Rényi Entropy, Signed Probabilities, and the Qubit
Abstract
:1. Introduction
2. Preliminaries
3. Rényi Entropy
4. Main Theorem
This says that we allow as potential quantum states only those states containing a minimum amount of uncertainty, as measured by the entropy of a corresponding probability distribution on phase space. Note that our Uncertainty Principle is a sequence of conditions, one for each k. This is because Rényi entropy itself is not a single functional but a sequence of functionals (indexed by k).Uncertainty Principle: A potential quantum state satisfies the Uncertainty Principle if for every k, there is a phase-space probability distribution that represents and satisfies .
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- 1.
- Ifis a solution then so isfor any.
- 2.
- Ifis a solution thenis a solution, whereis obtained fromby permuting coordinates.
References
- Jaynes, E. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Birkhoff, G.; von Neumann, J. The Logic of Quantum Mechanics. Ann. Math. 1934, 37, 823–843. [Google Scholar] [CrossRef]
- Hardy, L. Quantum Theory from Five Reasonable Axioms. 2001. Available online: https://arxiv.org/abs/quant-ph/0101012 (accessed on 29 September 2022).
- Van Dam, W. Implausible Consequences of Superstrong Nonlocality. 2005. Available online: https://arxiv.org/abs/quant-ph/0501159 (accessed on 29 September 2022).
- Pawlowski, M.; Paterek, T.; Kaszlikowski, D.; Scarani, V.; Winter, A.; Zukowski, M. Information Causality as a Physical Principle. Nature 2009, 461, 1101–1104. [Google Scholar] [CrossRef] [Green Version]
- Dakić, B.; Brukner, Č. Quantum Theory and Beyond: Is Entanglement Special? In Deep Beauty: Understanding the Quantum World through Mathematical Innovation; Halvorson, H., Ed.; Cambridge University Press: Cambridge, UK, 2011; pp. 365–392. [Google Scholar]
- Chiribella, G.; D’Ariano, G.; Perinotti, P. Informational Derivation of Quantum Theory. Phys. Rev. A 2011, 84, 012311. [Google Scholar] [CrossRef] [Green Version]
- Wootters, W. A Wigner-Function Formulation of Finite-State Quantum Mechanics. Ann. Phys. 1987, 176, 1–21. [Google Scholar] [CrossRef]
- Gibbons, K.; Hoffman, M.; Wootters, W. Discrete Phase Space Based on Finite Fields. Phys. Rev. A 2004, 70, 062101. [Google Scholar] [CrossRef] [Green Version]
- Bell, J. On the Einstein–Podolsky-Rosen Paradox. Physics 1964, 1, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Wigner, E. On the Quantum Correction For Thermodynamic Equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Dirac, P. The Physical Interpretation of Quantum Mechanics. Proc. R. Soc. A 1942, 180, 1–40. [Google Scholar]
- Feynman, R. Negative Probability. In Quantum Implications: Essays in Honour of David Bohm; Hiley, B., Peat, F., Eds.; Routledge: London, UK, 1987; pp. 235–248. [Google Scholar]
- Abramsky, S.; Brandenburger, A. The Sheaf-Theoretic Structure of Non-Locality and Contextuality. New J. Phys. 2011, 13, 113036. [Google Scholar] [CrossRef]
- Popescu, S.; Rohrlich, D. Quantum Nonlocality as an Axiom. Found. Phys. 1994, 24, 379–385. [Google Scholar] [CrossRef]
- Von Neumann, J. Mathematische Grundlagen der Quantenmechanik; Springer: Berlin, Germany, 1932. [Google Scholar]
- Shannon, C. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423, 623–656. [Google Scholar] [CrossRef] [Green Version]
- Rényi, A. On Measures of Information and Entropy. In the 4th Berkeley Symposium on Mathematical Statistics and Probability; Neymann, J., Ed.; University of California Press: Berkeley, CA, USA, 1961; pp. 547–561. [Google Scholar]
- Daróczy, Z. Über die gemeinsame Charakterisierung der zu den nicht vollständigen Verteilungen gehörigen Entropien von Shannon und von Rényi. Z. Wahrscheinlichkeitstheorie Verwandte Geb. 1963, 1, 381–388. [Google Scholar] [CrossRef]
- Wehner, S.; Winter, A. Entropic Uncertainty Relations—A Survey. New J. Phys. 2010, 12, 025009. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Rudnicki, Ł. Entropic Uncertainty Relations in Quantum Physics. In Statistical Complexity: Applications in Electronic Structure; Sen, K., Ed.; Springer: Berlin, Germany, 2011; pp. 1–34. [Google Scholar]
- Coles, P.; Beta, M.; Tomamichel, M.; Wehner, S. Entropic Uncertainty Relations and Their Applications. Rev. Mod. Phys. 2017, 89, 015002. [Google Scholar] [CrossRef] [Green Version]
- Everett, H. On the Foundations of Quantum Mechanics. Ph. D. Dissertation, Princeton University, Princeton, NJ, USA, 1957. [Google Scholar]
- Hirschman, I. A Note on Entropy. Am. J. Math. 1957, 79, 152–156. [Google Scholar] [CrossRef]
- Beckner, W. Inequalities in Fourier Analysis. Ann. Math. 1975, 102, 159–182. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Mycielski, J. Uncertainty Relations for Information Entropy in Wave Mechanics. Commun. Math. Phys. 1975, 44, 129–132. [Google Scholar] [CrossRef]
- Wootters, W.; Sussman, D. Discrete Phase Space and Minimum-Uncertainty States. 2007. Available online: https://arxiv.org/abs/0704.1277 (accessed on 29 September 2022).
- Fuchs, C. Quantum Mechanics as Quantum Information (and Only a Little More). In Quantum Theory: Reconsideration of Foundations; Khrennikov, A., Ed.; Växjö University Press: Växjö, Sweden, 2002; pp. 463–543. [Google Scholar]
- Onggadinata, K.; Kurzynski, P.; Kaszlikowski, D. Qubit from the Classical Collision Entropy. 2022. Available online: https://arxiv.org/abs/2205.00773 (accessed on 4 September 2022).
- Heisenberg, W. Über den anschulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 1927, 43, 172–198. [Google Scholar] [CrossRef]
- Sakurai, J.; Napolitano, J. Modern Quantum Mechanics, 2nd ed.; Addison-Wesley: Boston, MA, USA, 2011. [Google Scholar]
- Brandenburger, A.; La Mura, P. Axioms for Rényi Entropy with Signed Measures. 2019. Available online: www.adambrandenburger.com (accessed on 29 September 2022).
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandenburger, A.; La Mura, P.; Zoble, S. Rényi Entropy, Signed Probabilities, and the Qubit. Entropy 2022, 24, 1412. https://doi.org/10.3390/e24101412
Brandenburger A, La Mura P, Zoble S. Rényi Entropy, Signed Probabilities, and the Qubit. Entropy. 2022; 24(10):1412. https://doi.org/10.3390/e24101412
Chicago/Turabian StyleBrandenburger, Adam, Pierfrancesco La Mura, and Stuart Zoble. 2022. "Rényi Entropy, Signed Probabilities, and the Qubit" Entropy 24, no. 10: 1412. https://doi.org/10.3390/e24101412