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Abstract: Quantum reservoir computing (QRC) has emerged as a promising paradigm
for harnessing near-term quantum devices to tackle temporal machine learning tasks. Yet,
identifying the mechanisms that underlie enhanced performance remains challenging,
particularly in many-body open systems where nonlinear interactions and dissipation
intertwine in complex ways. Here, we investigate a minimal model of a driven-dissipative
quantum reservoir described by two coupled Kerr-nonlinear oscillators, an experimentally
realizable platform that features controllable coupling, intrinsic nonlinearity, and tunable
photon loss. Using Partial Information Decomposition (PID), we examine how different
dynamical regimes encode input drive signals in terms of redundancy (information shared
by each oscillator) and synergy (information accessible only through their joint observation).
Our key results show that, near a critical point marking a dynamical bifurcation, the system
transitions from predominantly redundant to synergistic encoding. We further demonstrate
that synergy amplifies short-term responsiveness, thereby enhancing immediate memory
retention, whereas strong dissipation leads to more redundant encoding that supports
long-term memory retention. These findings elucidate how the interplay of instability
and dissipation shapes information processing in small quantum systems, providing a
fine-grained, information-theoretic perspective for analyzing and designing QRC platforms.

Keywords: quantum reservoirs; driven-dissipative dynamics; partial information decom-
position; dynamic instability; memory capacity

1. Motivation and Introduction
Reservoir computing (RC) is a computational paradigm that harnesses the intrinsic

dynamics of complex systems to process time-dependent inputs efficiently [1–3]. Unlike
conventional recurrent neural networks (RNNs), RC requires training only at the readout
layer, circumventing expensive weight-update procedures on internal nodes [4]. Quantum
reservoir computing (QRC) extends these ideas to quantum platforms, leveraging quantum
superposition and entanglement to amplify the dimensionality of the feature space and
potentially enhance computational capabilities [3,5]. Early demonstrations of QRC have
shown promise in tasks like time-series prediction, classification, and memory capacity
estimation, and ongoing efforts explore a range of theoretical and experimental strategies
for improving performance [6–15].

Recent QRC research has primarily focused on many-body quantum systems, where
quantum phase transitions are suspected to boost computational expressivity [16,17]. While
numerical studies reveal intriguing heuristics, such as enhanced memory capacity near
critical points, designing optimal quantum reservoirs remains an open question, partly due
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to the complexity of analyzing large quantum systems. Here, we adopt a complementary
approach by studying a pair of coupled Kerr-nonlinear oscillators, a minimal yet experimentally
realizable quantum platform [18]. This system exhibits rich dynamical behaviors, including
dynamical instability (bifurcation) and dissipation due to photon loss that can be precisely
tuned. As such, it offers a tractable yet nontrivial testbed for exploring how quantum
correlation, instability, and dissipation govern quantum information processing.

To dissect how these coupled oscillators encode incoming signals, we draw on
information-theoretic concepts from neuroscience, where measures of synergy and redun-
dancy helped analyze how neural networks collectively encode stimuli [19–22]. As the
traditional mutual information metric fails to separate out redundant and synergistic con-
tributions to information encoding, we employ Partial Information Decomposition (PID) [23],
which partitions the total information into three components: redundancy, capturing informa-
tion that both oscillators share; unique information, provided by each oscillator individually;
and synergy, arising only when both oscillators are observed together. This perspective
provides a fine-grained view of the internal encoding structure of the reservoir.

To connect the system’s dynamics to its information-encoding strategy, we combine
numerical simulations with non-equilibrium mean-field theory based on the Keldysh
formalism [24], focusing on how small external perturbations propagate through the
system. In particular, we study how the coupling strength, frequency detuning, and photon
loss rate influence the system’s response, and then show how these distinct dynamical
regimes lead to different synergy and redundancy profiles in the oscillators’ outputs.

Our main findings reveal that near a critical coupling strength leading to dynamical
bifurcation, the system transitions from predominantly redundant encoding to a regime
featuring significant synergistic information. This synergistic behavior arises from the
interplay between fast collective oscillations and overdamped soft modes. We show that
increasing dissipation suppresses quantum correlations and promotes highly redundant
encoding modes. In contrast, near the onset of dynamical instability, synergy is amplified
and enriches short-term responsiveness, improving short-term memory retention. Taken
together, these results highlight how dissipation and dynamic instability in a minimal
system can steer a quantum reservoir toward redundant or synergistic processing, each
regime benefiting different computational tasks.

In relation to recent proposals using two coupled Kerr-nonlinear oscillators as quan-
tum reservoirs [25,26], which highlight the roles of dissipation for fading memory and
moderate coupling for richer dynamics, our work differs by focusing on PID to examine
how synergy and redundancy influences the reservoir’s memory capacity. This comple-
ments prior findings to show that critical points in Kerr dynamics can shift encoding from
redundant to synergistic regimes. Meanwhile, single Kerr oscillators with large Hilbert
spaces [13,27] highlight how dimensionality alone can serve as a computational resource,
but our key question of whether the whole can exceed the sum of its parts requires at least two
coupled oscillators for emergent synergistic encoding. Lastly, although [28] studies larger
arrays of Kerr oscillators and demonstrates the near-bifurcation enhancements of nonlinear
memory and employ higher-order cumulant expansions to handle higher photon numbers,
we limit ourselves to at most a second-order expansion in a parameter regime where it
remains accurate, focusing on the PID-based insights rather than reservoir benchmarks and
thus complementing other findings in the literature.

To guide the reader, this paper is organized as follows. Section 2 introduces the
coupled Kerr-oscillator model and the relevant information-theoretic measures, including
PID and quantum mutual information. Section 3 then presents our core numerical findings
on synergy and redundancy, comparing fully quantum dynamics with both mean-field
and cumulant expansion analyses. We also discuss the mechanisms driving redundant and
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synergistic encoding and examine how dissipation influences these encoding modes. In
Section 3.4, we connect these insights to the quantum reservoir’s memory capacity. Finally,
we conclude in Section 4 by summarizing our results and outlining directions for future
research. A pedagogical overview of PID can be found in Appendices A and B, and the
details of Keldysh approach to linear response analysis is provided in Appendix C.

2. Quantum Model, Relevant Information Measures, and
Performance Metrics

We first introduce our quantum system to study the interplay of instability and
dissipation and their influence on modes of information encoding. Then, we outline the
key goals of our study, and introduce information measures and metrics to characterize our
quantum systems, and finally describe the numerical methods to study them.

2.1. Model

We consider a minimal model that can exhibit dynamical transitions from simple
to more complex dynamics, and also support both redundant and synergistic modes of
information encoding: a pair of coupled Kerr-nonlinear oscillators. Such systems are well
studied in cavity quantum electrodynamics and nonlinear optics, where the interplay of
nonlinearities and external driving yields rich dynamical behavior [29–32]. By focusing
on just two coupled cavities, each supporting a single mode at a particular resonance
frequency, we avoid the complexity of many-body phases that arise in the thermodynamic
limit, thus isolating the essential ingredients needed to explore the onset of coordinated
information encoding behaviors in quantum systems. The schematic diagram of this setup
is presented in Figure 1.

We work in a frame rotating at the driving frequency ωF, and the corresponding
Hamiltonian is given by

Ĥ(t) = J(â†
1 â2 + â†

2 â1) + ∑
i=1,2

(
∆i â†

i âi +
1
2

Ui â†2
i â2

i + F(t)(â†
i + âi)

)
, (1)

where âi and â†
i are the annihilation and creation operators for the ith cavity mode, respec-

tively. The parameter J governs the coupling strength between the two cavities, enabling
photon tunneling and collective mode formation [30]. The detuning ∆i = ωi − ωF mea-
sures the offset of the ith cavity’s resonance frequency ωi from the driving frequency. The
nonlinear Kerr coefficient Ui characterizes the anharmonicity of each mode which intro-
duces photon-photon interactions essential for generating nonclassical states. And F(t) is a
common external drive that contains time-dependent information applied to both cavities.

