Unification of Epistemic and Ontic Concepts of Information, Probability, and Entropy, Using Cognizers-System Model
Abstract
:1. Introduction
2. Overview
3. Externalist Model of the World and Systems: Cognizers-System Model
3.1. The World, Systems, and Cognizers
3.1.1. Overview
3.1.2. External Cognizers (Observers)
3.1.3. Internal Cognizers (Observers)
3.2. Cognition in Cognizers-System Model
4. Cognition and Information
4.1. State and Event
4.2. Cognition as Epistemic and Ontic Information
4.3. Discriminability and Selectivity of Cognition
5. Probability
5.1. Overview: Probability Concept in the CS Model
5.2. Probability for the Meta-Observer (MO)
5.3. Probability for External Observer (EO)
5.3.1. External Poverall
5.3.2. External Pcog
5.4. Probability for Internal Observer (IO)
5.4.1. Internal Poverall
5.4.2. Internal Pcog
5.5. Relationship between Poverall and Pcog
5.6. What Determines P(Bi)?
6. Entropy and the Amount of Information
6.1. Overview
6.2. External Entropy (Hcog) and the Amount of Information (Icog)
6.3. External Entropy (Hoverall) and the Amount of Information (Ioverall)
6.4. Internal Entropy (Hcog) and the Amount of Information (Icog)
6.5. Internal Entropy (Hoverall) and the Amount of Information (Ioverall)
6.6. Hcog and Hoverall for Living Systems
7. An Internalist Model: Realization by Inverse Causality
7.1. Overview
7.2. Realization by Inverse Causality
7.3. Cognizer Equipped with an Internal Model
8. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Deterministic Formalization in the Cognizers-System Model
Appendix B. Pattern as Relation
Appendix C. General Representation for the Relationship between Pcog and Poverall
Appendix D. Sense Data and the Reality
Appendix E. Inverse Causality and (In)Determinism
References
- Gillies, D. Philosophical Theories of Probability; Routledge: New York, NY, USA, 2000; ISBN 0-415-18276-X. [Google Scholar]
- Hacking, I. The Emergence of Probability: A Philosophical Study of Early Ideas About Probability, Induction and Statistical Inference, 2nd ed.; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Young, P. The Nature of Information; Praeger: New York, NY, USA, 1987; ISBN 0-275-92698-2. [Google Scholar]
- von Baeyer, H.C. Information: The New Language of Science; Phoenix: London, UK, 2004. [Google Scholar]
- Stevenson, A. Oxford Dictionary of English, 2nd ed.; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Nakajima, T. Biologically inspired information theory: Adaptation through construction of external reality models by living systems. Prog. Biophys. Mol. Biol. 2015, 119, 634–648. [Google Scholar] [CrossRef] [PubMed]
- Denbigh, K.G.; Denbigh, J.S. Entropy in Relation to Incomplete Knowledge; Cambridge University Press: Cambridge, UK, 1985; ISBN 0-521-25677-1. [Google Scholar]
- Ben-Naim, A. Entropy and the Second Law: Interpretation and Misss-Interpretationss; World Scientific Pub. Co. Inc.: Singapore, 2012. [Google Scholar]
- Varela, F.; Coutinho, A.; Dupire, B.; Vaz, N. Cognitive networks: Immune, neural and otherwise. In Theoretical Immunology: Part Two, SFI Studies in Science of Complexity; Addison Wesley: Reading, PA, USA, 1988; Volume 2, pp. 359–371. [Google Scholar]
- Merelli, E.; Pettini, M.; Rasetti, M. Topology driven modeling: The IS metaphor. Nat. Comput. 2015, 14, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Husserl, E. Ideas Pertaining to a Pure Phenomenology and to a Phenomenological Philosophy; First Book, General Introduction to a Pure Phenomenology; Springer: Berlin, Germany, 1913. [Google Scholar]
- Husserl, E. Cartesian Meditations; Springer: Berlin, Germany, 1931. [Google Scholar]
- Russell, B. The Problems of Philosophy; Oxford University Press: Oxford, UK, 1997; ISBN 0-19-511552-X. [Google Scholar]
- Schrödinger, E. Nature and The Greeks; Cambridge University Press: New York, NY, USA, 1954. [Google Scholar]
- Schrödinger, E. Mind and Matter; Cambridge University Press: New York, NY, USA, 1959. [Google Scholar]
- Wheeler, J.A. Information, physics, quantum: The search for links. In Proceedings of the 3rd International Symposium on Foundations of Quantum Mechanics, Tokyo, Japan, 28–31 August 1989; pp. 354–368. Perseus Books: Cambridge, UK, 1999; pp. 309–336, ISBN 0-7382-0057-3. [Google Scholar]
- Rössler, O. Endophysics; World Scientific Pub. Co. Inc.: Singapore, 1998; ISBN 981-02-2752-3. [Google Scholar]
- Matsuno, K. Internalist stance and the physics of information. BioSystems 1996, 38, 111–118. [Google Scholar] [CrossRef]
- Von Uexküll, J. Theoretical Biology; Harcourt, Brace: New York, NY, USA, 1926. [Google Scholar]
- Von Uexküll, J. A Foray into the Worlds of Animals and Humans: With a theory of meaning; University of Minnesota Press: Minneapolis, MN, USA, 2010. [Google Scholar]
- Maturana, H.R.; Varela, F.J. Autopoiesis and Cognition—The Realization of the Living; Reidel: Dodrecht, The Netherlands, 1980. [Google Scholar]
- Salthe, S.N. Theoretical biology as an anticipatory text: The relevance of Uexküll to current issues in evolutionary systems. Semiotica 2001, 134, 1–22. [Google Scholar] [CrossRef]
- Nakajima, T. Is the world deterministic? Mental algorithmic process generating external reality by inverse causality. Int. J. Gen. Syst. 2001, 30, 681–702. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Champaign, IL, USA, 1949. [Google Scholar]
- Nakajima, T. How living systems manage the uncertainty of events: Adaptation by semiotic cognition. In Biosemiotic Research Trends; Barbieri, M., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2007; pp. 157–172. [Google Scholar]
- Nakajima, T. Biological probability: Cognitive processes of generating probabilities of events in biological systems. J. Theor. Biol. 1999, 200, 77–95. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T. Probability in biology: Overview of a comprehensive theory of probability in living systems. Prog. Biophys. Mol. Biol. 2013, 113, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Kolmogorov, A. Foundations of the Theory of Probability; Chelsea: London, UK, 1933. [Google Scholar]
- Popper, K.R. The Open Universe: An Argument for Indeterminism; Routledge: London, UK, 1982. [Google Scholar]
- Clark, M.P.A.; Westerberg, B.D. How Random Is the Toss of a Coin? 2009. CMAJ 181, E306eE308. Available online: http://dx.doi.org/10.1503/cmaj.091733 (accessed on 30 December 2018).
