Relativistic Roots of κ-Entropy
Abstract
:1. Introduction
2. An Axiomatic Approach to -Entropy
- I.
- Continuity axiom: The entropy depends continuously on all the variables . From this axiom follows the continuity of the function .
- II.
- Maximality axiom: The entropy is maximized by the uniform distribution , i.e., . From this axiom follows the concavity property .
- III.
- Expansibility axiom: The -component distribution g obtained after the expansion of the W-component distribution f by adding a component with probability equal to zero corresponds to the same entropy of the distribution g, i.e., . From this axiom follows the property . We also recall that the particular probability distribution , where a is a given integer with , describes a state for which one has the maximum information. For this state, must be set. This condition in turn states that and also that . Equivalently, we can set up .
- IV.
- Self-duality axiom: The entropy defined in Equation (2) must be considered both as the standard mean value of the opposite of the generalized logarithm and as the standard mean value of the generalized surprise/unexpectedness , i.e.,
- V.
- Scaling axiom: The generalized logarithm which appears in the definition of entropy (2) has the following property of scaling:
3. Special Relativity
3.1. Energy–Momentum Lorentz Transformations
3.2. Emergence of -Exponential Function in Special Relativity
3.3. Emergence of -Logarithm Function in Special Relativity
3.4. Emergence of Self-Duality in Special Relativity
3.5. -Mathematics
3.6. The -Differential Equations
3.7. The Scaling Property of -Logarithm
4. -Statistical Physics
4.1. Maximum Entropy Principle and -Entropy
4.2. -Kinetics
4.3. -Molecular Chaos Hypothesis
- (i)
- , i.e., it is associative;
- (ii)
- , i.e., it is commutative;
- (iii)
- , i.e., it admits the unity as a neutral element;
- (iv)
- , i.e., the inverse element of g is ;
- (v)
- It holds the property ;
- (vi)
- defines the -division between probabilities.
4.4. Four-Vector -Entropy and Relativistic H-Theorem
4.5. Relativistic Temperature
5. Epilogue
- (i)
- Relativistic statistical theory: It is possible to construct a statistical theory within the framework of special relativity that preserves the main features of classical statistical theory (axiomatic structure, maximum entropy principle, thermodynamic stability, Lesche stability, molecular chaos hypothesis, local formulation of H-theorem, etc.).
- (ii)
- Old problems of special relativity: Within the framework of the new relativistic statistical theory, answers naturally arise to questions that were formulated immediately after the proposal of special relativity as to how the temperature and entropy of a moving body change. In particular, it turns out that the temperature varies according to the law proposed by Planck and Einstein in 1906, where is the Lorentz factor.
- (iii)
- Axiomatic structure of the theory: Although the statistical theory generated by the entropy was developed within the framework of Einstein’s special relativity, it can also be introduced without reference to special relativity given its applications outside physics by following the guidelines of information theory, which emphasizes the axiomatic structure of the various theories. In the construction of -entropy, the first three Khinchin–Shannon axioms are taken into account, i.e., those of the continuity, maximality, and expansibility of the ordinary Boltzmann entropy. Subsequently, the fourth Khinchin–Shannon axiom of strong additivity is replaced by two new axioms, namely, those of self-duality and scaling, which express well-known properties of logarithmic Boltzmann entropy. In the final step, it is shown that these five axioms are not only able to generate the Boltzmann entropy but also a further and unique entropy, namely, -entropy, which turns out to be a one-parameter continuous generalization of the Boltzmann entropy. The axioms of self-duality and scaling can be seen as stemming from the first principles of special relativity. In any case, these two axioms can also be easily justified outside the special relativity, since they have general validity and can also generate the Boltzmann entropy.
- (iv)
- -mathematical statistics: Statistical theory does not only include statistical mechanics, which is a physical theory. Mathematical statistics is another important tool for analyzing complex systems. Two important families of distributions dominate ordinary mathematical statistics. On the one hand, there is the family of distributions with exponential tails (generalized gamma distribution, Weibull distribution, logistic distribution, etc.), and on the other hand, the family of distributions with power-law tails (Pareto, Log-Logistic, Burr type XII or Singh-Maddala distribution, Dagum distribution, etc.). This dichotomy can be overcome in the framework of the present formalism by using the -exponential function instead of the ordinary exponential function in the construction of statistical distributions, obtaining a unique family of statistical distributions (-generalized gamma distribution, -Weibull distribution, -logistic distribution, etc.). The new unified class of -distributions [178] in the low spectral region reproduces the standard family of exponential distributions, while in the high spectral region, it exhibits Pareto power-law tails.
- (v)
- -mathematics: In special relativity, the physical quantities such as momentum, kinetic energy, etc. are relativistically generalized and change their expressions relatively to the corresponding classical expressions. The composition laws of the various physical quantities are also properly generalized. The generalized sum of relativistic moments inevitably leads to the generalization of the entire mathematics. The resulting -calculus allows for the introduction of relativistic functions such as the -exponential, the -logarithm, the -trigonometry, and so on. -mathematics proves to be isomorphic to ordinary mathematics, which classically obtains the limit.
- (vi)
- The Gell-Mann plectic: -mathematics is based on a formalism that can handle both simple systems (relativistic one-particle physics) and complex systems (relativistic statistical physics). Furthermore, the same formalism makes it possible to treat physical and non-physical complex systems (statistical physics, information theory, and statistical mathematics) in a unified way. The above features of the -formalism give it the status of a candidate for the construction of the holistic theory of simple and complex systems, called plectics by Gell-Mann [179,180].