To observe transitions between redundant and synergistic information encoding,
the two cavities must differ in their nonlinear properties. In particular, having distinct
Kerr coefficients (U1 ̸= U2) breaks symmetry and enables nontrivial interactions between
the modes. With these minimal ingredients (a coherent drive, a tunable coupling, and
carefully chosen nonlinearities), this system provides a controlled setting to study the
fundamental mechanisms underlying both redundant and synergistic coding in interacting
quantum systems.
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Figure 1. Schematic of two coupled Kerr-nonlinear oscillators. Each cavity i features a Kerr non-
linearity Ui and a photon loss rate γi. A time-dependent drive F(t) (green arrows) injects identical
signals into both cavities, while the coherent tunneling of strength J (violet arrow) couples the two
modes. We measure the mean fields αi = ⟨âi(t)⟩ to probe the system’s response. The Hamiltonian is
specified by Equation (1), and the Lindblad Equation (2) governs this driven-dissipative dynamics.
We assume both cavities have the same detuning ∆ from the drive frequency. This work investigates
how the readouts αi(t) encode the time-dependent drive F(t) across different dynamical regimes of
the coupled Kerr oscillators.

To incorporate noise and dissipation, we consider the time evolution of an open
quantum system weakly coupled to a Markovian bath. Specifically, we model the dynamics
of the system’s density matrix ρ̂(t) using the Lindblad master equation [33]:

d
dt

ρ̂(t) = Lρ̂(t) = −i[Ĥ(t), ρ̂(t)] + ∑
i=1,2

2γi D[âi]ρ̂(t), (2)

where γi is the photon decay rate of the ith cavity associated with the Lindblad superopera-
tor describing single-photon loss, D[âi], which acts on the density matrix as

D[âi]ρ̂ = âi ρ̂â†
i − 1

2{â†
i âi, ρ̂}. (3)

In our simulations, we take γ1 = γ2 = γ for simplicity.
For the common time-dependent external driving field F(t), we choose F(t) = s(t)F,

where s(t) is a dimensionless, time-dependent signal, and F is a characteristic strength of
the drive. To ensure that the system’s intrinsic dynamics dominate, we select F to be small
or comparable to other energy scales, and regard F(t) as a perturbation. In this work, s(t) is
taken to be a symmetric telegraph process with s(t) ∈ {−1, 1} [34]. While telegraph noise
may not be a directly implementable noise model in all bosonic systems (an open quantum
system can couple to telegraph noise if it interacts with a fermionic bath; see [35,36] for
related studies), we employ it here as a convenient testing ground. Its well-characterized
statistical properties [34] and ease of numerical simulation make it a useful drive model
for probing how redundant and synergistic information encoding emerges in quantum
dynamics. In Section 3.2, we also compare the results with those obtained using different
noise models to assess their generality.

2.2. From Quantum to Semiclassical (Mean-Field) Dynamics

Directly simulating the Lindblad equation is practical only when the average photon
number is small, as the Hilbert space dimension grows rapidly with photon occupation. In
this low-photon regime, we simulate the full quantum dynamics in Equation (2) to capture
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all quantum correlations, compute PID and QMI, and analyze how nonclassical effects
influence information encoding.

As we increase the driving strength or adjust parameters to reach higher photon-
number regimes, the full quantum simulation becomes computationally expensive. In
this regime, quantum fluctuations often play a less significant role, and a semiclassical
approximation becomes suitable. By factorizing expectation values as ⟨âi âj⟩ ≈ ⟨âi⟩⟨âj⟩,
the dynamics reduce to coupled nonlinear ordinary differential equations (ODEs) for
αi(t) = ⟨âi⟩:

d
dt

α1 = −(γ + i∆)α1 − i Jα2 − iU1α1|α1|2 − iF(t),

d
dt

α2 = −(γ + i∆)α2 − i Jα1 − iU2α2|α2|2 − iF(t).
(4)

These ODEs are much easier to solve, allowing us to examine information encod-
ing under conditions where the photon number is large and quantum correlations are
negligible.

To bridge the gap between the fully quantum and semiclassical treatments, we also
employ a second-order cumulant expansion (see Appendix D). This approach partially
restores some quantum correlations while remaining more tractable than the full density-
matrix simulation. We expect that in parameter regimes where quantum correlations matter,
the cumulant expansion will improve upon the semiclassical approximation but still remain
simpler than the full quantum approach.

2.3. Characterizing Information Processing

To characterize how our system of coupled Kerr-nonlinear oscillators processes and
encodes the input signal s(t) into the output readouts taken to be

Xi(t) ≡ Re⟨âi(t)⟩, (5)

we analyze three complementary figures of merit. First, we use the Partial Information
Decomposition (PID) to separate the total information that the output observables encode
about the input into redundant and synergistic components. Second, we employ the quan-
tum mutual information (QMI) to quantify the role of quantum correlations in shaping
these encoding modes. Finally, we consider the memory capacity in a quantum reservoir
computing (QRC) context to assess how information is retained over time. While PID and
QMI directly characterize the system’s response to external inputs without any training
procedure, the memory capacity inherently involves a training step to quantify how well
past inputs can be reconstructed from the system’s outputs. In this way, all three measures
together provide a comprehensive view of the system’s information processing capabilities.

2.3.1. Partial Information Decomposition (PID)

Let s, X1, and X2 be random variables representing the input signal and the measured
observables from the two oscillators, respectively. The mutual information I(s : X1, X2) can
be decomposed into redundant, synergistic, and unique components as

I(s : X1, X2) = Rdn + Syn + Unq(X1) + Unq(X2), (6)

where Rdn is the redundant information present in both X1 and X2, Unq(Xi) is the unique
information contributed solely by Xi, and Syn is the synergistic information accessible only
through the joint knowledge of X1 and X2.
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By constructing the empirical joint distribution P(s, X1, X2) from simulation data and
applying the BROJA-2PID algorithm [37], we isolate Rdn and Syn. This allows us to de-
termine whether the oscillators encode input information redundantly or synergistically,
thereby shedding light on their cooperative information processing strategies across differ-
ent dynamical phases of the system. More detailed discussions and example calculations of
PID can be found in Appendices A and B.

2.3.2. Quantum Mutual Information (QMI)

Although our primary Partial Information Decomposition (PID) analysis focuses on
classical correlations between input-output variables, the underlying reservoir dynamics
remain fundamentally quantum. To probe the quantum correlations inherent in our system,
we compute the quantum mutual information (QMI) between the two oscillators.

Let ρ12 be the density matrix describing the joint state of the two coupled Kerr oscilla-
tors. We partition the system into subsystems 1 and 2, each corresponding to one oscillator.
The QMI is then given by

I(1 : 2) = S(ρ1) + S(ρ2) − S(ρ12), (7)

where ρ1 = Tr2(ρ12) and ρ2 = Tr1(ρ12) are the reduced density matrices of each oscillator,
and S(ρ) = −Tr

(
ρ ln ρ

)
is the von Neumann entropy.

Because each oscillator’s Hilbert space is, in principle, infinite dimensional, we em-
ploy a finite photon-number basis up to a cutoff Ncutoff to ensure computational tractabil-
ity. Namely,

ρ12 ≈
Ncutoff

∑
n1=0

Ncutoff

∑
n2=0

cn1,n2 |n1⟩⟨n1| ⊗ |n2⟩⟨n2|, (8)

where |ni⟩ is the Fock state with ni photons in oscillator i, and cn1,n2 are the matrix elements
obtained by time-averaging the steady-state solution of the master equation. We verify that
increasing Ncutoff beyond ∼10 does not significantly alter the results within the quantum
regime studied in this work, suggesting that the computed QMI converges to a within
numerical precision.

To evaluate Equation (7), we first diagonalize the full two-oscillator density matrix ρ12

ρ12 = ∑
k

λk
∣∣ψk
〉〈

ψk
∣∣, S(ρ12) = −∑

k
λk ln λk, (9)

where {λk} and {|ψk⟩} are the eigenvalues and eigenbases of ρ12, respectively. We
then obtain the reduced density matrices for each oscillator by tracing out the other as
ρ1 = Tr2

(
ρ12
)
, and ρ2 = Tr1

(
ρ12
)
. Both ρ1 and ρ2 are similarly diagonalized to compute

their von Neumann entropies, S(ρ1) and S(ρ2). Substituting these into Equation (7) gives
the QMI. The resulting I(1 : 2) quantifies the total correlations between the two oscilla-
tors, including both classical and quantum components, and thus complements a classical
PID-based analysis.

