Cryptanalysis of a Semi-Quantum Bi-Signature Scheme Based on W States
Abstract
:1. Introduction
- In the final step of the verification phase, the verifier (Charlie) performs an XOR operation with the pre-shared keys of two signers (Alice and Bob). If the verification passes, it means that the signature message is the same. Therefore, Bob can infer Alice’s pre-shared key and forge Alice’s signature later.
- In the final step of the signature phase, the signer (Alice) transmits the signature message and the W-state measurement results to the verifier (Charlie) through the public classical channel. The public classical channel can be eavesdropped on and tampered with. Therefore, Bob can use the received secret message, Alice’s signature message, and measurement results to infer Alice’s pre-shared key, which can then be used to forge Alice’s signature.
- The signer (Alice) transmits the secret message to another signer (Bob) through W-state teleportation technology; however, Alice and Bob do not perform any eavesdropping checks during the teleportation stage. Therefore, the eavesdropper (Eve) will be able to capture the secret message through a man-in-the-middle attack.
2. Review of Zhao et al.’s SQBS Protocol
2.1. Initial Phase
- Step 1.
- Alice prepares the secret message, , where . The agreed encoding rule is as follows: if the classical bit is “0”, then is generated; if the classical bit is “1”, then is generated.
- Step 2.
- Bob and Alice prepare n sets of W-like states, and .
- Step 3.
- Through Krawec’s semi-quantum key distribution protocol [36], Alice and Charlie can share a private key, ; Bob and Charlie can share a private key, .
2.2. Signature Phase
- Step 1.
- Alice sends and of to Bob and Charlie, respectively, keeping for herself. Then, Bob sends of to Alice and keeps for himself.
- Step 2.
- Alice, Bob, and Charlie perform Z-basis measurements on their respective , , and and obtain the measurement results for A, B, and C.
- Step 3.
- Based on Alice’s secret message () and the measurement result (A) of , Alice’s signature message () can be obtained through the coding rule listed in Table 1. Then, the signature message () and the pre-shared key () perform the exclusive or (XOR) operation to obtain Alice’s signature, . Finally, Alice sends the signature () and the measurement result (A) to Charlie through the public classical channel.
- Step 4.
- Alice generates the secret message () as a single photon according to the coding rules (i.e., if the classical bit is “0”, then generate ; if the classical bit is “1”, then is generated). Next, Alice measures with in the W-basis and announces the measurement result to Bob. Based on the measurement result, Bob can perform the corresponding operation in to obtain . Finally, Bob measures in Z basis to obtain Alice’s secret message ().
- Step 5.
- Based on the received secret message () and the measurement result (B) of , Bob can obtain the signature message () via the coding rule listed in Table 1. Then, the signature message () and the pre-shared key () can be used to perform the XOR operation to obtain Bob’s signature, . Finally, Bob sends the signature () and the measurement result (B) to Charlie through the public classical channel.
2.3. Verification Phase
- Step 1.
- Charlie first checks that Alice’s, Bob’s, and his own measurement results (A, B, and C) are consistent with the W-like state, . If the measurement result does not match, the SQBS protocol is canceled; otherwise, Charlie continues with the next step.
- Step 2.
- Charlie can deduce Alice’s and Bob’s signature messages through and as and , respectively.
- Step 3.
- Charlie can deduce Alice’s secret message () by and A through the coding rules listed in Table 1. Similarly, Charlie can deduce Bob’s secret message () by and B.
- Step 4.
- Charlie compares and ; if , then Charlie accepts Alice’s and Bob’s signature; otherwise, Charlie rejects this signature. Finally, Charlie sends and to Alice and Bob, respectively.
3. Security Issues of Zhao et al.’s SQBS Protocol
3.1. Impersonation Attack in the Verification Phase
3.2. Impersonation Attack in the Signature Phase
3.3. Man-in-the-Middle Attack
- Step A1.
- In Step 1 of the signature phase, Bob sends the state of to Alice. At this point, Eve intercepts and generates another set of W-like states, , and sends to Alice.
- Step A2.
- In Step 4 of the signature phase, Alice measures and in the W-basis and informs Bob of the measurement result. In this step, Eve intercepts Alice’s measurement result (); then, based on the measurement result (), Eve can perform the corresponding operation in to obtain . Thus, Eve can measure in the Z basis to obtain Alice’s secret message ().
- Step A3.
- After Eve obtains , Eve generates and measures it with the intercepted in the W-basis . Then, Eve informs Bob of the measurement result (). Based on the measurement result (), Bob can perform the corresponding operation in to obtain . Finally, is measured through the Z-basis to obtain Alice’s secret message ().