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Vasyliunas, V.M. Low-Energy Electrons in the Magnetosphere as Observed by OGO-1 and OGO-3. J. Geophys. Res. 1968, 73, 2839. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Lissia, M. Editorial on News and expectations in thermostatistics. Phys. A 2004, 340, XV–XIX. [Google Scholar]
- Kaniadakis, G. Non-linear kinetics underlying generalized statistics. Phys. A 2001, 296, 405–425. [Google Scholar] [CrossRef]
- Kaniadakis, G. H-theorem and generalized entropies within the framework of nonlinear kinetics. Phys. Lett. A 2001, 288, 283–291. [Google Scholar] [CrossRef]
- Kaniadakis, G. Statistical mechanics in the context of special relativity. Phys. Rev. E 2002, 66, 056125. [Google Scholar] [CrossRef] [PubMed]
- Kaniadakis, G. Statistical mechanics in the context of special relativity II. Phys. Rev. E 2005, 72, 036108. [Google Scholar] [CrossRef] [PubMed]
- Kaniadakis, G. Towards a relativistic statistical theory. Phys. A 2006, 365, 17–23. [Google Scholar] [CrossRef]
- Kaniadakis, G. Relativistic Entropy and related Boltzmann kinetics. Eur. Phys. J. A 2009, 40, 275–287. [Google Scholar] [CrossRef]
- Kaniadakis, G. Maximum Entropy Principle and power-law tailed distributions. Eur. Phys. J. B 2009, 70, 3–13. [Google Scholar] [CrossRef]
- Kaniadakis, G. Relativistic kinetics and power-law-tailed distributions. Europhys. Lett. 2010, 92, 35002. [Google Scholar] [CrossRef]
- Kaniadakis, G. Power-law tailed statistical distributions and Lorentz transformations. Phys. Lett. A 2011, 375, 356–359. [Google Scholar] [CrossRef]
- Kaniadakis, G. Physical origin of the power-law tailed statistical distribution. Mod. Phys. Lett. B 2012, 26, 1250061. [Google Scholar] [CrossRef]
- Kaniadakis, G. Theoretical Foundations and Mathematical Formalism of the Power-Law Tailed Statistical Distributions. Entropy 2013, 15, 3983–4010. [Google Scholar] [CrossRef]
- Silva, R. The relativistic statistical theory and Kaniadakis entropy: An approach through a molecular chaos hypothesis. Eur. Phys. J. B 2006, 54, 499–502. [Google Scholar] [CrossRef]
- Silva, R. The H-theorem in κ-statistics: Influence on the molecular chaos hypothesis. Phys. Lett. A 2006, 352, 17–20. [Google Scholar] [CrossRef]
- Wada, T. Thermodynamic stabilities of the generalized Boltzmann entropies. Phys. A 2004, 340, 126–130. [Google Scholar] [CrossRef]
- Wada, T. Thermodynamic stability conditions for nonadditive composable entropies. Contin. Mechan. Thermod. 2004, 16, 263–267. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Scarfone, A.M. Lesche stability of κ-entropy. Phys. A 2004, 340, 102–109. [Google Scholar] [CrossRef]
- Abe, S.; Kaniadakis, G.; Scarfone, A.M. Stabilities of generalized entropy. J. Phys. A Math. Gen. 2004, 37, 10513. [Google Scholar] [CrossRef]
- Naudts, J. Deformed exponentials and logarithms in generalized thermostatistics. Phys. A 2002, 316, 323–334. [Google Scholar] [CrossRef]
- Naudts, J. Continuity of a class of entropies and relative entropies. Rev. Math. Phys. 2004, 16, 809–822. [Google Scholar] [CrossRef]
- Scarfone, A.M.; Wada, T. Canonical partition function for anomalous systems described by the κ-entropy. Prog. Theor. Phys. Suppl. 2006, 162, 45–52. [Google Scholar] [CrossRef]
- Yamano, T. On the laws of thermodynamics from the escort average and on the uniqueness of statistical factors. Phys. Lett. A 2003, 308, 364–368. [Google Scholar] [CrossRef]
- Lucia, U. Maximum entropy generation and kappa-exponential mode. Phys. A 2010, 389, 4558–4563. [Google Scholar] [CrossRef]
- Aliano, A.; Kaniadakis, G.; Miraldi, E. Bose-Einstein condensation in the framework of kappa-statistics. Phys. B 2003, 325, 35–40. [Google Scholar] [CrossRef]
- Santos, A.P.; Silva, R.; Alcaniz, J.S.; Anselmo, D.H.A.L. Kaniadakis statistics and the quantum H-theorem. Phys. Lett. A 2011, 375, 352–355. [Google Scholar] [CrossRef]
- Santos, A.P.; Silva, R.; Alcaniz, J.S.; Anselmo, D.H.A.L. Generalized quantum entropies. Phys. Lett. A 2011, 375, 3119–3123. [Google Scholar] [CrossRef]
- Santos, A.P.; Silva, R.; Alcaniz, J.S.; Anselmo, D.H.A.L. Non-Gaussian effects on quantum entropies. Phys. A 2012, 391, 2182–2192. [Google Scholar] [CrossRef]
- Pistone, G. κ-exponential models from the geometrical point of view. Eur. Phys. J. B 2009, 70, 29–37. [Google Scholar] [CrossRef]
- Pistone, G.; Shoaib, M. Kaniadakis’s Information Geometry of Compositional Data. Entropy 2023, 25, 1107. [Google Scholar] [CrossRef] [PubMed]
- Kaniadakis, G.; Lissia, M.; Scarfone, A.M. Deformed logarithms and entropies. Phys. A 2004, 40, 41–49. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Lissia, M.; Scarfone, A.M. Two-parameter deformations of logarithm, exponential, and entropy: A consistent framework for generalized statistical mechanics. Phys. Rev. E 2005, 71, 046128. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Scarfone, A.M. A new one-parameter deformation of the exponential function. Phys. A 2002, 305, 69–75. [Google Scholar] [CrossRef]
- Oikonomou, T.; Bagci, G.B. A completness criterion for Kaniadakis, Abe, and two-parameter generalized statistical theories. Rep. Math. Phys. 2010, 66, 137–146. [Google Scholar] [CrossRef]
- Stankovic, M.S.; Marinkovic, S.D.; Rajkovic, P.M. The deformed exponential functions of two variables in the context of various statistical mechanics. Appl. Math. Comput. 2011, 218, 2439–2448. [Google Scholar] [CrossRef]
- Tempesta, P. Group entropies, correlation laws, and zeta functions. Phys. Rev. E 2011, 84, 021121. [Google Scholar] [CrossRef] [PubMed]
- Deossa Casas, D.E. Sobre Funciones Exponenciales y Logaritmicas Deformadas Segun Kaniadakis. Master’s Thesis, Universidad EAFIT, Medellin, Colombia, 2011. Available online: http://hdl.handle.net/10784/156 (accessed on 1 May 2024).
