Exploring Spatial Patterns of Interurban Passenger Flows Using Dual Gravity Models
Abstract
:1. Introduction
2. Methods and Data
2.1. Dual Gravity Models
2.2. Study Area and Data
2.3. Data Processing
3. Results
3.1. The Spatial Pattern of Passenger Flows in the Study Area
3.2. Results of the Dual Gravity Modeling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. How to Calculate the Coefficient of Variation (CV) of Gravity Models?
References
- Hesse, M. Cities, material flows and the geography of spatial interaction: Urban places in the system of chains. Glob. Netw. 2010, 10, 75–91. [Google Scholar] [CrossRef]
- Tao, R.; Thill, J.C. Spatial cluster detection in spatial flow data. Geogr. Anal. 2016, 48, 355–372. [Google Scholar] [CrossRef]
- Batty, M. The New Science of Cities; MIT Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Wilson, A.G. The use of entropy maximising models, in the theory of trip distribution, mode split and route split. J. Transp. Econ. Policy 1969, 3, 108–126. [Google Scholar]
- Erlander, S. Accessibility, entropy and the distribution and assignment of traffic. Transp. Res. 1977, 11, 149–153. [Google Scholar] [CrossRef]
- Chen, Y.G. The distance-decay function of geographical gravity model: Power law or exponential law? Chaos Solit. Fractals 2015, 77, 174–189. [Google Scholar] [CrossRef] [Green Version]
- Carey, H. Principles of Social Science; J.B. Lippincott: Philadelphia, PA, USA, 1858. [Google Scholar]
- Dodd, S.C. The interactance hypothesis: A gravity model fitting physical masses and human groups. Am. Sociol. Rev. 1950, 15, 245–256. [Google Scholar] [CrossRef]
- Chen, Y.G.; Huang, L.S. A scaling approach to evaluating the distance exponent of the urban gravity model. Chaos Solit. Fractals 2018, 109, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Louf, R.; Roth, C.; Barthelemy, M. Scaling in transportation networks. PLoS ONE 2014, 9, e102007. [Google Scholar] [CrossRef] [Green Version]
- Li, J.W.; Ye, Q.Q.; Deng, X.K.; Liu, Y.L.; Liu, Y.F. Spatial-temporal analysis on spring festival travel rush in China based on multisource big data. Sustainability 2016, 8, 1184. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Lai, J. Spatial pattern of population mobility among cities in China: Case study of the National Day plus Mid-Autumn Festival based on Tencent migration data. Cities 2019, 94, 55–69. [Google Scholar] [CrossRef]
- Lai, J.; Pan, J. China’s City Network Structural Characteristics Based on Population Flow during Spring Festival Travel Rush: Empirical Analysis of “Tencent Migration” Big Data. J. Urban Plan Dev. 2020, 146, 04020018. [Google Scholar] [CrossRef]
- Zhang, W.; Chong, Z.; Li, X.; Nie, G. Spatial patterns and determinant factors of population flow networks in China: Analysis on Tencent Location Big Data. Cities 2020, 99, 102640. [Google Scholar] [CrossRef]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Hua, C.-i.; Porell, F. A critical review of the development of the gravity model. Int. Reg. Sci. Rev. 1979, 4, 97–126. [Google Scholar] [CrossRef]