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, C.; Liu, Y.-M.; Chen, J.; Yin, X.; Zhang, Z.-J. Quantum entanglement swapping of two arbitrary biqubit pure states. Sci. China Phys. 2016, 59, 1–9. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, Z. Optimizing the scheme of bidirectional controlled quantum teleportation with a genuine five-qubit entangled state. Mod. Phys. Lett. A 2020, 35, 2050301. [Google Scholar] [CrossRef]
- Zhang, W.; Li, B.; Zhang, Z. Cyclic deterministic bidirectional quantum controlled teleportation with maximally seven-qubit entangled state. Laser Phys. Lett. 2020, 17, 125202. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, C.; Ye, B. Teleportation with Mixing State from Two Bell States Due to Qubit Confusion. Int. J. Theor. Phys. 2020, 59, 3249–3255. [Google Scholar] [CrossRef]
- Zhang, Z.; Xing, H.; Ye, B.; Xie, C. Four-party quantum operation sharing with composite quantum channel in Bell and Yeo–Chua product state. Mod. Phys. Lett. B 2020, 35, 2150024. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, W.; Ye, B. Tripartite Quantum Operation Sharing with Six-Qubit Entangled State. Int. J. Theor. Phys. 2020, 59, 1605–1611. [Google Scholar] [CrossRef]
- Zhang, Z. Tripartite quantum operation sharing with six-qubit highly entangled state. Mod. Phys. Lett. A 2021, 36, 2150034. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuan, H. Deterministic tripartite sharing of an arbitrary single-qubit operation with the five-qubit cluster state in a given entanglement structure. Quantum Inf. Process. 2021, 20, 3. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Zhuge, B.; Ye, B. Four-party deterministic quantum operation sharing with a generalized seven-qubit Brown state. Laser Phys. Lett. 2021, 18, 55202. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Zhuge, B.; Yuan, H.; Ye, B. Tripartite Quantum Operation Sharing with a Six-Qubit Absolutely Maximally Entangled State. Int. J. Theor. Phys. 2021, 60, 2520–2530. [Google Scholar] [CrossRef]
- Gottesman, D.; Chuang, I. Quantum digital signatures. arXiv 2001, arXiv:quant-ph/0105032. [Google Scholar]
- Zeng, G.; Keitel, C.H. Arbitrated quantum-signature scheme. Phys. Rev. A 2002, 65, 42312. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Hong, C.; Kim, H.; Lim, J.; Yang, H.J. Arbitrated quantum signature scheme with message recovery. Phys. Lett. A 2004, 321, 295–300. [Google Scholar] [CrossRef]
- Li, Q.; Chan, W.H.; Long, D.Y. Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 2009, 79, 54307. [Google Scholar] [CrossRef]
- Dunjko, V.; Wallden, P.; Andersson, E. Quantum digital signatures without quantum memory. Phys. Rev. Lett. 2014, 112, 40502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.P.; Hwang, T. Arbitrated quantum signature of classical messages without using authenticated classical channels. Quantum Inf. Process. 2014, 13, 113–120. [Google Scholar] [CrossRef]
- Yang, Y.G.; Lei, H.; Liu, Z.C.; Zhou, Y.H.; Shi, W.M. Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 2016, 15, 2487–2497. [Google Scholar] [CrossRef]
- Chen, F.L.; Liu, W.F.; Chen, S.G.; Wang, Z.H. Public-key quantum digital signature scheme with one-time pad private-key. Quantum Inf. Process. 2017, 17, 10. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, H.W.; Zhang, K.J.; Jia, H.Y. An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process. 2017, 16, 70. [Google Scholar] [CrossRef]
- Xin, X.; Wang, Z.; He, Q.; Yang, Q.; Li, F. New public-key quantum signature scheme with quantum one-way function. Int. J. Theor. Phys. 2019, 58, 3282–3294. [Google Scholar] [CrossRef]
- Wen, X.; Niu, X.; Ji, L.; Tian, Y. A weak blind signature scheme based on quantum cryptography. Opt. Commun. 2009, 282, 666–669. [Google Scholar] [CrossRef]
- Su, Q.; Zheng, H.; Qiaoyan, W.; Wenmin, L. Quantum blind signature based on two-state vector formalism. Opt. Commun. 2010, 283, 4408–4410. [Google Scholar]
