X − 1 independent constraints,
producing one-dimensional solutions (trajectories). Transitioning to canonical coordinates,
when possible, where all but one coordinate (x0(t)) remain fixed, at least locally, we
elucidated that symmetry can be engendered through transformations mapping Qi to
Qi + hi(Qi), yielding new solutions and therefore being symmetries of the ODE system.
The generators Vi = ∂/∂Qi foster a group of symmetries encapsulating translations in the
canonical coordinates, a Lie group with X − 1 parameters.

Finally, our argument shows that there are constraints that lead to “local” conserved
quantities and symmetries (and 1D trajectories), but there may not be such globally well-
defined quantities. There may be singularities in the conservation functions [171].

Next, we impose a first hierarchical constraint C1, C1(y1) = r − 1 = 0, which fixes
r = 1. This constraint reduces the state space to the surface of a unit sphere. The manifold
at this level is defined as

M1 =
{

x ∈ R3
∣∣∣ C1

(
G1(x)

)
= 0

}
=
{

x ∈ R3
∣∣∣ r(x) = 1

}
.

Since we have discarded ϕ, the remaining variable is θ ∈ [0, π]. However, because ϕ is
not specified, for each value of θ, there is a circle of points (a line of latitude) on the sphere.
Therefore, our manifold M1 corresponds to the set of all such circles on the unit sphere.
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