- Ravenstein, E.G. The laws of migration. J. R. Stat. Soc. 1885, 48, 167–235. [Google Scholar] [CrossRef] [Green Version]
- Reilly, W.J. Methods for the Study of Retail Relationships; The University of Texas at Austin: Austin, TX, USA, 1929. [Google Scholar]
- Stouffer, S.A. Intervening opportunities: A theory relating mobility and distance. Am. Sociol. Rev. 1940, 5, 845–867. [Google Scholar] [CrossRef]
- Stewart, J.Q. Demographic gravitation: Evidence and applications. Sociometry 1948, 11, 31–58. [Google Scholar] [CrossRef]
- Converse, P.D. New laws of retail gravitation. J. Mark. 1949, 14, 379–384. [Google Scholar] [CrossRef]
- Lukermann, F.; Porter, P.W. Gravity and potential models in economic geography. Ann. Am. Assoc. Geogr. 1960, 50, 493–504. [Google Scholar] [CrossRef]
- Huff, D.L. A probabilistic analysis of shopping center trade areas. Land Econ. 1964, 39, 81–90. [Google Scholar] [CrossRef]
- Bouchard, R.J.; Pyers, C.E. Use of gravity model for describing urban travel. Transp. Res. Rec. 1965, 88, 5. [Google Scholar]
- Lakshmanan, J.; Hansen, W.G. A retail market potential model. J. Am. Inst. Plann. 1965, 31, 134–143. [Google Scholar] [CrossRef]
- Mackay, J.R. The interactance hypothesis and boundaries in Canada: A preliminary study. Can. Geogr. 1958, 3, 1–8. [Google Scholar] [CrossRef]
- Wilson, A.G. Modelling and systems analysis in urban planning. Nature 1968, 200, 963–966. [Google Scholar] [CrossRef]
- Wilson, A.G. Entropy in Urban and Regional Modelling; Pion Press: London, UK, 1970. [Google Scholar]
- Wilson, A.G. Entropy in Urban and Regional Modelling: Retrospect and Prospect. Geogr. Anal. 2010, 42, 364–394. [Google Scholar] [CrossRef]
- Batty, M. Space, Scale, and Scaling in Entropy Maximizing. Geogr. Anal. 2010, 42, 395–421. [Google Scholar] [CrossRef]
- Batty, M.; Longley, P.A. Fractal Cities: A Geometry of Form and Function; Academic Press: London, UK, 1994. [Google Scholar]
- Batty, M.; Morphet, R.; Masucci, P.; Stanilov, K. Entropy, complexity, and spatial information. J. Geogr. Syst. 2014, 16, 363–385. [Google Scholar] [CrossRef] [Green Version]
- Bussiere, R.; Snickars, F. Derivation of the negative exponential model by an entropy maximising method. Environ. Plan A 1970, 2, 295–301. [Google Scholar] [CrossRef]
- Chen, Y.G. The rank-size scaling law and entropy-maximizing principle. Phys. A Stat. Mech. Appl. 2012, 391, 767–778. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.G.; Huang, L.S. Spatial Measures of Urban Systems: From Entropy to Fractal Dimension. Entropy 2018, 20, 991. [Google Scholar] [CrossRef] [Green Version]
- Curry, L. The random spatial economy: An exploration in settlement theory. Ann. Am. Assoc. Geogr. 1964, 54, 138–146. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, X.P.; Li, X.; Zhang, J.B.; Liang, Z.T.; Mai, K.; Zhang, Y.T. Mapping fine-scale population distributions at the building level by integrating multisource geospatial big data. Int. J. Geogr. Inf. Sci. 2017, 31, 1220–1244. [Google Scholar] [CrossRef]