- Nakajima, T. Probabilities of encounters between objects in biological systems: Meta-observer view. J. Theor. Biol. 2001, 211, 347–363. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T. Probabilities of encounters between objects in biological Systems 2: Cognizer view. J. Theor. Biol. 2003, 221, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Laplace, M. A Philosophical Essay on Probabilities; Dover Publications Inc.: Mineola, NY, USA, 1814; ISBN 0-486-28875-7. [Google Scholar]
- Landé, A. Probability in classical and Quantum theory. In Selected Scientific Papers of Alfred Landé. Fundamental Theories of Physics; Barut, A.O., van der Merwe, A., Eds.; Springer: Berlin, Germany, 1988; pp. 397–402. [Google Scholar]
- Maxwell, J.C. Theory of Heat; Dover, Publications, Inc.: New York, NY, USA, 1871; ISBN 0-486-41735-2. [Google Scholar]
- Carlsson, G. Topology of data. Bull. New Ser. AMS 2009, 46, 255–308. [Google Scholar] [CrossRef]
- Edelsbrunner, H.; Harer, J. Computational Topology, an Introduction; American Mathematical Society: Providence, RI, USA, 2010. [Google Scholar]
- Begon, M.; Harper, J.L.; Townsend, C.R. Ecology: Individuals, Populations and Communities; Wiley-Blackwell: Hoboken, NJ, USA, 1996. [Google Scholar]
- Pianka, E.R. Evolutionary Ecology, 6th ed.; Benjamin Cummings: San Francisco, CA, USA, 1999. [Google Scholar]
- Zahavi, D. Husserl’s noema and the internalism-externalism debate. Inquiry 2004, 47, 42–66. [Google Scholar] [CrossRef]
- Zahavi, D. Internalism, externalism, and transcendental idealism. Synthese 2008, 160, 355–374. [Google Scholar] [CrossRef]
- Rosen, R. Observation and biological systems. Bull. Math. Biol. 1977, 39, 663–678. [Google Scholar] [CrossRef] [PubMed]
- Rosen, R. Fundamentals of Measurement and Representation of Natural Systems; Elsevier North-Holland, Inc.: New York, NY, USA, 1978. [Google Scholar]
- Bateson, G. Mind and Nature; E. P. Duttton: New York, NY, USA, 1979. [Google Scholar]
- Jackson, F. Perception: A Representative Theory; Cambridge University Press: Cambridge, UK, 1977. [Google Scholar]
- Huemer, M. Skepticism and the Veil of Perception; Rowman & Littlefield: Lanham, MD, USA, 2001. [Google Scholar]
- Hume, D. An Enquiry Concerning Human Understanding, 2nd ed.; Kindle: New York, NY, USA, 1777. [Google Scholar]
- Salmon, W. The Foundations of Scientific Inference; University of Pittsburgh Press: Pittsburgh, PA, USA, 1967. [Google Scholar]
External Cognizer | Internal Cognizer | |
---|---|---|
Determined under a particular cognition | External Pcog | Internal Pcog |
Determined under overall cognitions | External Poverall | Internal Poverall |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakajima, T. Unification of Epistemic and Ontic Concepts of Information, Probability, and Entropy, Using Cognizers-System Model. Entropy 2019, 21, 216. https://doi.org/10.3390/e21020216
Nakajima T. Unification of Epistemic and Ontic Concepts of Information, Probability, and Entropy, Using Cognizers-System Model. Entropy. 2019; 21(2):216. https://doi.org/10.3390/e21020216
Chicago/Turabian StyleNakajima, Toshiyuki. 2019. "Unification of Epistemic and Ontic Concepts of Information, Probability, and Entropy, Using Cognizers-System Model" Entropy 21, no. 2: 216. https://doi.org/10.3390/e21020216
APA StyleNakajima, T. (2019). Unification of Epistemic and Ontic Concepts of Information, Probability, and Entropy, Using Cognizers-System Model. Entropy, 21(2), 216. https://doi.org/10.3390/e21020216