- Yang, C.W.; Hwang, T.; Luo, Y.P. Enhancement on “Quantum Blind Signature Based on Two-State Vector Formalism”. Quantum Inf. Process. 2013, 12, 109–117. [Google Scholar] [CrossRef]
- Li, W.; Shi, J.; Shi, R.; Guo, Y. Blind quantum signature with controlled four-particle cluster States. Int. J. Theor. Phys. 2017, 56, 2579–2587. [Google Scholar] [CrossRef]
- Luo, Y.P.; Tsai, S.L.; Hwang, T.; Kao, S.H. On “A new quantum blind signature with unlinkability”. Quantum Inf. Process. 2017, 16, 87. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, J.Z.; Xie, S.C. A trusted third-party e-payment protocol based on quantum blind signature without entanglement. Int. J. Theor. Phys. 2018, 57, 2657–2664. [Google Scholar] [CrossRef]
- Wang, T.Y.; Wei, Z.L. One-time proxy signature based on quantum cryptography. Quantum Inf. Process. 2012, 11, 455–463. [Google Scholar] [CrossRef]
- Yang, C.W.; Luo, Y.P.; Hwang, T. Forgery attack on one-time proxy signature and the improvement. Quantum Inf. Process. 2014, 13, 2007–2016. [Google Scholar] [CrossRef]
- Guo, R.; Cheng, X. Cryptanalysis and improvement of a (t, n) threshold group signature scheme. Quantum Inf. Process. 2022, 21, 37. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Wang, Y.Q.; Gong, L.H.; Zeng, Q.W. New bi-signature scheme based on GHZ states and W states. Int. J. Theor. Phys. 2019, 58, 1555–1567. [Google Scholar] [CrossRef]
- Boyer, M.; Kenigsberg, D.; Mor, T. Quantum key distribution with classical bob. Phys. Rev. Lett. 2007, 99, 140501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyer, M.; Gelles, R.; Kenigsberg, D.; Mor, T. Semiquantum key distribution. Phys. Rev. A 2009, 79, 32341. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Qiu, D.; Li, L.; Wu, L.; Li, L. Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 2009, 79, 52312. [Google Scholar] [CrossRef]
- Krawec, W.O. Restricted attacks on semi-quantum key distribution protocols. Quantum Inf. Process. 2014, 13, 2417–2436. [Google Scholar] [CrossRef]
- Krawec, W.O. Security of a semi-quantum protocol where reflections contribute to the secret key. Quantum Inf. Process. 2016, 15, 2067–2090. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.M.; Gong, L.M.; Shao, L.H. Efficient semiquantum key distribution without entanglement. Quantum Inf. Process. 2019, 18, 260. [Google Scholar] [CrossRef]
- Zhu, K.N.; Zhou, N.R.; Wang, Y.Q.; Wen, X.J. Semi-quantum key distribution protocols with GHZ states. Int. J. Theor. Phys. 2018, 57, 3621–3631. [Google Scholar] [CrossRef]
- Krawec, W.O. Mediated semiquantum key distribution. Phys. Rev. A 2015, 91, 32323. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.W.; Yang, C.W.; Lee, N.Y. Lightweight mediated semi-quantum key distribution protocol. Mod. Phys. Lett. A 2019, 34, 1950281. [Google Scholar] [CrossRef]
- Tsai, C.W.; Yang, C.W. Lightweight mediated semi-quantum key distribution protocol with a dishonest third party based on Bell states. Sci. Rep. 2021, 11, 23222. [Google Scholar] [CrossRef]
- Zou, X.; Qiu, D.; Zhang, S.; Mateus, P. Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process. 2015, 14, 2981–2996. [Google Scholar] [CrossRef]
- Yu, K.F.; Yang, C.W.; Liao, C.H.; Hwang, T. Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 2014, 13, 1457–1465. [Google Scholar] [CrossRef]
- Tsai, C.W.; Yang, C.W. Lightweight authenticated semi-quantum key distribution protocol without trojan horse attack. Laser Phys. Lett. 2020, 17, 75202. [Google Scholar] [CrossRef]
- Wang, H.W.; Tsai, C.W.; Lin, J.; Huang, Y.Y.; Yang, C.W. Efficient and secure measure-resend authenticated semi-quantum key distribution protocol against reflecting attack. Mathematics 2022, 10, 1241. [Google Scholar] [CrossRef]
- Wang, H.W.; Tsai, C.W.; Lin, J.; Yang, C.W. Authenticated semi-quantum key distribution protocol based on W states. Sensors 2022, 22, 4998. [Google Scholar] [CrossRef]