- Liu, X.; Niu, N.; Liu, X.; Jin, H.; Ou, J.; Jiao, L.; Liu, Y. Characterizing mixed-use buildings based on multi-source big data. Int. J. Geogr. Inf. Sci. 2018, 32, 738–756. [Google Scholar]
- Xu, Y.; Song, Y.M.; Cai, J.X.; Zhu, H. Population mapping in China with Tencent social user and remote sensing data. Appl Geogr. 2021, 130, 102450. [Google Scholar] [CrossRef]
- Chen, Y.G. Fractal systems of central places based on intermittency of space-filling. Chaos Solit. Fractals 2011, 44, 619–632. [Google Scholar] [CrossRef] [Green Version]
- Carroll, G.R. National city-size distributions: What do we know after 67 years of research? Prog. Hum. Geogr. 1982, 6, 1–43. [Google Scholar] [CrossRef]
- Zipf, G.K. Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology; Addison-Wesley Press: Cambridge, UK, 1949. [Google Scholar]
- Christaller, W. Die Zentralen Orte in Süddeutschland (The Central Places in Southern Germany); Gustav Fischer: Jena, Germany, 1933. [Google Scholar]
- Appleby, S. Multifractal characterization of the distribution pattern of the human population. Geogr. Anal. 1996, 28, 147–160. [Google Scholar] [CrossRef]
- Chen, Y.G.; Liu, J.S. The DBM features of transport network of a district—A study on the Laplacian fractals of networks of communication lines. Sci. Geol. Sin. 1999, 19, 114–118. (In Chinese) [Google Scholar]
- Valério, D.; Lopes, A.M.; Tenreiro Machado, J.A. Entropy analysis of a railway network’s complexity. Entropy 2016, 18, 388. [Google Scholar] [CrossRef] [Green Version]
- Frankhauser, P. Aspects fractals des structures urbaines. Espace Geogr. 1990, 19, 45–69. [Google Scholar] [CrossRef]
- Lu, Y.; Tang, J. Fractal dimension of a transportation network and its relationship with urban growth: A study of the Dallas-Fort Worth area. Environ Plan. B Plan. Des. 2004, 31, 895–911. [Google Scholar] [CrossRef] [Green Version]
- Prada, D.; Montoya, S.; Sanabria, M.; Torres, F.; Serrano, D.; Acevedo, A. Fractal analysis of the influence of the distribution of road networks on the traffic. J. Phys. Conf. Ser. 2019, 1329, 012003. [Google Scholar] [CrossRef]
- Rodin, V.; Rodina, E. The fractal dimension of Tokyo’s streets. Fractals 2000, 8, 413–418. [Google Scholar] [CrossRef]
- Wang, H.; Luo, S.; Luo, T. Fractal characteristics of urban surface transit and road networks: Case study of Strasbourg, France. Adv. Mech. Eng. 2017, 9, 1687814017692289. [Google Scholar] [CrossRef]
- Benguigui, L.; Daoud, M. Is the suburban railway system a fractal? Geogr. Anal. 1991, 23, 362–368. [Google Scholar] [CrossRef]
- Sahitya, K.S.; Prasad, C. Modelling structural interdependent parameters of an urban road network using GIS. Spat. Inf. Res. 2020, 28, 327–334. [Google Scholar] [CrossRef]
- Batty, M. Cities as fractals: Simulating growth and form. In Fractals and Chaos; Crilly, A.J., Earnshaw, R.A., Jones, H., Eds.; Springer: New York, NY, USA, 1991; pp. 43–69. [Google Scholar]