2.3.3. Memory Capacity (MC)

In addition to instantaneous encoding, we are interested in how the system stores
information over time, as is relevant in quantum reservoir computing (QRC). The memory
capacity quantifies how well the current state of the reservoir (the outputs X1(t), X2(t))
retains information about past inputs s(t − τ). By analyzing how the reconstruction error
of past inputs varies with the delay τ, we derive a memory measure that complements the
PID and QMI analyses.
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A high memory capacity suggests that the reservoir not only encodes the input at
a given instant but also preserves information over extended periods. Comparing the
memory capacity with Rdn and Syn reveals how different dynamical regimes influence
both the instantaneous and temporal dimensions of information processing in this system.
Details of the MC calculation are provided in Section 3.4.

3. Results and Discussion
We now present numerical evidence that coupled Kerr oscillators can encode input

signals in either a redundant or synergistic fashion, depending on J, ∆, and γ.

3.1. Emergence of Synergistic Encoding

We begin by examining how the joint mutual information (MI), I
(
s : (X1, X2)

)
, com-

pares to the individual MIs I(s : X1) and I(s : X2) when probing our driven-dissipative
system. We focus on two representative parameter sets: a mean-field regime with larger
drive and smaller Kerr nonlinearities, and a quantum regime with smaller drive and larger
Kerr nonlinearities. In both cases, we fix the detuning and damping at ∆ = −2 and γ = 0.5.
Concretely, in the mean-field case, we take F = 2.0, U1 = 6.25 × 10−3, and U2 = 2U1, while
in the quantum regime, we take F = 0.2, U1 = 4.0, and U2 = 2U1.

3.1.1. Synergy from Total Mutual Information Consideration

Figure 2 compares I
(
s : (X1, X2)

)
with I(s : X1) and I(s : X2), revealing that

I
(
s : (X1, X2)

)
> I(s : X1) + I(s : X2),

in the mean-field dynamics regime. This information excess indicates that measuring both
X1 and X2 jointly can reveal strictly more information about the external drive signal s(t)
than either observable alone, suggesting a potential synergistic encoding mechanism.
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Figure 2. Classical mutual information I
(
s : (X1, X2)

)
, compared to I(s : X1) and I(s : X2) in (Left) a

mean-field regime and (Right) a quantum regime. In the mean-field regime, I
(
s : (X1, X2)

)
exceeds

I(s : X1) or I(s : X2) alone near J = |∆|, hinting at synergy. On the other hand, in the quantum
regime, I

(
s : (X1, X2)

)
is comparable to, but not always exceeding, the sum of I(s : X1) and I(s : X2).

3.1.2. Transition from Redundant to Synergistic Encoding

To further investigate whether this information surplus really originates from syn-
ergistic effects (rather than unique information in each oscillator), we perform Partial
Information Decomposition (PID) according to Equation (6). For clarity, we normalize
synergy and redundancy by I

(
s : (X1, X2)

)
, respectively,

Synnorm =
Syn

I
(
s : (X1, X2)

) , Rdnnorm =
Rdn

I
(
s : (X1, X2)

) .
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In Figure 3, we compare the normalized synergy (left) and redundancy (right) across
three regimes (mean-field, second-order cumulant, and fully quantum) at fixed detuning
and dissipation. As we sweep the coupling strength J from small to large, a pronounced syn-
ergy peak emerges near J ≈ |∆| = 2, marking a transition from predominantly redundant
encoding to notably higher synergy (near J ≃ |∆|). In the quantum regime, stronger quan-
tum correlations bias the encoding scheme slightly toward redundancy even near the peak.
In contrast, the second-order cumulant approach captures the partial quantum correlations
that lie between the mean-field regime (where correlations are suppressed) and the fully
quantum regime (where all orders of correlations may appear). This second-order cumulant
dynamics provides an approximate interpolation for regimes where quantum correlations
are significant but not too strong (we set ∆ = −2, F = 0.5, γ = 0.5, U1 = 0.2, U2 = 2U1 to
represent a dynamical regime with non-negligible quantum correlations, motivating the
use of second-order cumulants); see Appendix D.
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Figure 3. (Left) Normalized synergy vs. the coupling J. (Right) Normalized redundancy vs. the
coupling J. A pronounced peak near J ≈ |∆| marks the crossover from predominantly redundant
to more synergistic encoding. In the fully quantum description, enhanced quantum correlations
can favor redundancy even at the transition, whereas second-order cumulants interpolate between
mean-field and quantum descriptions.

3.2. Underlying Mechanisms Enhancing Synergistic Coding: The Role of Soft and Fast Modes

In this section, we explain the sharp increase in synergy observed near J ≃ |∆|, and
attribute this behavior to the interplay between soft and fast modes in the coupled Kerr
oscillators. Specifically, we demonstrate that the dominance of fast modes, enabled by the
overdamping of soft modes, enhances coherent collective dynamics, leading to an increase
in synergistic information.

3.2.1. Soft Modes and Potential Landscape Flatness

In the mean-field approximation without external drive (F = 0), the coupled Kerr
oscillators evolve in the following effective potential (see Appendix C), which captures the
interplay of detuning, Kerr nonlinearities, and coupling

V
(⃗
αc, α⃗∗c

)
= ∑

j=1,2

(
∆ |αj,c|2 + 1

4 Uj |αj,c|4
)

+ J
(
α1,c α∗2,c + α2,c α∗1,c

)
, (10)

where ∆1 = ∆2 = ∆ and α⃗c = [α1,c, α2,c]. At J = |∆|, the Hessian of V evaluated at
the steady-state solution α1,c = α2,c = 0 develops zero eigenvalues, corresponding to
flat or marginal directions. These flat directions represent soft modes, characterized by
near-zero oscillation frequencies. Specifically, when evaluated at the steady state α1,c =
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α2,c = 0, the Hessian matrix of this effective potential (10) calculated in terms of the vector
(Re(α1,c), Im(α1,c), Re(α2,c), Im(α2,c)) is

H[V (⃗α, α⃗∗)]|⃗α,⃗α∗=0 = 2


∆ 0 J 0
0 ∆ 0 J
J 0 ∆ 0
0 J 0 ∆

. (11)

The eigenvalues of this Hessian are

{ 2(∆ + J), 2(∆ + J), 2(∆ − J), 2(∆ − J) }.

For the relevant parameter regime in which ∆ < 0 and J > 0, exactly when J = |∆|
that two flat directions (zero eigenvalues) emerge, and the other two directions are unstable
at the second order (negative eigenvalues); see Figure 4.

Figure 4. Effective potential around the steady state α1,c = α2,c = 0 (red dot) in the ∆ < 0, J > 0
regime, projected onto Im(α1) = Im(α2) = 0. (Left) When J < |∆|, the steady state is weakly
unstable in all directions, with no soft modes present, and the system predominantly encodes inputs
redundantly. (Center) At the critical point J = |∆|, flat directions appear, marking the onset of soft
modes. In this near-critical regime, collective oscillations enhance synergistic encoding. (Right) For
J > |∆|, the potential deforms into a saddle, with two stable and two unstable directions. Here, the
soft modes again disappear, and the system encodes inputs redundantly.

3.2.2. Overdamping of Soft Modes at J = |∆|
Including dissipation with a rate γ can transform the nearly flat directions into over-

damped dynamics as follows. Following the Keldysh formalism [38–40] (see Appendix C),
the retarded Green’s function shows poles of the form

ωs = ±
∣∣J − |∆|

∣∣ − i γ, ω f = ±
∣∣J + |∆|

∣∣ − i γ, (12)

where ωs (slow) and ω f (fast) label the respective branches. Exactly at J = |∆|, the real
part of ωs vanishes, leaving only − i γ, indicating an overdamped relaxation to the steady
state. In contrast, the fast modes remain oscillatory with frequencies Re(ω f ) = |J + |∆||.
Consequently, at J = |∆|, the dynamics are dominated by the coherent oscillations of the
fast modes, as the soft modes contribute only non-oscillatory relaxation.