- Gheorghiu, V. Generalized semiquantum secret-sharing schemes. Phys. Rev. A 2012, 85, 052309. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.W.; Hwang, T. Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quantum Inf. 2013, 11, 1350052. [Google Scholar] [CrossRef]
- Li, Z.; Li, Q.; Liu, C.; Peng, Y.; Chan, W.H.; Li, L. Limited resource semiquantum secret sharing. Quantum Inf. Process. 2018, 17, 285. [Google Scholar] [CrossRef]
- Tsai, C.W.; Chang, Y.C.; Lai, Y.H.; Yang, C.W. Cryptanalysis of limited resource semi-quantum secret sharing. Quantum Inf. Process. 2020, 19, 224. [Google Scholar] [CrossRef]
- Li, Q.; Chan, W.H.; Long, D.Y. Semiquantum secret sharing using entangled states. Phys. Rev. A 2010, 82, 22303. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Yang, C.W.; Tsai, C.W.; Hwang, T. Intercept-resend attacks on semiquantum secret sharing and the improvements. Int. J. Theor. Phys. 2013, 52, 156–162. [Google Scholar] [CrossRef]
- Yin, A.H.; Tong, Y. A novel semi-quantum secret sharing scheme using entangled states. Mod. Phys. Lett. B 2018, 32, 1850256. [Google Scholar] [CrossRef]
- Tian, Y.; Li, J.; Chen, X.B.; Ye, C.Q.; Li, H.J. An efficient semi-quantum secret sharing protocol of specific bits. Quantum Inf. Process. 2021, 20, 217. [Google Scholar] [CrossRef]
- Xie, C.; Li, L.; Qiu, D. A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 2015, 54, 3819–3824. [Google Scholar] [CrossRef]
- Yin, A.; Fu, F. Eavesdropping on semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 2016, 55, 4027–4035. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, S.; Chang, Y. Cryptanalysis and improvement of the semi-quantum secret sharing protocol. Int. J. Theor. Phys. 2017, 56, 2512–2520. [Google Scholar] [CrossRef]
- Tsai, C.W.; Yang, C.W.; Lin, J. Multiparty mediated quantum secret sharing protocol. Quantum Inf. Process. 2022, 21, 63. [Google Scholar] [CrossRef]
- Tsai, C.W.; Yang, C.W.; Lee, N.Y. Semi-quantum secret sharing protocol using W-state. Mod. Phys. Lett. A 2019, 34, 1950213. [Google Scholar] [CrossRef]
- Li, C.; Ye, C.; Tian, Y.; Chen, X.B.; Li, J. Cluster-state-based quantum secret sharing for users with different abilities. Quantum Inf. Process. 2021, 20, 385. [Google Scholar] [CrossRef]
- Zou, X.; Qiu, D. Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. 2014, 57, 1696–1702. [Google Scholar] [CrossRef]
- Zhang, M.H.; Li, H.F.; Xia, Z.Q.; Feng, X.Y.; Peng, J.Y. Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 2017, 16, 117. [Google Scholar] [CrossRef]
- Xie, C.; Li, L.; Situ, H.; He, J. Semi-quantum secure direct communication scheme based on Bell States. Int. J. Theor. Phys. 2018, 57, 1881–1887. [Google Scholar] [CrossRef]
- Yan, L.; Sun, Y.; Chang, Y.; Zhang, S.; Wan, G.; Sheng, Z. Semi-quantum protocol for deterministic secure quantum communication using Bell states. Quantum Inf. Process. 2018, 17, 315. [Google Scholar] [CrossRef]
- Sun, Y.; Yan, L.; Chang, Y.; Zhang, S.; Shao, T.; Zhang, Y. Two semi-quantum secure direct communication protocols based on Bell states. Mod. Phys. Lett. A 2019, 34, 1950004. [Google Scholar] [CrossRef]
- Yang, C.W.; Tsai, C.W. Intercept-and-resend attack and improvement of semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 2019, 18, 306. [Google Scholar] [CrossRef]
- Rong, Z.; Qiu, D.; Zou, X. Semi-quantum secure direct communication using entanglement. Int. J. Theor. Phys. 2020, 59, 1807–1819. [Google Scholar] [CrossRef]
- Yang, C.W. Efficient and secure semi-quantum secure direct communication protocol against double CNOT attack. Quantum Inf. Process. 2020, 19, 50. [Google Scholar] [CrossRef]
- Yang, C.W.; Tsai, C.W. Advanced semi-quantum secure direct communication protocol based on bell states against flip attack. Quantum Inf. Process. 2020, 19, 126. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, R.G. An efficient and novel semi-quantum deterministic secure quantum communication protocol. Int. J. Theor. Phys. 2022, 61, 94. [Google Scholar] [CrossRef]