- Fotheringham, A.; O’Kelly, M. Spatial Interaction Models: Formulations and Applications; Kluwer Academic Publishers: Boston, UK, 1989. [Google Scholar]
- Kac, M. Some mathematical models in science. Science 1969, 166, 695–699. [Google Scholar] [CrossRef]
- Diebold, F.X. Elements of Forecasting, 4th ed.; South-Western College Pub.: Cincinnati, OH, USA, 1992. [Google Scholar]
- Lin, H.; Li, Y. Fractal Theory: Singularity Exploration; Beijing Institute of Technology Press: Beijing, China, 1992. (In Chinese) [Google Scholar]
- Gu, H.; Shen, J.; Chu, J. Understanding Intercity Mobility Patterns in Rapidly Urbanizing China, 2015–2019: Evidence from Longitudinal Poisson Gravity Modeling. Ann. Am. Assoc. Geogr. 2022, 1–24. [Google Scholar] [CrossRef]
- Gu, H.; Shen, T. Modelling skilled and less-skilled internal migrations in China, 2010–2015: Application of an eigenvector spatial filtering hurdle gravity approach. Popul. Space Place 2021, 27, e2439. [Google Scholar] [CrossRef]
- Shen, J. Error analysis of regional migration modeling. Ann. Am. Assoc. Geogr. 2016, 106, 1253–1267. [Google Scholar] [CrossRef]
- Chen, Y.G. Urban gravity model based on cross-correlation function and Fourier analyses of spatio-temporal process. Chaos Solit. Fractals 2009, 41, 603–614. [Google Scholar] [CrossRef]
- Dendrinos, D.S. The Dynamics of Cities: Ecological Determinism, Dualism and Chaos; Routledge: London, UK; Chapman and Hall: New York, NY, USA, 1992. [Google Scholar]
- Arbesman, S. The Half-Life of Facts: Why Everything We Know Has an Expiration Date; Penguin Group: New York, NY, USA, 2012. [Google Scholar]
- Bettencourt, L.M.A.; Lobo, J.; Helbing, D.; Kühnert, C.; West, G.B. Growth, innovation, scaling, and the pace of life in cities. Proc. Natl. Acad. Sci. USA 2007, 104, 7301–7306. [Google Scholar] [CrossRef] [PubMed]
Model | Parameter | Railway Model | Highway Model | ||
---|---|---|---|---|---|
Before Data Cleaning | After Data Cleaning | Before Data Cleaning | After Data Cleaning | ||
Equation (2) | K | 0.0974 | 0.0887 | 26.5124 | 29.0477 |
u | 0.2356 | 0.2374 | 0.1347 | 0.1390 | |
v | 0.2161 | 0.2176 | 0.1214 | 0.1195 | |
σ | 0.4335 | 0.4412 | 1.0330 | 1.0743 | |
Equation (4) | G | 0.0000 | 0.0000 | 131,036,533,086.4270 | 210,010,627,962.3300 |
b | 1.9194 | 1.9391 | 8.0680 | 8.3135 |
Beijing | Tianjin | Shijiazhuang | Tangshan | Qinhuangdao | Handan | Xingtai | Baoding | Zhangjiakou | Chengde | Cangzhou | Langfang | Hengshui | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0 | 19.0700 | 14.3900 | 10.5200 | 9.7900 | 11.2500 | 9.4300 | 18.5000 | 13.2800 | 10.0800 | 9.3200 | 21.1100 | 8.1222 |
Tianjin | 18.1900 | 0 | 7.3100 | 10.5700 | 6.7800 | 5.3500 | 4.7000 | 7.5200 | 4.3000 | 3.8600 | 9.4100 | 9.7900 | 4.8222 |
Shijiazhuang | 13.0200 | 7.1667 | 0 | 5.9700 | 4.8444 | 9.7500 | 11.3300 | 13.0800 | 4.5300 | 3.7300 | 6.2600 | 5.9000 | 7.3600 |
Tangshan | 9.8900 | 10.4400 | 6.2400 | 0 | 8.6200 | 5.6000 | 4.3500 | 4.9300 | 3.0800 | 4.7500 | 4.2000 | 5.0500 | 2.9333 |
Qinhuangdao | 9.0500 | 6.6600 | 5.0500 | 8.5800 | 0 | na | na | 4.9167 | na | 3.5556 | 4.3000 | 4.1400 | na |