- Vigelis, R.F.; Cavalcante, C.C. On φ-Families of probability distributions. J. Theor. Probab. 2013, 26, 870–884. [Google Scholar] [CrossRef]
- Scarfone, A.M. Entropic Forms and Related Algebras. Entropy 2013, 15, 624–649. [Google Scholar] [CrossRef]
- Biró, T.S. Kaniadakis Entropy Leads to Particle–Hole Symmetric Distribution. Entropy 2022, 24, 1217. [Google Scholar] [CrossRef] [PubMed]
- Sfetcu, R.-C.; Sfetcu, S.-C.; Preda, V. Some Properties of Weighted Tsallis and Kaniadakis Divergences. Entropy 2022, 24, 1616. [Google Scholar] [CrossRef] [PubMed]
- Sfetcu, R.-C.; Sfetcu, S.-C.; Preda, V. On Tsallis and Kaniadakis Divergences. Math. Phys. An. Geom. 2022, 25, 7. [Google Scholar] [CrossRef]
- Wada, T.; Scarfone, A.M. On the Kaniadakis Distributions Applied in Statistical Physics and Natural Sciences. Entropy 2023, 25, 292. [Google Scholar] [CrossRef]
- Scarfone, A.M.; Wada, T. Multi-Additivity in Kaniadakis Entropy. Entropy 2024, 26, 77. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Du, J.; Liu, Z. The property of κ-deformed statistics for a relativistic gas in an electromagnetic field: κ parameter and κ-distribution. Phys. Lett. A 2007, 367, 431–435. [Google Scholar] [CrossRef]
- Guo, L.; Du, J. The κ parameter and κ-distribution in κ-deformed statistics for the sysstems in an external field. Phys. Lett. A 2007, 362, 368–370. [Google Scholar] [CrossRef]
- Lapenta, G.; Markidis, S.; Marocchino, A.; Kaniadakis, G. Relaxation of relativistic plasmas under the effect of wave-particle interactions. Astrophys. J. 2007, 666, 949–954. [Google Scholar] [CrossRef]
- Lapenta, G.; Markidis, S.; Kaniadakis, G. Computer experiments on the relaxation of collisionless plasmas. J. Stat. Mech. 2009, 9, P02024. [Google Scholar] [CrossRef]
- Da Silva, S.L.E.F. Newton’s cooling law in generalised statistical mechanics. Phys. A 2021, 565, 125539. [Google Scholar] [CrossRef]
- Rani, S.; Jawad, A.; Sultan, A.M.; Shad, M. Cosmographic and thermodynamic analysis of Kaniadakis holographic dark energy. Int. J. Mod. Phys. D 2022, 31, 2250078. [Google Scholar] [CrossRef]
- Ghaffari, S. Kaniadakis holographic dark energy in Brans-Dicke cosmology. Mod. Phys. Lett. A 2022, 37, 2250152. [Google Scholar] [CrossRef]
- Sharma, U.K.; Dubey, V.C.; Ziaie, A.H.; Moradpour, H. Kaniadakis holographic dark energy in nonflat universe. Int. J. Mod. Phys. D 2022, 31, 2250013. [Google Scholar] [CrossRef]
- Drepanou, N.; Lymperis, A.; Saridakis, E.N.; Yesmakhanova, K. Kaniadakis holographic dark energy and cosmology. Eur. Phys. J. C 2022, 82, 449. [Google Scholar] [CrossRef]
- Korunur, S. Kaniadakis holographic dark energy with scalar field in Bianchi type-V universe. Int. J. Mod. Phys. A 2022, 37, 2250214. [Google Scholar] [CrossRef]
- Hernandez-Almada, A.; Leon, G.; Magana, J.; Garcia-Aspeitia, M.A.; Motta, V.; Saridakis, E.N.; Yesmakhanova, K.; Millano, A.D. Observational constraints and dynamical analysis of Kaniadakis horizon-entropy cosmology. Mon. Not. R. Astron. Soc. 2022, 512, 5122–5134. [Google Scholar] [CrossRef]
- Hernandez-Almada, A.; Leon, G.; Magana, J.; Garcia-Aspeitia, M.A.; Motta, V.; Saridakis, E.N.; Yesmakhanova, K. Kaniadakis-holographic dark energy: Observational constraints and global dynamics. Mon. Not. R. Astron. Soc. 2022, 511, 4147–4158. [Google Scholar] [CrossRef]
- Blasone, M.; Lambiase, G.; Luciano, G.G. Kaniadakis entropy-based characterization of IceCube PeV neutrino signals. Phys. Dark Universe 2023, 42, 101342. [Google Scholar] [CrossRef]
- Sania, A.N.; Rani, S.; Jawad, A. Cosmic and Thermodynamic Consequences of Kaniadakis Holographic Dark Energy in Brans-Dicke Gravity. Entropy 2023, 25, 576. [Google Scholar] [CrossRef] [PubMed]
- Dubey, V.C.; Kumar, M.; Sharma, L.K.; Sharma, U.K. Some features of Kaniadakis holographic dark energy model. Int. J. Geom. Meth. Mod. Phys. 2023, 20, 2350036. [Google Scholar] [CrossRef]
- Jawad, A.; Ul Abideen, Z.; Rani, S. Study of cosmic acceleration in modified theories of gravity through Kaniadakis holographic dark energy. Mod. Phys. Lett. A 2023, 38, 2350037. [Google Scholar] [CrossRef]
- Singh, B.K.; Sharma, U.K.; Sharma, L.K.; Dubey, V.C. Statefinder hierarchy of Kaniadakis holographic dark energy with composite null diagnostic. Int. J. Geom. Meth. Mod. Phys. 2023, 20, 2350074. [Google Scholar] [CrossRef]
- Kumar, P.S.; Pandey, B.D.; Sharma, U.K.; Pankaj. Holographic dark energy through Kaniadakis entropy in non flat universe. Eur. Phys. J. C 2023, 83, 143. [Google Scholar] [CrossRef]