3.2.3. Coherence-Driven Synergy Enhancement

When the dissipation rate is comparable to the oscillatory frequency of the fast modes
(γ ∼ Re(ω f )), the dominance of fast modes at J = |∆| reduces competition between
oscillatory frequencies (soft modes disappear and only fast modes persist) and enhances
the coherence of the system’s collective response. More specifically, following the discussion
in Appendix C, one can consider the relaxation dynamics of the small perturbation δαc(t)
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around the steady state. It follows that the relaxation dynamics of each observable at site j
can be expressed as

Re
(
δαj,c(t)

)
= cj,se−γt cos(Re(ωs)t) + cj, f e−γt cos

(
Re(ω f )t

)
, (13)

where cj,s and cj, f are initial-perturbation-dependent mode amplitudes. When Re(ωs) →
0, the soft mode contribution simplifies to pure exponential decay, and the dissipative
dynamics are dominated by the single oscillatory frequency ω f of the fast modes.

This coherence relaxation eliminates competing oscillations and minimizes overlap-
ping contributions between modes, reducing redundancy. Also, the collective dynamics
driven by the fast modes encode information that cannot be captured by any single oscilla-
tor alone, thereby enhancing synergistic information. This explains the peak in synergy
observed near J ≃ |∆|.

Figure 5 illustrates how the slow-mode poles (orange) move to the imaginary axis
at J = |∆|, marking the disappearance of competing oscillatory timescales. In this near-critical
regime, the relaxation dynamics become dominated by the underdamped (oscillatory)
contributions of the fast modes, resulting in coherent dissipation. It is important to note
that this result pertains to the regime where γ ∼ |Re(ω f )| ≫ |Re(Ωs)|.

Figure 5. Retarded Green’s function poles (A16) in the complex-frequency plane as J increases,
illustrating the evolution of slow modes ωs (orange dots) and fast modes ω f (blue dots). For J < |∆|,
both slow and fast modes coexist, and the system tends to encode inputs more redundantly. Near
the critical point J = |∆|, the real part of ωs approaches zero, indicating a disappearance of slow
collective oscillations and an overdamped decay. In this near-critical regime, collective oscillations
due to underdamped fast modes dominate and enhance synergistic encoding. For J > |∆|, the slow
modes shift away from zero frequency, reducing synergy and transitioning the system back toward
redundant encoding. This interplay between slow and fast modes governs how the system transitions
from predominantly redundant to synergistic processing and back again as J crosses the critical point.

3.2.4. Generality of the Transition to Synergistic Behavior

The observed synergy peak at J ≃ |∆| is not specific to the type of input signal
driving the system. To demonstrate this, we perform numerical simulations of the master
equation describing quantum dynamics with the input signal s(t) sampled from a uniform
distribution in the interval [−1, 1], and uncorrelated in time. The results, shown in Figure 6,
confirm that the transition in redundant/synergistic behavior persists at J = |∆|, regardless
of the statistical properties of the input.
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Figure 6. Impact of uniform, uncorrelated noise input on information encoding at the quantum regime
(∆ = −2, γ = 0.5, and F = 0.2). (Left) Normalized PID with uniform noise input. (Right) Comparison
of total MI and partial MI contributions. The left panel shows a clear transition to synergistic encoding
near J = |∆|. The right panel compares I

(
S : (X1, X2)

)
and I(S : X1) + I(S : X2), highlighting the

emergence of synergy near the critical coupling.

These results emphasize that the transition to synergistic encoding at J ≃ |∆| is an
intrinsic feature of the system’s response dynamics, driven by the dominance of under-
damped fast modes, and not much by the input signal properties. In the following section,
we explore how increasing γ impacts the system’s encoding behavior, showing that fast
relaxation towards the steady state progressively shifts the system from synergistic to
redundant encoding.

3.3. Large Dissipation Leads to Redundant Encoding

As the damping rate γ increases, the dynamics progressively shift toward overdamped
relaxation for both slow and fast modes. This transition leads to a steady-state regime
where the two cavities become nearly identical, resulting in redundant coding of the input
information. While the emergence of soft modes and the dominance of fast modes at
J ≃ |∆| enhance synergy, increasing γ gradually suppresses this effect, shifting the system
toward a more redundant encoding regime dominated by rapid overdamped relaxation
towards the steady state.

This behavior is particularly evident in the quantum regime, where the system ap-
proaches a product state at large γ, rendering the two oscillators effectively independent.
As shown in Figure 7, increasing γ from the baseline value of γ = 0.5 (as seen in Figures 2
and 3) results in a clear reduction in quantum correlations. Panel (a) of Figure 7 quantifies
this through the time-averaged quantum mutual information (QMI), which decreases as
γ increases. Notably, peaks in QMI at J ≃ |∆| coincide with peaks in classical mutual
information (MI) as shown in panel (b). This observation aligns with the intuition that
higher quantum correlations often translate to enhanced classical information encoding
near the critical coupling.

Figure 7c,d further illustrate this transition by showing how absolute synergy dimin-
ishes and absolute redundancy grows with increasing γ. At low γ, the dynamics favor
(weakly) synergistic encoding. At high γ, however, the system becomes dominated by
(highly) redundant encoding, with both cavities responding similarly and independently
of each other.
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Figure 7. Impact of increasing γ on information metrics in the quantum regime (∆ = −2, F = 0.2).
(a) Time-averaged quantum mutual information (QMI) between the two oscillators as a function of
J for different γ. (b) Classical mutual information (MI) between the input signal and the outputs
vs. J. (c) Absolute synergy vs. J. (d) Absolute redundancy vs. J. These plots illustrate the transition
from low-synergistic to high-redundant encoding with increasing γ. At large dissipation, the two
oscillators approach a product state, indicated by low QMI. Interestingly, despite the redundancy
dominating at higher γ, the total mutual information near J = |∆| remains approximately constant.

3.4. Memory Capacity of Synergistic and Redundant Encoding

We close our discussion by analyzing the performance of the coupled Kerr oscillators as
a quantum reservoir, focusing on their capacity to retain and process temporal information.
This memory capacity benchmark highlights how the synergistic and redundant behaviors
identified earlier influence practical tasks such as time-series memorization.

3.4.1. Short-Term Memory Task

To quantify memory capacity, we train the system to recall past input signals using a
short-term memory task. The input signal s(t) is sampled from a uniform distribution in
the interval [−1, 1] and is uncorrelated in time, and the target time series ȳn(t) corresponds
to the input signal at a previous time step:

ȳn(t) = s(t − n∆t), (14)

where ∆t = 0.01 is the time step. The output observables Xi(t) = Re(⟨âi(t)⟩) and
Yi(t) = Im(⟨âi(t)⟩) are used as feature vectors (here, we use more output readouts than
in the previous sections since this input signal is more difficult to fit with fewer feature
vectors). We construct an output vector X⃗(t):

X⃗(t) =
(

X1(t), X2(t), Y1(t), Y2(t), 1
)⊤

, (15)

and fit the target ȳn(t) using a weight matrix W via standard linear regression with
Tikhonov regularization:

ŷ(t) = W∗X⃗(t), (16)
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where the optimal weights W∗ minimize the mean square error (MSE) during training:

MSE(W, λ) = ||ȳ − ŷ||2 + λ||W||2. (17)

For simplicity, we set λ = 0. After training, the memory capacity [1] for delay step n is
evaluated as

MC(n) =
cov2(ȳn, ŷpred)

σ2(ȳn)σ2(ŷpred)
, (18)

where 0 ≤ MC(n) ≤ 1, with MC(n) = 1 indicating perfect recall.

3.4.2. Tuning J Towards the Critical Coupling Strength

Figure 8 shows the memory capacity as J approaches the critical coupling J = |∆| = 2.
At smaller values of J, the memory capacity remains low across the delay steps. However,
as J approaches |∆|, the system exhibits a notable change in behavior: the memory capacity
for short delays (small n) increases significantly, while the memory capacity for longer
delays (large n) decays more rapidly. This behavior reflects the trade-off between short-term
and long-term memory as the system transitions to the synergistic regime dominated by
fast modes.

Figure 8. (Left) Memory capacity MC(n) for n = 1-10 and J ∈ [0, 2], showing an increase in short-
term memory capacity as J → |∆|. (Right) Memory capacity for n = 1-20 and J ∈ [1.96, 2], showing
that the long-term capacity drops as J → |∆|. Parameters: ∆ = −2, γ = 0.5, F = 0.2. These results are
averaged over 50 input realizations.