Handan | 9.9700 | 4.7800 | 9.7700 | 4.5000 | na | 0 | 8.4800 | 5.4600 | na | 3.4000 | 4.9000 | 3.8667 | 3.3000 |
Xingtai | 8.1200 | 4.1400 | 11.1900 | 3.5000 | na | 8.4500 | 0 | 5.3800 | 3.3000 | na | 3.2750 | 4.0000 | 3.8500 |
Baoding | 17.0100 | 7.3700 | 13.2700 | 4.8900 | 4.1333 | 5.4800 | 5.3500 | 0 | 4.3800 | 3.1900 | 5.3800 | 6.4200 | 3.8111 |
Zhangjiakou | 12.4700 | 4.5400 | 4.4500 | 3.3700 | 3.4000 | 3.8000 | na | 4.4300 | 0 | 2.5000 | 3.9500 | 3.3300 | 3.3000 |
Chengde | 9.4600 | 3.7500 | 4.0100 | 4.6900 | 3.1700 | na | na | 3.3800 | 3.0000 | 0 | 3.8000 | 3.0400 | na |
Cangzhou | 8.6100 | 8.8700 | 6.7900 | 4.2900 | 4.0333 | 4.8000 | 3.4111 | 5.5700 | 2.6000 | 2.3750 | 0 | 4.7800 | 6.0600 |
Langfang | 19.3800 | 9.6700 | 6.1200 | 5.0400 | 4.1200 | 3.7000 | 3.7000 | 6.6400 | 3.3700 | 3.1100 | 4.9700 | 0 | 3.4125 |
Hengshui | 7.2000 | 4.6667 | 7.8100 | 3.1889 | 3.4000 | 3.3500 | 4.1000 | 3.9400 | 3.7333 | 2.2000 | 5.7600 | 3.4625 | 0 |
Statistic | Railway Model | Highway Model | |||
---|---|---|---|---|---|
Before Data Cleaning | After Data Cleaning | Before Data Cleaning | After Data Cleaning | ||
Goodness of fit | R2 | 0.7435 | 0.7431 | 0.7900 | 0.8041 |
Adjusted R2 | 0.7380 | 0.7376 | 0.7851 | 0.7994 | |
Standard error (STE) | 0.2531 | 0.2560 | 0.2903 | 0.2881 | |
Coefficient of variation (CV) | 0.1394 | 0.1483 | 0.1958 | 0.2074 | |
Number of sample points | 144 | 144 | 131 | 131 | |
F | Statistic | 135.2378 | 134.9560 | 159.2751 | 173.7162 |
Sig. | 3.5929 × 10−41 | 4.0037 × 10−41 | 7.3138 × 10−43 | 9.1214 × 10−45 | |
p-value | lnK | 4.2035 × 10−6 | 2.3291 × 10−6 | 5.9591 × 10−8 | 2.2355 × 10−8 |
u | 2.4816 × 10−24 | 3.3207 × 10−24 | 1.5100 × 10−8 | 4.6746 × 10−9 | |
v | 1.4308 × 10−21 | 1.9777 × 10−21 | 3.0022 × 10−7 | 3.6536 × 10−7 | |
σ | 2.9353 × 10−19 | 2.0378 × 10−19 | 3.3192 × 10−41 | 3.3413 × 10−43 |
Beijing | Tianjin | Shijiazhuang | Tangshan | Qinhuangdao | Handan | Xingtai | Baoding | Zhangjiakou | Chengde | Cangzhou | Langfang | Hengshui | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0 | 19.1492 | 10.2015 | 13.2289 | 8.0987 | 7.3460 | 6.5382 | 11.0226 | 10.4151 | 8.8789 | 8.3132 | 16.2535 | 7.2345 |
Tianjin | 18.9494 | 0 | 9.1311 | 13.7065 | 7.7131 | 6.8659 | 6.0687 | 9.4598 | 7.1268 | 6.9857 | 10.4808 | 12.1607 | 7.1573 |
Shijiazhuang | 9.8257 | 8.8874 | 0 | 5.8317 | 4.0055 | 7.0753 | 7.1020 | 7.5049 | 4.9576 | 3.7760 | 5.0901 | 5.1740 | 6.7488 |
Tangshan | 12.7711 | 13.3717 | 5.8453 | 0 | 7.4752 | 4.5374 | 3.9666 | 5.6602 | 5.0783 | 6.2679 | 5.4438 | 7.1379 | 4.3785 |
Qinhuangdao | 7.6452 | 7.3581 | 3.9259 | 7.3096 | 0 | 3.1499 | 2.7243 | 3.6137 | 3.4189 | 4.4213 | 3.3853 | 4.0426 | 2.9003 |
Handan | 6.9814 | 6.5941 | 6.9814 | 4.4668 | 3.1711 | 0 | 8.4986 | 4.5778 | 3.5164 | 2.8762 | 3.8086 | 3.6970 | 4.8192 |
Xingtai | 6.1198 | 5.7402 | 6.9018 | 3.8459 | 2.7012 | 8.3701 | 0 | 4.1478 | 3.0796 | 2.4757 | 3.3283 | 3.2361 | 4.4406 |
Baoding | 10.4262 | 9.0423 | 7.3704 | 5.5459 | 3.6209 | 4.5562 | 4.1916 | 0 | 4.6461 | 3.5230 | 4.9283 | 5.6018 | 5.0238 |