- Sharma, U.K.; Kumar, P.S.; Pankaj. Quintessence scalar field of Kaniadakis holographic dark energy model with statefinder analysis. Int. J. Geom. Meth. Mod. Phys. 2023, 20, 2450004. [Google Scholar] [CrossRef]
- Sadeghi, J.; Gashti, S.N.; Azizi, T. Complex quintessence theory, Tsallis and Kaniadakis holographic dark energy and Brans-Dicke cosmology. Mod. Phys. Lett. A 2023, 38, 2350076. [Google Scholar] [CrossRef]
- Kumar, P.S.; Pandey, B.D.; Pankaj; Sharma, U.K. Kaniadakis agegraphic dark energy. New Astr. 2024, 105, 102085. [Google Scholar] [CrossRef]
- Sultana, S.; Chattopadhyay, S. Intermediate inflation through Nojiri–Odintsov holographic dark fluid with the cosmological settings of Kaniadakis. Int. J. Geom. Meth. Mod. Phys. 2024, 21, 2450133. [Google Scholar] [CrossRef]
- Chokyi, K.K.; Chattopadhyay, S. Cosmology of Tsallis and Kaniadakis holographic dark energy in Saez-Ballester theory and consideration of viscous van der Waals fluid. Ann. Phys. 2024, 463, 169611. [Google Scholar] [CrossRef]
- Sarfraz, A.; Muhammad, K.; Umber, S. Cosmic implications of Kaniadakis HDE model in Chern-Simons modified gravity. New Astron. 2024, 110, 102226. [Google Scholar]
- Ganeswara Raoa, B.; Mohanty, D.J.; Adityac, Y.; Divya Prasanthid, U.Y. Cosmological evolution of Bianchi type-V I0 Kaniadakis Holographic dark energy model. East Eur. J. Phys. 2024, 1, 43–54. [Google Scholar]
- Yarahmadi, M.; Salehi, A. Using the Kaniadakis horizon entropy in the presence of neutrinos to alleviate the Hubble and S8 tensions. Eur. Phys. J. C 2024, 84, 443. [Google Scholar]
- Abreu, E.M.C.; Neto, J.A.; Barboza, E.M.; Nunes, R.C. Jeans instability criterion from the viewpoint of Kaniadakis statistics. EPL 2016, 114, 55001. [Google Scholar] [CrossRef]
- Abreu, E.M.C.; Neto, J.A.; Barboza, E.M.; Nunes, R.C. Tsallis and Kaniadakis statistics from the viewpoint of entropic gravity formalism. Int. J. Mod. Phys. 2017, 32, 1750028. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, S.X.; Liu, S.Q. Jeans gravitational instability with kappa-deformed Kaniadakis distribution. Chin. Phys. Lett. 2017, 34, 075101. [Google Scholar] [CrossRef]
- Abreu, E.M.C.; Neto, J.A.; Mendes, A.C.R.; Bonilla, A. Tsallis and Kaniadakis statistics from a point of view of the holographic equipartition law. EPL 2018, 121, 45002. [Google Scholar] [CrossRef]
- Abreu, E.M.C.; Neto, J.A.; Mendes, A.C.R.; Bonilla, A.; de Paula, R.M. Cosmological considerations in Kaniadakis statistics. EPL 2018, 124, 30003. [Google Scholar] [CrossRef]
- Abreu, E.M.C.; Neto, J.A.; Mendes, A.C.R.; de Paula, R.M. Loop quantum gravity Immirzi parameter and the Kaniadakis statistics. Chaos Sol. Fractals 2019, 118, 307–310. [Google Scholar] [CrossRef]
- Yang, W.; Xiong, Y.; Chen, H.; Liu, S. Jeans instability of dark-baryonic matter model in the context of Kaniadakis’ statistic distribution. J. Taibah Univ. Sci. 2022, 16, 337–343. [Google Scholar] [CrossRef]
- He, K.-R. Jeans analysis with κ-deformed Kaniadakis distribution in f (R) gravity. Phys. Scr. 2022, 97, 025601. [Google Scholar] [CrossRef]
- Moradpour, H.; Javaherian, M.; Namvar, E.; Ziaie, A.H. Gamow Temperature in Tsallis and Kaniadakis Statistics. Entropy 2022, 24, 797. [Google Scholar] [CrossRef] [PubMed]
- Luciano, G.G. Modified Friedmann equations from Kaniadakis entropy and cosmological implications on baryogenesis and 7Li -abundance. Eur. Phys. J. C 2022, 82, 314. [Google Scholar] [CrossRef]
- Luciano, G.G.; Saridakis, E.N. P-v criticalities, phase transitions and geometrothermodynamics of charged AdS black holes from Kaniadakis statistics. J. High Energy Phys. 2023, 2023, 114. [Google Scholar] [CrossRef]
- Lambiase, G.; Luciano, G.G.; Sheykhi, A. Slow-roll inflation and growth of perturbations in Kaniadakis modification of Friedmann cosmology. Eur. Phys. J. C 2023, 83, 936. [Google Scholar] [CrossRef]
- Sheykhi, A. Corrections to Friedmann equations inspired by Kaniadakis entropy. Phys. Lett. 2024, 850, 138495. [Google Scholar] [CrossRef]
- Luciano, G.G. Gravity and Cosmology in Kaniadakis Statistics: Current Status and Future Challenges. Entropy 2022, 24, 1712. [Google Scholar] [CrossRef] [PubMed]
- Sadeghnezhad, N. Entropic gravity and cosmology in Kaniadakis statistics. Int. J. Mod. Phys. D 2023, 32, 2350002. [Google Scholar] [CrossRef]
- Wada, T.; Scarfone, A.M. Asymptotic solutions of a nonlinear diffusive equation in the framework of κ-generalized statistical mechanics. Eur. Phys. J. B 2009, 70, 65–71. [Google Scholar] [CrossRef]