We note that, for low dissipation (e.g., γ = 0.5), the system may appear to retain
information about initial conditions at long delays n, indicating that the fading memory
property might not be fully realized. While a more comprehensive benchmark such as the
information processing capacity (IPC) [41] could more definitively confirm or refute fading
memory in this low-dissipation regime, our current goal is to investigate synergy and
redundancy in a small quantum reservoir rather than to perform an exhaustive reservoir-
computing benchmark. Instead, we emphasize qualitative trends in short- vs. long-term
memory. A more detailed, IPC-based study would be an interesting direction for future
work to fully study the computational potential of near-critical quantum reservoirs in
this system.

3.4.3. Impact of Dissipation γ

Figure 9 illustrates how dissipation (γ) affects memory capacity at the critical coupling
J = |∆| = 2. As γ increases, the memory capacity can be attributed to the enhanced stability
(more rapid relaxation towards) in the reservoir’s steady-state dynamics. Dissipation
suppresses oscillatory behavior and stabilizes the reservoir’s response. This stabilization
corresponds to a regime of highly redundant encoding, where information is stored near
the steady state across somewhat identical subsystems.
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Interestingly, as shown in Figure 8, while higher γ leads to improved total memory
capacity, the decay rate of memory capacity in this redundant regime, MC(n) ∼ exp(−Γn),
remains approximately constant across different dissipation rates. This suggests that
dissipation uniformly governs the loss of correlations over time. Differences in memory
capacity at high γ primarily arise from the proportionality factor in Equation (18). As
dissipation increases, the variance in the reservoir’s output prediction decreases, reflecting
rapid stabilization to the steady state. This reduced variance amplifies the initial memory
capacity but does not alter the exponential decay rate of correlations.

These results highlight a subtle interplay between dissipation, memory capacity, and
encoding modes. Near criticality at J = |∆|, the system exhibits synergistic behavior, where
collective dynamical response dominates, enabling the reservoir to respond sensitively to
recent input signals. This synergistic encoding boosts short-term memory retention but
comes at the expense of long-term storage, as the system’s ability to retain correlations with
far past inputs diminishes rapidly due to sensitivity to perturbation.

Figure 9. Memory capacity at the critical coupling J = |∆| = 2 as γ increases. (Left) Linear scale
plot: MC(n) vs. n. (Right) Log scale plot of MC(n) ∼ exp(−Γn). The left panel shows the average
memory capacity (100 realizations). The right panel illustrates an exponential decay in MC(n). The
exponential decay rate of the two-time correlation in the memory capacity, Γ, remains approximately
constant as γ increases, indicating that dissipation uniformly governs the loss of correlations across
different dissipation rates. Differences in memory capacity primarily arise from the proportionality
factor, with larger γ leading to a smaller variance in the output prediction in the denominator of
Equation (18), as the output rapidly stabilizes to the steady state. This rapid stabilization corresponds
to highly redundant encoding, and in turn enhances the total memory capacity for memorizing
uniformly random input time series. Notably, in this redundant coding regime, the highly dissipative
dynamics improve the quantum reservoir’s memory capacity.

At higher dissipation rates γ, the system tends to encode inputs more redundantly and
relaxes more quickly to a steady state. Interestingly, as illustrated in Figure 9, both short-
and long-term memory capacities, at criticality, increase with γ for a simple uniformly
random input memorization task, even though one might initially expect a trade-off. The
underlying reason could be that the system has not yet fully achieved the fading memory
regime, so further investigations, potentially through more comprehensive benchmarks
such as IPC analysis, are needed to confirm how dissipation precisely balances short-term
responsiveness and long-term stability right at a critical point.

Also from the perspective of quantum reservoir design, dissipation plays a critical
role in ensuring the reservoir exhibits the fading memory property, where the influence of
past inputs gradually diminishes, which is a necessary condition for designing operational
reservoir computing [9,10].

4. Conclusions and Outlook
In this work, we explored coupled Kerr-nonlinear oscillators as a model open quantum

system for studying modes of information processing in a small quantum reservoir comput-
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ing (QRC) platform. By employing Partial Information Decomposition (PID) and analyzing
memory retention tasks, we investigated how the interplay of dynamical instability and
dissipation governs the encoding of input information into redundant or synergistic modes.
These encoding schemes play a crucial role in determining the reservoir’s performance in
processing and retaining temporal data.

Our findings reveal several key insights. First, near the critical coupling strength
J = |∆|, the system transitions from predominantly redundant to synergistic encoding.
This transition is driven by the dynamics of coherent oscillation modes that dominate
as slow modes (soft modes) become overdamped. These collective dynamics enable the
reservoir to process information synergistically, boosting short-term memory retention. Im-
portantly, this synergy is robust across different input signals, including telegraph processes
and uniform uncorrelated noise, suggesting that the observed transition is an intrinsic
feature of the system’s bifurcation near J = |∆|. This dynamic instability was elucidated
through the non-equilibrium (Keldysh) field-theoretic analysis, which highlighted how the
disappearance of soft modes amplifies the dominance of fast, coherent modes.

Dissipation (γ) plays an important role in shaping information encoding and memory
capacity for our reservoir near criticality. At low γ, synergistic encoding enables collective
processing and enhances short-term memory retention, as the reservoir’s dynamics are
sensitive to recent input signals. However, as γ increases, dissipation suppresses coherent
dynamics, rapidly driving the system toward redundant encoding. In this regime, large
dissipation stabilizes encoding by enforcing redundant representations near the steady
state, enabling the reservoir to retain information about far-past inputs at the expense of
sensitivity to recent input information.

The connection between encoding modes and memory capacity reveals a trade-off:
synergistic encoding favors short-term memory retention but is less suited for long-term
storage due to its sensitivity to perturbations. Redundant encoding, on the other hand, sac-
rifices responsiveness to recent inputs but improves long-term retention. From a quantum
reservoir design perspective, dissipation ensures the reservoir exhibits the fading memory
property necessary for effective reservoir design [9,42]. By carefully tuning dissipation,
one can hope to optimize the balance between short-term responsiveness and long-term
stability and tailor the reservoir to specific computational tasks, aligning with the recent
work on engineered dissipation as computational resources in quantum systems [10,43,44].

Coupled Kerr-nonlinear oscillators provide a minimal yet insightful testbed for an-
alyzing transitions between encoding modes driven by dissipation and dynamical in-
stability. Extending this framework to other quantum systems with dynamical phase
transitions, such as Bose–Hubbard models [40], driven-dissipative platforms [45], and spin
systems [13,16], could deepen our understanding of how dissipation and instability shape
encoding dynamics in systems with more complex phase spaces. Another interesting direc-
tion is to develop a rigorous definition of quantum synergy. Although this work uses Partial
Information Decomposition (PID) to analyze classical information derived from quantum
observables, incorporating quantum correlations could provide a more comprehensive
view of how coherence and other quantum effects either enhance or constrain information
encoding, in line with [7,8,13]. Such development would refine our understanding of
synergy and redundancy in small quantum systems from a more quantum information
theoretic viewpoint.

In practice, realistic quantum devices inevitably face various noise sources and control
imperfections. While these perturbations may shift the crossover point between redundant
and synergistic encoding or relocate the system’s critical point, our results show that this
crossover in the modes of encoding persists over a wide parameter range. With advanced
experimental techniques, such as dynamical decoupling and error mitigation in quantum
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optics, we expect that the essential physics behind this crossover can still be realized in real
experimental systems.

Lastly, it is important to recognize that the results presented here, like much of the
prior work, assume perfect readout without the presence of shot noise. As system sizes
scale, however, readout processes may suffer from exponential concentration phenomena,
requiring exponentially many measurement shots to estimate input-dependent readouts
accurately as discussed in [11]. This limitation presents a significant barrier to scalabil-
ity. In larger quantum reservoir systems, future studies must address how synergy and
redundancy behave under realistic measurement constraints. Incorporating the effects of
finite measurement precision into the framework of encoding dynamics could lead to more
scalable and experimentally feasible designs for quantum reservoirs.
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Appendix A. Partial Information Decomposition (PID)
In classical (Shannon) information theory, we run into conceptual difficulties as soon as

there are more than two random variables to handle because there is no single, universally
accepted way to break down the total information among multiple variables following
Shannon’s original recipe [46]. Quantifying the amount of information that is shared (redun-
dant), exclusive (unique), or complementary (synergistic) among three or more variables is
highly nontrivial and remains an active area of research; see, for example, [47–52]. In this
work, we adopt one particular framework that meets three criteria: (1) It has a relatively
straightforward formalism. (2) It captures whether and how our system is redundant or
synergistic. (3) It does not exhibit major interpretational drawbacks for our purposes.