Zhangjiakou | 9.8378 | 6.8027 | 4.8619 | 4.9688 | 3.4209 | 3.4949 | 3.1077 | 4.6396 | 0 | 3.7653 | 3.3052 | 4.4719 | 3.1907 |
Chengde | 8.3017 | 6.6004 | 3.6655 | 6.0704 | 4.3790 | 2.8296 | 2.4730 | 3.4824 | 3.7271 | 0 | 2.9744 | 4.0851 | 2.6173 |
Cangzhou | 7.7470 | 9.8701 | 4.9249 | 5.2549 | 3.3419 | 3.7346 | 3.3137 | 4.8554 | 3.2608 | 2.9646 | 0 | 4.5373 | 4.3148 |
Langfang | 15.2916 | 11.5617 | 5.0540 | 6.9562 | 4.0289 | 3.6598 | 3.2528 | 5.5717 | 4.4542 | 4.1106 | 4.5808 | 0 | 3.7157 |
Hengshui | 6.7381 | 6.7365 | 6.5262 | 4.2243 | 2.8615 | 4.7229 | 4.4187 | 4.9468 | 3.1462 | 2.6072 | 4.3125 | 3.6784 | 0 |
Beijing | Tianjin | Shijiazhuang | Tangshan | Qinhuangdao | Handan | Xingtai | Baoding | Zhangjiakou | Chengde | Cangzhou | Langfang | Hengshui | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0 | 0.4221 | 0.0250 | 0.0787 | 0.0087 | 0.0057 | 0.0033 | 0.0337 | 0.0262 | 0.0127 | 0.0094 | 0.1838 | 0.0051 |
Tianjin | 0.4221 | 0 | 0.0157 | 0.0941 | 0.0072 | 0.0044 | 0.0024 | 0.0176 | 0.0051 | 0.0045 | 0.0268 | 0.0525 | 0.0050 |
Shijiazhuang | 0.0250 | 0.0157 | 0 | 0.0023 | 0.0004 | 0.0053 | 0.0052 | 0.0068 | 0.0011 | 0.0003 | 0.0012 | 0.0013 | 0.0041 |
Tangshan | 0.0787 | 0.0941 | 0.0023 | 0 | 0.0066 | 0.0007 | 0.0004 | 0.0019 | 0.0012 | 0.0030 | 0.0016 | 0.0053 | 0.0006 |
Qinhuangdao | 0.0087 | 0.0072 | 0.0004 | 0.0066 | 0 | 0.0002 | 0.0001 | 0.0003 | 0.0002 | 0.0007 | 0.0002 | 0.0005 | 0.0001 |
Handan | 0.0057 | 0.0044 | 0.0053 | 0.0007 | 0.0002 | 0 | 0.0118 | 0.0008 | 0.0002 | 0.0001 | 0.0003 | 0.0003 | 0.0010 |
Xingtai | 0.0033 | 0.0024 | 0.0052 | 0.0004 | 0.0001 | 0.0118 | 0 | 0.0005 | 0.0001 | 0.0001 | 0.0002 | 0.0002 | 0.0007 |
Baoding | 0.0337 | 0.0176 | 0.0068 | 0.0019 | 0.0003 | 0.0008 | 0.0005 | 0 | 0.0009 | 0.0002 | 0.0011 | 0.0019 | 0.0012 |
Zhangjiakou | 0.0262 | 0.0051 | 0.0011 | 0.0012 | 0.0002 | 0.0002 | 0.0001 | 0.0009 | 0 | 0.0003 | 0.0002 | 0.0007 | 0.0002 |
Chengde | 0.0127 | 0.0045 | 0.0003 | 0.0030 | 0.0007 | 0.0001 | 0.0001 | 0.0002 | 0.0003 | 0 | 0.0001 | 0.0005 | 0.0001 |
Cangzhou | 0.0094 | 0.0268 | 0.0012 | 0.0016 | 0.0002 | 0.0003 | 0.0002 | 0.0011 | 0.0002 | 0.0001 | 0 | 0.0008 | 0.0006 |
Langfang | 0.1838 | 0.0525 | 0.0013 | 0.0053 | 0.0005 | 0.0003 | 0.0002 | 0.0019 | 0.0007 | 0.0005 | 0.0008 | 0 | 0.0003 |
Hengshui | 0.0051 | 0.0050 | 0.0041 | 0.0006 | 0.0001 | 0.0010 | 0.0007 | 0.0012 | 0.0002 | 0.0001 | 0.0006 | 0.0003 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Chen, Y. Exploring Spatial Patterns of Interurban Passenger Flows Using Dual Gravity Models. Entropy 2022, 24, 1792. https://doi.org/10.3390/e24121792
Wang Z, Chen Y. Exploring Spatial Patterns of Interurban Passenger Flows Using Dual Gravity Models. Entropy. 2022; 24(12):1792. https://doi.org/10.3390/e24121792
Chicago/Turabian StyleWang, Zihan, and Yanguang Chen. 2022. "Exploring Spatial Patterns of Interurban Passenger Flows Using Dual Gravity Models" Entropy 24, no. 12: 1792. https://doi.org/10.3390/e24121792