- Wada, T. A nonlinear drift which leads to kappa-generalized distributions. Eur. Phys. J. B 2010, 73, 287–291. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Quarati, P.; Scarfone, A.M. Kinetical foundations of non-conventional statistics. Phys. A 2002, 305, 76–83. [Google Scholar] [CrossRef]
- Biro, T.S.; Kaniadakis, G. Two generalizations of the Boltzmann equation. Eur. Phys. J. B 2006, 50, 3–6. [Google Scholar] [CrossRef]
- Casas, G.A.; Nobre, F.D.; Curado, E.M.F. Entropy production and nonlinear Fokker-Planck equations. Phys. Rev. E 2012, 86, 061136. [Google Scholar] [CrossRef]
- Hirica, I.-E.; Pripoae, C.-L.; Pripoae, G.-T.; Preda, V. Lie Symmetries of the Nonlinear Fokker-Planck Equation Based on Weighted Kaniadakis Entropy. Mathematics 2022, 10, 2776. [Google Scholar] [CrossRef]
- Gomez, I.S.; da Costa, B.G.; dos Santos, M.A.F. Inhomogeneous Fokker–Planck equation from framework of Kaniadakis statistics. Commun. Nonlin. Sci. Num. Sim. 2023, 119, 107131. [Google Scholar] [CrossRef]
- Evangelista, L.R.; Lenzi, E.K. Nonlinear Fokker–Planck Equations, H-Theorem and Generalized Entropy of a Composed System. Entropy 2023, 25, 1357. [Google Scholar] [CrossRef] [PubMed]
- Guha, P. The κ-Deformed Calogero-Leyvraz Lagrangians and Applications to Integrable Dynamical Systems. Entropy 2023, 24, 1673. [Google Scholar] [CrossRef]
- Rossani, A.; Scarfone, A.M. Generalized kinetic equations for a system of interacting atoms and photons: Theory and Simulations. J. Phys. A 2004, 37, 4955–4975. [Google Scholar] [CrossRef]
- Guo, L.N.; Du, J.L. The two parameters (κ, r) in the generalized statistics. Phys. A 2010, 389, 47–51. [Google Scholar] [CrossRef]
- Guo, L.N. Physical meaning of the parametres in the two-parameter (κ, ζ generalized theory. Modern Phys. Lett. B 2012, 26, 1250064. [Google Scholar] [CrossRef]
- Silva, J.M.; Silva, R.; Lima, J.A.S. Conservative force fields in non-Gaussian statistics. Phys. Lett. A 2008, 372, 5754–5757. [Google Scholar] [CrossRef]
- Carvalho, J.C.; Silva, R.; do Nascimento, J.D., Jr.; De Medeiros, J.R. Power law statistics and stellar rotational velocities in the Pleiades. Europhys. Lett. 2008, 84, 59001. [Google Scholar] [CrossRef]
- Carvalho, J.C.; do Nascimento, J.D., Jr.; Silva, R.; De Medeiros, J.R. Non-gaussian statistics and stellar rotational velocities of main sequence field stars. Astrophys. J. Lett. 2009, 696, L48–L51. [Google Scholar] [CrossRef]
- Carvalho, J.C.; Silva, R.; do Nascimento, J.D., Jr.; Soares, B.B.; De Medeiros, J.R. Observational measurement of open stellar clusters: A test of Kaniadakis and Tsallis statistics. Europhys. Lett. 2010, 91, 69002. [Google Scholar] [CrossRef]
- Bento, E.P.; Silva, J.R.P.; Silva, R. Non-Gaussian statistics, Maxwellian derivation and stellar polytropes. Phys. A 2013, 392, 666–672. [Google Scholar] [CrossRef]
- Teweldeberhan, A.M.; Miller, H.G.; Tegen, R. κ-deformed Statistics and the formation of a quark-gluon plasma. Int. J. Mod. Phys. E 2003, 12, 669–673. [Google Scholar] [CrossRef]
- Pereira, F.I.M.; Silva, R.; Alcaniz, J.S. Non-gaussian statistics and the relativistic nuclear equation of state. Nucl. Phys. A 2009, 828, 136–148. [Google Scholar] [CrossRef]
- Cravero, M.; Iabichino, G.; Kaniadakis, G.; Miraldi, E.; Scarfone, A.M. A κ-entropic approach to the analysis of the fracture problem. Phys. A 2004, 340, 410–417. [Google Scholar] [CrossRef]
- Gougam, L.A.; Tribeche, M. Electron-acoustic waves in a plasma with a kappa-deformed Kaniadakis electron distribution. Phys. Plasmas 2016, 23, 014501. [Google Scholar] [CrossRef]
- Lourek, I.; Tribeche, M. On the role of the κ-deformed Kaniadakis distribution in nonlinear plasma waves. Phys. A 2016, 441, 215–220. [Google Scholar] [CrossRef]
- Lopez, R.A.; Navarro, R.E.; Pons, S.I.; Araneda, J.A. Landau damping in Kaniadakis and Tsallis distributed electron plasmas. Phys. Plasmas 2017, 24, 102119. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, S.X.; Liu, S.Q. Te longitudinal plasmas modes of κ-deformed kaniadakis distributed plasmas. Phys. Plasmas 2017, 24, 022125. [Google Scholar] [CrossRef]
- Saha, A.; Tamang, J. Qualitative analysis of the positron-acoustic waves in electron-positron-ion plasmas with kappa deformed Kaniadakis distributed electrons and hot positrons. Phys. Plasmas 2017, 24, 082101. [Google Scholar] [CrossRef]