This framework, called Partial Information Decomposition (PID) [53], attempts to disen-
tangle the multivariate information into non-overlapping, non-negative parts with clear in-
terpretations. Concretely, consider a set of n random variables {S, R1, R2, . . . , Rn−1}, where
S (the target) is the variable whose information we want to capture, and R = {R1, . . . , Rn−1}
(the sources) is the combined set of variables providing that information. The total (multi-
variate) mutual information between the source and the target is (for discrete distributions)

I(S : R) = ∑
s,r1,...,rn−1

P(S,R)(s, r1, . . . , rn−1) log

(
P(S,R)(s, r1, . . . , rn−1)

PS(s) PR(r1, . . . , rn−1)

)
.

As outlined in the original PID paper [53], this methodology can in principle be
generalized to any number of variables in terms of the PID lattice, but its complexity
increases rapidly once n > 3. (Further developments can be found in [54–58].) In this
work, we focus on the simplest nontrivial case n = 3, for which the PID formalism is most
concretely developed and comparatively well understood.
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Appendix A.1. PID for Three Variables

Let X, Y, Z be three random variables, and consider I(X : (Y, Z)), the mutual infor-
mation between X and the pair (Y, Z). The three-variable PID proposes the following
decomposition of I(X : (Y, Z)) into four distinct parts:

I(X : (Y, Z)) = Rdn(X : Y; Z) + Syn(X : Y; Z) + Unq(X : Y \ Z) + Unq(X : Z \ Y), (A1)

along with corresponding decompositions of the pairwise mutual informations:

I(X : Y) = Rdn(X : Y; Z) + Unq(X : Y \ Z), (A2)

I(X : Z) = Rdn(X : Y; Z) + Unq(X : Z \ Y). (A3)

Here, the four partial information (PI) terms have the following interpretations:

• Rdn(X : Y; Z) (redundancy/shared information): the amount of information about X that
is found in common in Y and Z.

• Syn(X : Y; Z) (synergy/complementary information): the information about X that is
only accessible when considering Y and Z jointly, i.e., the “whole is greater than the
sum of its parts”, which is typically a signature of the cooperation of constituents in
complex systems.

• Unq(X : Y \ Z), Unq(X : Z \ Y) (unique information): the information about X that can
be acquired solely from Y (or Z) and not from Z (or Y).

Because there are four unknown PI quantities but only three equations, Equations
(A1)–(A3), one cannot solve for the PIs without additional theoretical constraints. Different
PID axioms or definitions fix one of these quantities first (e.g., by prescribing a formula or an
inequality), allowing the remaining quantities to be determined from the joint distribution
P(X, Y, Z). Approaches in the literature include (1) defining redundancy first [49,53,57,59],
(2) defining synergy first [50,60], and (3) defining unique information first [23].

Appendix A.2. Co-Information

From Equations (A1)–(A3), one obtains the following notable combination of mutual
information:

I(X : Y) + I(X : Z)− I
(
X : (Y, Z)

)
= Rdn(X : Y; Z) − Syn(X : Y; Z). (A4)

The left-hand side is often called the co-information [47] (or equivalently, interaction
information [61] or sometimes just the mutual information [62]):

CoI(X; Y; Z) = I(X : Y) + I(X : Z) − I
(
X : (Y, Z)

)
. (A5)

Although this is the simplest and most direct extension of mutual information to three
variables, it has two important drawbacks. First, it can take positive or negative values
(making some interpretations more subtle than the non-negative mutual information).
Secondly, it cannot really distinguish redundancy and synergy because the right-hand side
of (A4) just reflects their differences.

Nevertheless, for three-variable systems, CoI can sign whether redundancy or synergy
dominates. Even though the co-information cannot quantify the amount of redundancy and
synergy separately, it can describe whether the system is in a redundant coding or synergistic
coding regime [21]. When CoI > 0, the system is said to be redundancy dominated, and when
CoI < 0, the system is said to be synergy dominated [51,63]. This measure also plays a role in
certain PID definitions and algorithms [23].
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Appendix B. Explicit Examples for PID Calculation
In this appendix, we provide simple but useful examples to show how one can

compute Partial Information Decomposition (PID) terms analytically under the BROJA
approach [23]. The BROJA method obtains each partial information by solving a con-
strained optimization problem over all joint distributions Q(X, Y, Z), consistent with certain
marginal constraints derived from the true distribution P(X, Y, Z).

Appendix B.1. General Framework

Let X, Y, Z be three discrete random variables with a true joint distribution P(X, Y, Z).
The BROJA definitions of the four partial information terms (Unq, Rdn, Syn) are as fol-
lows [23]:

Unq(X : Y \ Z) = min
Q∈∆P

IQ(X : Y | Z),

Unq(X : Z \ Y) = min
Q∈∆P

IQ(X : Z | Y),

Rdn(X : Y; Z) = max
Q∈∆P

CoIQ(X; Y; Z),

Syn(X : Y; Z) = I(X : (Y, Z)) − min
Q∈∆P

IQ(X : (Y, Z)),

(A6)

where CoIQ(X; Y; Z) is the co-information under the joint distribution Q, and

I(X : (Y, Z)) = IP(X : (Y, Z))

is the mutual information computed from the actual distribution P. Any subscripted
quantity such as IQ(·) is computed from a candidate joint distribution Q ∈ ∆P, not from the
true P.

Appendix B.2. Definition of ∆P

The space ∆P ⊆ ∆ consists of all joint distributions Q(X, Y, Z) whose (X, Y) and (X, Z)
marginals match those of P. Formally, if ∆ is the set of all distributions on X ×Y ×Z , then

∆P =
{

Q ∈ ∆
∣∣∣ Q(x, y) = P(x, y) and Q(x, z) = P(x, z)

}
, (A7)

for all (x, y, z) ∈ X × Y × Z . In other words, we fix the two-dimensional marginals of
(X, Y) and (X, Z) to match the true data but allow Q(Y, Z|X) to vary.

Appendix B.3. Foliation into Slices

To handle the high dimensionality of ∆P, a convenient approach parameterizes ∆P via
a foliation; see Appendix A of [23]. Concretely, for each x with P(x) > 0, we define

∆P,x =
{

Q̃(Y, Z) ∈ ∆(Y ×Z)
∣∣∣ Q̃(y) = P(y|x), Q̃(z) = P(z|x)

}
. (A8)

A joint distribution Q ∈ ∆P can then be specified by choosing, for each x, a Q̃(Y, Z) ∈
∆P,x, and combining via

Q(x, y, z) = P(x) Q̃x(y, z) = P(x)Q(y, z|x). (A9)

Hence, ∆P can be viewed as the product of slice spaces ∆P,x for all x. Once a suit-
able parameterization of these slices is chosen, the optimization in (A6) becomes a finite-
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dimensional convex optimization problem. Next, we show how the procedure is performed
in the simple cases following [23].

Appendix B.4. Example 1: AND Gate

Consider three binary variables X = Y = Z = {0, 1} with

X = (Y AND Z)

and Y, Z independent and identically distributed Bernoulli(1/2). The true joint distribution
P is uniform on the events (X, Y, Z) ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 1, 1)} with probability
1/4 each, and zero otherwise. From this P, one derives the marginals P(X, Y) and P(X, Z).

Appendix B.5. Parametrizing ∆P

Applying the slice formalism, one obtains

• For x = 0 (which has P(X = 0) = 3/4), the slice ∆P,0 is a 1-parameter family

Q̃0(0, 0) = 1
3 + α′, Q̃0(0, 1) = 1

3 − α′, Q̃0(1, 0) = 1
3 − α′, Q̃0(1, 1) = α′,

with 0 ≤ α′ ≤ 1/3.
• For x = 1 (which has P(X = 1) = 1/4), the slice ∆P,1 is trivial because the only

consistent distribution is Q̃1(1, 1) = 1.