- Yan-Feng, L. Semi-quantum private comparison using single photons. Int. J. Theor. Phys. 2018, 57, 3048–3055. [Google Scholar] [CrossRef]
- Ye, T.Y.; Ye, C.Q. Measure-resend semi-quantum private comparison without entanglement. Int. J. Theor. Phys. 2018, 57, 3819–3834. [Google Scholar] [CrossRef]
- Lin, P.H.; Hwang, T.; Tsai, C.W. Efficient semi-quantum private comparison using single photons. Quantum Inf. Process. 2019, 18, 207. [Google Scholar] [CrossRef]
- Li, Y.C.; Chen, Z.Y.; Xu, Q.D.; Gong, L.H. Two semi-quantum private comparison protocols of size relation based on single particles. Int. J. Theor. Phys. 2022, 61, 157. [Google Scholar] [CrossRef]
- Jiang, L.Z. Semi-quantum private comparison based on Bell states. Quantum Inf. Process. 2020, 19, 180. [Google Scholar] [CrossRef]
- Tsai, C.W.; Lin, J.; Yang, C.W. Cryptanalysis and improvement in semi-quantum private comparison based on Bell states. Quantum Inf. Process. 2021, 20, 120. [Google Scholar] [CrossRef]
- Xie, L.; Li, Q.; Yu, F.; Lou, X.; Zhang, C. Cryptanalysis and improvement of a semi-quantum private comparison protocol based on Bell states. Quantum Inf. Process. 2021, 20, 244. [Google Scholar] [CrossRef]
- Li, Z.; Liu, T.; Zhu, H. Private comparison protocol for multiple semi-quantum users based on Bell States. Int. J. Theor. Phys. 2022, 61, 177. [Google Scholar] [CrossRef]
- Tian, Y.; Li, J.; Chen, X.B.; Ye, C.Q.; Li, C.Y.; Hou, Y.Y. An efficient semi-quantum private comparison without pre-shared keys. Quantum Inf. Process. 2021, 20, 360. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, S.; Chang, Y.; Wan, G.; Yang, F. Semi-quantum private comparison protocol with three-particle G-like states. Quantum Inf. Process. 2021, 20, 17. [Google Scholar] [CrossRef]
- Li, Q.; Li, P.; Xie, L.; Chen, L.; Quan, J. Security analysis and improvement of a semi-quantum private comparison protocol with three-particle G-like states. Quantum Inf. Process. 2022, 21, 127. [Google Scholar] [CrossRef]
- Tian, Y.; Li, J.; Ye, C.; Chen, X.B.; Li, C. W-state-based semi-quantum private comparison. Int. J. Theor. Phys. 2022, 61, 18. [Google Scholar] [CrossRef]
- Zhao, X.Q.; Chen, H.Y.; Wang, Y.Q.; Zhou, N.R. Semi-quantum bi-signature scheme based on W states. Int. J. Theor. Phys. 2019, 58, 3239–3251. [Google Scholar] [CrossRef]
- Ozaydin, F.; Bugu, S.; Yesilyurt, C.; Altintas, A.A.; Tame, M.; Özdemir, Ş.K. Fusing multiple W states simultaneously with a Fredkin gate. Phys. Rev. A 2014, 89, 42311. [Google Scholar] [CrossRef] [Green Version]
- Bugu, S.; Ozaydin, F.; Ferrus, T.; Kodera, T. Preparing Multipartite Entangled Spin Qubits via Pauli Spin Blockade. Sci. Rep. 2020, 10, 3481. [Google Scholar] [CrossRef] [Green Version]
- Ozaydin, F.; Yesilyurt, C.; Bugu, S.; Koashi, M. Deterministic preparation of W states via spin-photon interactions. Phys. Rev. A 2021, 103, 52421. [Google Scholar] [CrossRef]
- Li, K.; Kong, F.-Z.; Yang, M.; Ozaydin, F.; Yang, Q.; Cao, Z.-L. Generating multi-photon W-like states for perfect quantum teleportation and superdense coding. Quantum Inf. Process. 2016, 15, 3137–3150. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.-W.; Lin, J.; Tsai, C.-W.; Cheng, C.-L. Cryptanalysis of a Semi-Quantum Bi-Signature Scheme Based on W States. Entropy 2022, 24, 1408. https://doi.org/10.3390/e24101408
Yang C-W, Lin J, Tsai C-W, Cheng C-L. Cryptanalysis of a Semi-Quantum Bi-Signature Scheme Based on W States. Entropy. 2022; 24(10):1408. https://doi.org/10.3390/e24101408
Chicago/Turabian StyleYang, Chun-Wei, Jason Lin, Chia-Wei Tsai, and Ching-Lin Cheng. 2022. "Cryptanalysis of a Semi-Quantum Bi-Signature Scheme Based on W States" Entropy 24, no. 10: 1408. https://doi.org/10.3390/e24101408