- Lourek, I.; Tribeche, M. Dust charging current in non equilibrium dusty plasma in the context of Kaniadakis generalization. Phys. A 2019, 517, 522–529. [Google Scholar] [CrossRef]
- Khalid, M.; Rahman, A.-U. Oblique ion acoustic excitations in a magnetoplasma having κ-deformed Kaniadakis distributed electrons. Astr. Space Sc. 2020, 365, 75. [Google Scholar] [CrossRef]
- Tan, L.; Yang, Q.; Chen, H.; Liu, S. The Longitudinal Plasma Modes of κ-Deformed Kaniadakis Distributed Plasmas Carrying Orbital Angular Momentum. Entropy 2022, 24, 1211. [Google Scholar] [CrossRef] [PubMed]
- Irshad, M.; Khalid, M.; Ata-ur-Rahman. Modulational instability of ion acoustic excitations in a plasma with a κ-deformed Kaniadakis electron distribution. Eur. Phys. J. Plus 2022, 137, 893. [Google Scholar] [CrossRef]
- Bellahsene, Z.; Bacha, M.; Zerguini, T.H. The role of κ-deformed Kaniadakis distributed electrons on the dust ion-acoustic waves in charge-varying dusty plasma. Contrib. Plasma Phys. 2023, 64, e202300155. [Google Scholar] [CrossRef]
- Dubinov, A.E. Gas-dynamic approach to the theory of non-linear ion-acoustic waves in plasma with Kaniadakis’ distributed species. Adv. Space Res. 2023, 71, 1108–1115. [Google Scholar] [CrossRef]
- Raut, S.; Mondal, K.K.; Chatterjee, P.; Roy, S. Dust ion acoustic bi-soliton, soliton, and shock waves in unmagnetized plasma with Kaniadakis-distributed electrons in planar and nonplanar geometry. Eur. Phys. J. D 2023, 77, 100. [Google Scholar] [CrossRef]
- Irshad, M.; Ata-Ur-Rahman; Khalid, M.; Khan, S.; Alotaibi, B.M.; El-Sherif, L.S.; El-Tantawy, S.A. Effect of κ-deformed Kaniadakis distribution on the modulational instability of electron-acoustic waves in a non-Maxwellian plasma. Phys. Fluids 2023, 35, 105116. [Google Scholar] [CrossRef]
- Khalid, M.; Kabir, A.; Jan, S.U.; Eldin, S.M. Coexistence of Compressive and Rarefactive Positron-Acoustic Electrostatic Excitations in Unmagnetized Plasma with Kaniadakis Distributed Electrons and Hot Positrons. Braz. J. Phys. 2023, 53, 66. [Google Scholar] [CrossRef]
- Bala, P.; Kaur, G. Modulational instability of ion-acoustic waves in multicomponent plasma using κ-deformed Kaniadakis distribution. Pramana J. Phys. 2024, 98, 7. [Google Scholar] [CrossRef]
- Hristopulos, D.T.; Petrakis, M.P.; Kaniadakis, G. Finite-size effects on return interval distributions for weakest-link-scaling systems. Phys. Rev. E 2014, 89, 052142. [Google Scholar] [CrossRef] [PubMed]
- Hristopulos, D.T.; Petrakis, M.P.; Kaniadakis, G. Weakest-Link Scaling and Extreme Events in Finite-Sized Systems. Entropy 2015, 17, 1103–1122. [Google Scholar] [CrossRef]
- Da Silva, S.L.E.F. κ-generalised Gutenberg–Richter law and the self-similarity of earthquakes. Chaos Solit. Fractals 2021, 143, 110622. [Google Scholar] [CrossRef]
- Hristopulos, D.T.; Baxevani, A. Kaniadakis Functions beyond Statistical Mechanics: Weakest-Link Scaling, Power-Law Tails, and Modified Lognormal Distribution. Entropy 2022, 24, 1362. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, S.L.E.F.; Carvalho, P.T.; de Araújo, J.M.; Corso, G. Full-waveform inversion based on Kaniadakis statistics. Phys. Rev. E 2020, 101, 053311. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, S.L.E.F.; dos Santos Lima, G.Z.; de Araújo, J.M.; Corso, G. Extensive and nonextensive statistics in seismic inversion. Phys. A 2021, 563, 125496. [Google Scholar] [CrossRef]
- Da Silva, S.L.E.F.; Kaniadakis, G. κ–statistics approach to optimal transport waveform inversion. Phys. Rev. E 2022, 106, 034113. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, S.L.E.F.; de Araújo, J.M.; de la Barra, E.; Corso, G. A Graph-Space Optimal Transport Approach Based on Kaniadakis κ-Gaussian Distribution for Inverse Problems Related to Wave. Entropy 2023, 25, 990. [Google Scholar] [CrossRef]
- Da Silva, S.L.E.F.; Kaniadakis, G. A graph-space optimal transport FWI approach based on κ-generalized Gaussian distribution. In Third International Meeting for Applied Geoscience & Energy; Society of Exploration Geophysicists: Houston, TX, USA, 2023; pp. 670–674. [Google Scholar]
- De Abreu, W.V.; Goncalves, A.C.; Martinez, A.S. Analytical solution for the Doppler broadening function using the Kaniadakis distribution. Ann. Nucl. Energy 2019, 126, 262–268. [Google Scholar] [CrossRef]
- De Abreu, W.V.; Martinez, A.S. New analytical formulations for the Doppler broadening function and interference term based on Kaniadakis distributions. Ann. Nucl. Energy 2020, 135, 106960. [Google Scholar] [CrossRef]