Combining Q̃0 and Q̃1 as in (A9) and reparameterizing yields the 1-parameter family

Qα(x, y, z) =



1
4 + α, (x, y, z) = (0, 0, 0),
1
4 − α, (x, y, z) = (0, 0, 1), (0, 1, 0),

α, (x, y, z) = (0, 1, 1),
1
4 , (x, y, z) = (1, 1, 1),

0 ≤ α ≤ 1
4

.

Under each candidate Qα, one can compute CoIQα
(X; Y; Z) and IQα

(X : (Y, Z)), and
thus solve the optimization problems over α in (A6). Figure A1 shows CoIQα

and IQα
vs. α.

0.00 0.05 0.10 0.15 0.20 0.25

-0.2

0.0

0.2

0.4

0.6

0.8

Figure A1. Co-information CoIQα
(X; Y; Z) and mutual information IQα

(X : (Y, Z)) for the AND-gate
example, plotted as functions of α. The optimum for redundancy (respectively, synergy) occurs at
α = 1

4 .

Solving these optimizations shows that α = 1
4 is the critical point. Hence, each partial

information is
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Unq(X : Y \ Z) = Unq(X : Z \ Y) = 0

Rdn(X : Y; Z) =
3
4

log
4
3
= 0.311 log 2 = 0.311 bit

Syn(X : Y; Z) =
1
2

log 2 = 0.5 bit

Appendix B.6. Example 2: XOR Gate

Next, consider the binary XOR relation

X = (Y XOR Z),

where Y, Z are again independent and identically distributed Bernoulli(1/2). The true
distribution P is uniform on {(0, 0, 0), (1, 0, 1), (1, 1, 0), (0, 1, 1)}. One again sets up the slices
∆P,0 and ∆P,1, each giving a family of distributions parameterized by α′ and β′.

• ∆P,0: the most general distribution that satisfies the constraint (A8) is

Q̃0(y, z) =


α′ , (y, z) = (0, 0)
1
2 − α′ , (y, z) = (0, 1)
1
2 − α′ , (y, z) = (1, 0)
α′ , (y, z) = (1, 1)

with 0 ≤ α′ ≤ 1
2 .

• ∆P,1: since the distribution for XOR operation is symmetric under swapping Y and Z,
then it turns out that

Q̃1(y, z) =


β′ , (y, z) = (0, 0)
1
2 − β′ , (y, z) = (0, 1)
1
2 − β′ , (y, z) = (1, 0)
β′ , (y, z) = (1, 1)

with another free parameter, 0 ≤ β′ ≤ 1
2 .

Combining them with P(X = 0) = P(X = 1) = 1
2 yields a two-parameter family

Qα,β(x, y, z) =


1
8 + α , (x, y, z) = (0, 0, 0), (0, 1, 1)
1
8 − α , (x, y, z) = (0, 0, 1), (0, 1, 0)
1
8 + β , (x, y, z) = (1, 0, 0), (1, 1, 1)
1
8 − β , (x, y, z) = (1, 0, 1), (1, 1, 0)

where − 1
8 ≤ α, β ≤ 1

8 , governing all Q ∈ ∆P. As before, one computes CoIQα,β(X; Y; Z) and
IQα,β(X : (Y, Z)) to solve the optimization in (A6). Figure A2 shows the surfaces of CoI and
I vs. α, β.
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Figure A2. (Left) CoIQα,β (X; Y; Z); (Right) IQα,β (X : (Y, Z)); for the XOR-gate example. The optimum
occurs at α = 0, β = 0.

The optimum occurs at (α, β) = (0, 0), giving

Unq(X : Y \ Z) = Unq(X : Z \ Y) = 0

Rdn(X : Y; Z) = 0

Syn(X : Y; Z) = log 2 = 1 bit.

This perfectly aligns with the well-known fact that XOR is synergistic. Consider
X = Y XOR Z, and we happen to have only the knowledge of Y, where either we know
that Y = 0 or Y = 1. Without the knowledge of Z, we cannot infer any useful information
about the value of X at all, and the probability P(X|Y) is always equal to 1/2 for any (x, y).
Only when both Y and Z are presented together do we know exactly what the value of X
should be, and it is exactly one bit of information (i.e., one yes/no question) that we need to
know in order to eliminate all uncertainty about the value of X.

These two classic gates (AND and XOR) show how the BROJA optimization can be
computed analytically in simple discrete cases. In practice, for larger or more complex
systems, numerical methods are necessary, but the underlying principle is the same. One
restricts to ∆P to preserve certain marginals and then solves the convex optimization
problems in (A6).

Appendix C. Keldysh Action
In this appendix, we outline how to obtain the Keldysh action for the coupled Kerr

oscillators described by Equations (1) and (2), and how the system’s linear response to
external perturbation can be obtained from the retarded Green’s function. Readers seeking
broader context on Keldysh formalism may consult [24,64,65].

From the Linblad Equation (1), one can reformulate this open-system evolution in
a path-integral language by introducing “classical” fields αj,c and “quantum” fields αj,q,
capturing forward and backward time contours, respectively [24]. After performing the
usual Keldysh rotation, the action SK takes the following form:
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SK =
∫

dt
[

∑
j=1,2

(
α∗j,c i∂t αj,q + α∗j,q i∂t αj,c − ∆j

(
α∗j,cαj,q + α∗j,qαj,c

))
− J

(
α∗1,qα2,c + α∗1,cα2,q + α∗2,qα1,c + α∗2,cα1,q

)
− 1

2 ∑
j=1,2

Uj
(
|αj,c|2 + |αj,q|2

)(
α∗j,cαj,q + αj,cα∗j,q

)
−

√
2 F(t) ∑

j=1,2

(
α∗j,q + αj,q

)
+ i ∑

j=1,2
γj
(
2|αj,q|2 + αj,cα∗j,q − α∗j,cαj,q

)]
. (A10)

Here, ∆j is the detuning frequency, Uj is the Kerr nonlinearity, J is the coupling rate,
and F(t) is an external drive. Varying SK with respect to α∗j,c and α∗j,q yields the semiclassical
equations of motion that incorporate both Hamiltonian and dissipative dynamics.

Appendix C.1. Mean-Field Equations and the Effective Potential

Mean-field or semiclassical (or saddle-point) dynamics are found by setting δSK
δαj,c

=

δSK
δαj,q

= 0 and similarly for complex conjugates. One obtains αj,q = 0 as a trivial solution [24],

and the mean-field dynamics for αj,c then follow from δSK
δα∗j,q

∣∣∣
αj,q=0

= 0 giving

∂tαj,c = −
(
γj + i∆j

)
αj,c − i J αj′ ,c − i

2 Uj αj,c |αj,c|2 − i
√

2 F(t), (A11)

where j′ ̸= j. This can be recast as a potential dynamics of the form

i ∂tαj,c = ∂α∗j,c
V (⃗αc, α⃗∗c ) − i γj αj,c +

√
2 F(t),

with the effective potential

V (⃗αc, α⃗∗c ) = ∑
j=1,2

(
∆j |αj,c|2 + 1

4 Uj |αj,c|4
)
+ J

(
α1,c α∗2,c + α2,c α∗1,c

)
,

which is the potential landscape discussed in Section 3.2.

Appendix C.2. Fluctuations and the Inverse Green’s Function

To analyze the system’s linear response to small perturbation about a mean-field or
saddle-point solution, we expand the Keldysh action to the second order in the fluctuating
fields δαj,c/q. Namely, we set

αj,c/q(t) → αj,c/q(t) + δαj,c/q(t),

expand SK in (A10) to the quadratic order in δαj,c/q, and then consider the Fourier decom-
position of the fluctuations

δαc/q(t) =
1√
2

∫ dω

2π

[
δαc/q(ω) e−iωt + δαc/q(−ω) e+ iωt].