- De Abreu, W.V.; Maciel, J.M.; Martinez, A.S.; Gonçalves, A.D.C.; Schmidt, L. Doppler Broadening of Neutron Cross-Sections Using Kaniadakis Entropy. Entropy 2022, 24, 1437. [Google Scholar] [CrossRef] [PubMed]
- De Abreu, W.V.; Martinez, A.S.; do Carmo, E.D.; Gonçalves, A.C. A novel analytical solution of the deformed Doppler broadening function using the Kaniadakis distribution and the comparison of computational efficiencies with the numerical solution. Nucl. Eng. Techn. 2022, 54, 1471–1481. [Google Scholar] [CrossRef]
- Martinez, A.S.; de Abreu, W.V. The Scientific Contribution of the Kaniadakis Entropy to Nuclear Reactor Physics: A Brief Review. Entropy 2023, 25, 478. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, B.G.; Gomez, I.S.; Portesi, M. κ-Deformed quantum and classical mechanics for a system with position-dependent effective mass. J. Math. Phys. 2020, 61, 082105. [Google Scholar] [CrossRef]
- Chung, W.S.; Hassanabadi, H. Investigation of Some Quantum Mechanics Problemswith κ-Translation Symmetry. Int. J. Theor. Phys. 2022, 61, 110. [Google Scholar] [CrossRef]
- Santos, F.F.; Boschi-Filho, H. Black branes in asymptotically Lifshitz spacetimes with arbitrary exponents in κ-Horndeski gravity. Phys. Rev. D 2024, 109, 064035. [Google Scholar] [CrossRef]
- Coraddu, M.; Lissia, M.; Tonelli, R. Statistical descriptions of nonlinear systems at the onset of chaos. Phys. A 2006, 365, 252–257. [Google Scholar] [CrossRef]
- Tonelli, R.; Mezzorani, G.; Meloni, F.; Lissia, M.; Coraddu, M. Entropy production and Pesin identity at the onset of chaos. Prog. Theor. Phys. 2006, 115, 23–29. [Google Scholar] [CrossRef]
- Celikoglu, A.; Tirnakli, U. Sensitivity function and entropy increase rates for z-logistic map family at the edge of chaos. Phys. A 2006, 372, 238–242. [Google Scholar] [CrossRef]
- Olemskoi, A.I.; Kharchenko, V.O.; Borisyuk, V.N. Multifractal spectrum of phase space related to generalized thermostatistics. Phys. A 2008, 387, 1895–1906. [Google Scholar] [CrossRef]
- Olemskoi, A.I.; Borisyuk, V.N.; Shuda, I.A. Statistical field theories deformed within different calculi. Eur. Phys. J. B 2010, 77, 219–231. [Google Scholar] [CrossRef]
- Souza, N.T.C.M.; Anselmo, D.H.A.L.; Silva, R.; Vasconcelos, M.S.; Mello, V.D. A kappa-statistical analysis of the Y-chromosome. EPL 2014, 108, 28004. [Google Scholar] [CrossRef]
- Costa, M.O.; Silva, R.; Anselmo, D.H.A.L.; Silva, J.R.P. Analysis of human DNA through power-law statistics. Phys. Rev. E 2019, 99, 022112. [Google Scholar] [CrossRef] [PubMed]
- De Lima, M.M.F.; Anselmo, D.H.A.L.; Silva, R.; Nunes, G.H.S.; Fulco, U.L.; Vasconcelos, M.S.; Mello, V.D. A Bayesian Analysis of Plant DNA Length Distribution via κ-Statistics. Entropy 2022, 24, 1225. [Google Scholar] [CrossRef] [PubMed]
- Abul-Magd, A.Y. Nonextensive random-matrix theory based on Kaniadakis entropy. Phys. Lett. A 2007, 361, 450–454. [Google Scholar] [CrossRef]
- Abul-Magd, A.Y. Nonextensive and superstatistical generalizations of random-matrix theory. Eur. Phys. J. B 2009, 70, 39–48. [Google Scholar] [CrossRef]
- Abul-Magd, A.Y.; Abdel-Mageed, M. Kappa-deformed random-matrix theory based on Kaniadakis statistics. Modern Phys. Lett. B 2012, 26, 1250059. [Google Scholar] [CrossRef]
- Da Silva, S.L.E.F.; dos Santos Lima, G.Z.; Volpe, E.V.; de Araújo, J.M.; Corso, G. Robust approaches for inverse problems based on Tsallis and Kaniadakis generalised statistics. Eur. Phys. J. Plus 2021, 136, 518. [Google Scholar] [CrossRef]
- Dos Santos Lima, G.Z.; de Lima, J.V.T.; de Araújo, J.M.; Corso, G.; da Silva, S.L.E.F. Generalized statistics: Applications to data inverse problems with outlier-resistance. PLoS ONE 2023, 18, e0282578. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.; Suyari, H. κ-generalization of Gauss’ law of error. Phys. Lett. A 2006, 348, 89–93. [Google Scholar] [CrossRef]
- Da Silva, S.L.E.F.; Silva, R.; dos Santos Lima, G.Z.; de Araújo, J.M.; Corso, G. An outlier-resistant κ-generalized approach for robust physical parameter estimation. Phys. A 2022, 600, 127554. [Google Scholar] [CrossRef]
- Topsoe, F. Entropy and equilibrium via games of complexity. Phys. A 2004, 340, 11–31. [Google Scholar] [CrossRef]
- Macedo-Filho, A.; Moreira, D.A.; Silva, R.; da Silva, L.R. Maximum entropy principle for Kaniadakis statistics and networks. Phys. Lett. A 2013, 377, 842–846. [Google Scholar] [CrossRef]
- Wada, T.; Suyari, H. A two-parameter generalization of Shannon-Khinchin axioms and the uniqueness teorem. Phys. Lett. A 2007, 368, 199–205. [Google Scholar] [CrossRef]
- Clementi, F.; Gallegati, M.; Kaniadakis, G. κ-generalized statistics in personal income distribution. Eur. Phys. J. B 2007, 57, 187–193. [Google Scholar] [CrossRef]
- Clementi, F.; Di Matteo, T.; Gallegati, M.; Kaniadakis, G. The κ-generalized distribution: A new descriptive model for the size distribution of incomes. Phys. A 2008, 387, 3201–3208. [Google Scholar] [CrossRef]
- Clementi, F.; Gallegati, M.; Kaniadakis, G. A κ-generalized statistical mechanics approach to income analysis. J. Stat. Mech. 2009, P02037. [Google Scholar] [CrossRef]
- Clementi, F.; Gallegati, M.; Kaniadakis, G. A model of personal income distribution with application to Italian data. Empir. Econ. 2011, 39, 559–591. [Google Scholar] [CrossRef]
- Clementi, F.; Gallegati, M.; Kaniadakis, G. A new model of income distribution: The kappa-generalized distribution. J. Econ. 2012, 105, 63–91. [Google Scholar] [CrossRef]
- Clementi, F.; Gallegati, M.; Kaniadakis, G. A generalized statistical model for the size distribution of wealth. J. Stat. Mech. 2012, P12006. [Google Scholar] [CrossRef]
- Clementi, F. The Kaniadakis Distribution for the Analysis of Income and Wealth Data. Entropy 2023, 25, 1141. [Google Scholar] [CrossRef] [PubMed]
- Rajaonarison, D.; Bolduc, D.; Jayet, H. The K-deformed multinomial logit model. Econ. Lett. 2005, 86, 13–20. [Google Scholar] [CrossRef]
- Rajaonarison, D. Deterministic heterogeneity in tastes and product differentiation in the K-logit model. Econ. Lett. 2008, 100, 396–399. [Google Scholar] [CrossRef]
- Trivellato, B. The minimal κ-entropy martingale measure. Int. J. Theor. Appl. Financ 2012, 15, 1250038. [Google Scholar] [CrossRef]
- Trivellato, B. Deformed exponentials and applications to finance. Entropy 2013, 15, 3471–3489. [Google Scholar] [CrossRef]
- Tapiero, O.J. A maximum (non-extensive) entropy approach to equity options bid-ask spread. Phys. A 2013, 392, 3051–3060. [Google Scholar] [CrossRef]
- Bertotti, M.L.; Modenese, G. Exploiting the flexibility of a family of models for taxation and redistribution. Eur. Phys. J. B 2012, 85, 261–270. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379. [Google Scholar] [CrossRef]
- Khinchin, A.Y. Mathematical Foundations of Information Theory; Dover Publications: Mineola, NY, USA, 1957. [Google Scholar]
- Csiszár, I. Information-Type Measures of Difference of Probability Distributions and Indirect Observations. Stud. Sci. Math. Hung. 1967, 2, 299–318. [Google Scholar]
- Zografos, K. On reconsidering entropies and divergences and their cumulative counterparts: Csiszár’s, DPD’s and Fisher’s type cumulative and survival measures. Probab. Eng. Informational Sci. 2023, 37, 294–321. [Google Scholar] [CrossRef]
- Watanabe, S. Knowing and Guessing; Wiley: New York, NY, USA, 1969. [Google Scholar]
- Barlow, H. Conditions for versatile learning, Helmholtz’s unconscious inference, and the task of perception. Vis. Res. 1990, 30, 1561–1571. [Google Scholar] [CrossRef]
- Ilic, V.M.; Korbel, J.; Gupta, S.; Scarfone, A.M. An overview of generalized entropic forms. EuroPhysics Lett. 2021, 133, 5. [Google Scholar] [CrossRef]
- Groot, S.R.; van Leeuwen, W.A.; van Weert, C.G. Relativistic Kinetic Theory: Principles and Applications; North-Holand: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Cercignani, C.; Medeiros Kremer, G. The Relativistic Boltzmann Equation: Theory and Applications; Birkhauser: Basel, Switzerland, 2002. [Google Scholar]
- Kaniadakis, G. New power-law tailed distributions emerging in kstatistics. EPL 2021, 133, 10002. [Google Scholar] [CrossRef]
- Gell-Mann, M. Let’s Call It Plectics. Complexity 1995, 1, 96. [Google Scholar]
- Gell-Mann, M. Plectics: The study of simplicity and complexity. Europhys. New 2002, 33, 17–20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaniadakis, G. Relativistic Roots of κ-Entropy. Entropy 2024, 26, 406. https://doi.org/10.3390/e26050406
Kaniadakis G. Relativistic Roots of κ-Entropy. Entropy. 2024; 26(5):406. https://doi.org/10.3390/e26050406
Chicago/Turabian StyleKaniadakis, Giorgio. 2024. "Relativistic Roots of κ-Entropy" Entropy 26, no. 5: 406. https://doi.org/10.3390/e26050406
APA StyleKaniadakis, G. (2024). Relativistic Roots of κ-Entropy. Entropy, 26(5), 406. https://doi.org/10.3390/e26050406