In block-matrix form, the resulting quadratic action reads

SK,2 = 1
2

∫ dω

2π
δΦ†(ω)

 0 [GA(ω)]−1

[GR(ω)]−1 DK

δΦ(ω), (A12)

where δΦ(ω) groups the fluctuations {δαj,c/q(ω), δα∗j,c/q(−ω)}. Explicitly, in the vector
component such that
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δΦ(ω) =
(

δα1,c(ω), δα∗1,c(−ω), δα2,c(ω), δα∗2,c(−ω), δα1,q(ω), δα∗1,q(−ω), δα2,q(ω), δα∗2,q(−ω)
)T

,

the inverse of retarded/advanced Green’s function [GR/A(ω)]−1 and the Keldysh component
of the inverse Green’s function DK read, respectively,

[GR(ω)]−1 =


ω − g1 + iγ1 − 1

2 U1α2
1,c −J 0

− 1
2 U1(α

∗
1,c)

2 −ω − g1 − iγ1 0 −J
−J 0 ω − g2 + iγ2 − 1

2 U2α2
2,c

0 −J − 1
2 U2(α

∗
2,c)

2 −ω − g2 − iγ2

, (A13)

[GA(ω)]−1 = [GR(ω)†]−1, and (A14)

DK = 2i diag(γ1, γ1, γ2, γ2), (A15)

where gj = ∆j + Uj|αj,c|2 for j = 1, 2.

Appendix C.3. Classical Field Response

We are interested in the fluctuations of the classical field variables δαj,c(ω), which is
precisely encoded the inverse retarded block, [GR(ω)]−1 of (A12), that determines how
those fluctuations grow or decay. Let δF(t) be a small external drive coupling linearly to
the oscillator modes as in (A11). At the level of fluctuations, one can write

δαj,c(ω) = GR
j (ω) δF(ω),

where GR
j (ω) is the relevant component (or linear combination of components) of the

retarded Green’s function. In the time domain,

δαj,c(t) =
∫ ∞

−∞
dt′ GR

j (t − t′) δF(t′),

with GR
j (t) = 0 for t < 0. This causality condition sets the retarded (not advanced) nature

of GR; the system cannot respond before the perturbation arises.

Appendix C.4. Pole Structure and Oscillation vs. Decay

To analyze the dynamics near a stationary solution, e.g., α1,c = α2,c = 0, we linearize
around that point and compute GR(ω) by inverting the block matrix. There, the inverse
retarded Green’s function of (A12) becomes

[GR(ω)]−1 =


ω − ∆1 + iγ1 0 −J 0

0 −ω − ∆1 − iγ1 0 −J
−J 0 ω − ∆2 + iγ2 0
0 −J 0 −ω − ∆2 − iγ2

. (A16)

The poles of GR(ω) appear where [GR(ω)]−1 → 0, i.e., where the determinant of the
retarded block vanishes. Writing such a pole as ω⋆ = Ω ± i Γ clarifies the physical nature
of the fluctuation mode:

• Ω = Re(ω⋆) is the frequency of oscillation.
• Γ = − Im(ω⋆) is the exponential decay rate if Γ > 0, signifying a stable, dissipa-

tive mode.

By setting ∆1 = ∆2 = ∆ and γ1 = γ2 = γ > 0 as discussed in Section 3.2, one obtains
the poles describing the fast and slow relaxation modes in (12), that is

ωs = ±
∣∣J − |∆|

∣∣ − i γ, ω f = ±
∣∣J + |∆|

∣∣ − i γ.
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The real part of a slow-mode pole starts to disappear when the effective potential
becomes marginally flat (e.g., J ≃ |∆|). Although one might expect a zero-frequency
“soft” oscillation in a conservative dynamics setting, dissipation (encoded in −iγ terms
of [GR(ω)]−1) shifts that would-be neutral oscillatory mode into an overdamped decay
channel.

In summary, the Keldysh action formalism provides a powerful lens to derive both the
mean-field equations of motion and the fluctuation response in an open quantum system.
Retarded Green’s functions, in particular, capture the causality of how a driven perturbation
modifies the system at later times, thereby revealing the presence of overdamped or
oscillatory collective modes. These results underpin the discussion in Section 3.2 on how
the disappearance of slow modes leads to synergistic encoding at J ≈ |∆|.

Appendix D. Second-Order Cumulant Expansion
In this appendix, we derive the second-order (2nd-order) cumulant expansion used to

obtain semiclassical equations of motion for eight complex-valued expectation variables:{
⟨â1⟩, ⟨â2⟩, ⟨n̂1⟩, ⟨n̂2⟩, ⟨â2

1⟩, ⟨â2
2⟩, ⟨â†

1 â2⟩, ⟨â1 â2⟩
}

.

This second-order cumulant expansion serves as an interpolation between simpler
mean-field dynamics, where second-order cumulants factorize and yield no correlations,
and the full quantum description, in which higher-order cumulants can be nonzero when
quantum correlations are sufficiently strong. We follow the standard cumulant-truncation
scheme [66], imposing that all third- and fourth-order cumulants vanish [67]. That is, we set

⟨ÂB̂Ĉ⟩C = 0 and ⟨ÂB̂ĈD̂⟩C = 0,

where the subscript “C” denotes the connected (cumulant) part. This approximation can
capture second-order correlations while keeping the system of equations tractable.

Below, we provide the resulting coupled ordinary differential equations (ODEs). These
govern the dynamics of our reduced set of expectation values under the second-order
expansion:

d
dt
〈

âj
〉
= −

(
γj + i∆j

)〈
âj
〉
− iUj

(〈
â†

j

〉〈
â2

j

〉
+ 2
〈

âj
〉〈

n̂j
〉
− 2
〈

â†
j

〉〈
âj
〉2
)

− i J
(
δ1j⟨â2⟩+ δ2j⟨â1⟩

)
− iF(t)

(A17)

d
dt
〈
n̂j
〉
= −2γj

〈
n̂j
〉
− i J

(
δ1j − δ2j

)(〈
â†

1 â2

〉
−
〈

â†
2 â1

〉)
+ iF(t)

(〈
âj
〉
−
〈

â†
j

〉)
(A18)

d
dt

〈
â2

j

〉
= −2

(
γj + i∆j

)〈
â2

j

〉
− 2i J⟨â1 â2⟩ − 2iF(t)

〈
âj
〉

− iUj

(〈
â2

j

〉
+ 6
〈
n̂j
〉〈

â2
j

〉
− 4
〈

â†
j

〉〈
âj
〉3
)

,
(A19)

d
dt

〈
â†

1 â2

〉
= i(∆1 − ∆2)

〈
â†

1 â2

〉
− (γ1 + γ2)

〈
â†

1 â2

〉
− i J(⟨n̂1⟩ − ⟨n̂2⟩) + iF(t)

(
⟨â2⟩ −

〈
â†

1

〉)
+ iU1

(
2⟨n̂1⟩

〈
â†

1 â2

〉
+
〈

â†2
1

〉
⟨â1 â2⟩ − 2

〈
â†2

1

〉
⟨â1⟩⟨â2⟩

)
− iU2

(
2⟨n̂2⟩

〈
â†

1 â2

〉
+
〈

â2
2

〉〈
â†

1 â†
2

〉
− 2
〈

â†
1

〉〈
â†

2

〉
⟨â2⟩2

)
,

(A20)
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d
dt
⟨â1 â2⟩ = − ∑

j=1,2

(
γj + i∆j

)
⟨â1 â2⟩ − i ∑

j=1,2

(
J ⟨â2

j ⟩+ F(t) ⟨âj⟩
)

− i U1

(
2 ⟨n̂1⟩ ⟨â1 â2⟩+ ⟨â†

1 â2⟩ ⟨â2
1⟩ − 2 ⟨â†

1⟩ ⟨â2
1⟩ ⟨â2⟩

)
− i U2

(
2 ⟨n̂2⟩ ⟨â1 â2⟩+ ⟨â†

2 â1⟩ ⟨â2
2⟩ − 2 ⟨â†

2⟩ ⟨â1⟩ ⟨â2
2⟩
)

, (A21)

where δij is the Kronecker delta. In the main text, we assume ∆1 = ∆2 and γ1 = γ2

for simplicity.
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Figure A3. Classical mutual information for the 2nd-order cumulant description. This is to be
contrasted with Figure 2 (left) to reveal how second-order description captures partial but nontrivial
correlation effects correcting mean-field approximation. We set ∆ = −2, F = 0.5, γ = 0.5, U1 =

0.2, U2 = 2U1 to represent a dynamical regime with non-negligible correlations, motivating the use
of second-order cumulants description.

Note that these second-order equations provide an approximation to go beyond a strict
mean-field approximation without the full computational cost of higher-order correlation.
By discarding third- and fourth-order cumulants, we retain the information that captures
pairwise correlations, which often dominate many relevant dynamics, while avoiding an
intractable explosion in the number of degrees of freedom.
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