A Reliable Algorithm for a Local Fractional Tricomi Equation Arising in Fractal Transonic Flow
Abstract
:1. Introduction
2. Local Fractional Integrals and Derivatives
3. Local Fractional Sumudu Transform
4. Local Fractional Homotopy Perturbation Sumudu Transform Method
5. Nondifferential Solutions for the Local Fractional Tricomi Equation
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tricomi, F.G. Sulle Equazioni Lineari alle derivate Parziali di 20 Ordine, di Tipo Misto, Atti Accad. Nazionale dei Lincei 1923, 14, 133–247. (In Italian) [Google Scholar]
- Chen, D.; Wen, G. Initial-Oblique Derivative Problem for Nonlinear Parabolic Equations in High Dimensional Domains. Int. J. Appl. Math. Stat. 2007, 8, 8–19. [Google Scholar]
- Rassias, J.M. Mixed Type Partial Differential Equations With Initial and Boundary Values in Fluid Mechanics. Int. J. Appl. Math. Stat. 2008, 13, 77–107. [Google Scholar]
- Frankl, F.I.; On, S.A. On the problems of Chaplygin for mixed subsonic and supersonic flows. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 1945, 9, 121–143. [Google Scholar]
- Guderley, G. On the presence of shocks in mixed subsonic-supersonic flow patterns. In Advanced in Applied Mechanics; Academic Press: New York, NY, USA, 1953; Volume 3, pp. 145–184. [Google Scholar]
- Lupo, D.; Payne, K.R. A dual variational approach to a class of nonlocal semilinear Tricomi problems. Nonlinear Differ. Equ. Appl. 1999, 6, 247–266. [Google Scholar] [CrossRef]
- Yagdjian, K. Global existence for the n-dimensional semilinear Tricomi-type equations. Commun. Partial Differ. Equ. 2006, 31, 907–944. [Google Scholar] [CrossRef]
- Yagdjian, K. A note on the fundamental solution for the Tricomi-type equation in the hyperbolic domain. J. Differ. Equ. 2004, 206, 227–252. [Google Scholar] [CrossRef]
- Rassias, J.M. Uniqueness of quasi-regular solutions for abi-parabolic elliptic bi-hyperbolic Tricomi problem. Complex Var. Theory Appl. 2002, 47, 707–718. [Google Scholar] [CrossRef]
- Yang, X.J. Advanced Local Fractional Calculus and Its Applications; World Science: New York, NY, USA, 2012. [Google Scholar]
- Yang, A.M.; Zhang, Y.Z.; Long, Y. The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar. Therm. Sci. 2013, 17, 707–713. [Google Scholar] [CrossRef]
- Su, W.H.; Baleanu, D.; Yang, X.J.; Jafari, H. Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fixed Point Theory Appl. 2013, 2013, 89. [Google Scholar] [CrossRef]
- Yang, X.J.; Yang, Y.J.; Baleanu, D. A local fractional variational iteration method for Laplace equation within local fractional operator. Abstr. Appl. Anal. 2013, 2013, 202650. [Google Scholar] [CrossRef]
- Yang, A.M.; Chen, Z.; Srivastava, H.M.; Yang, X.J. Application of the local fractional series expansion method and the variation iteration method to the Helmholtz equation involving local fractional derivative operators. Abstr. Appl. Anal. 2013, 2013, 259125. [Google Scholar] [CrossRef]
- Baleanu, D.; Machado, J.A.T.; Cattani, C.; Baleanu, M.C.; Yang, X.J. Local fractional variational iteration and decomposition methods for wave equation on Cantor sets within local fractional operators. Abstr. Appl. Anal. 2014, 2014, 535048. [Google Scholar] [CrossRef]
- Yang, X.J.; Srivastava, H.M.; He, J.H.; Baleanu, D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A 2013, 377, 1696–1700. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, D.F.; Yang, X.J. Approximation solutions for local fractional Schrödinger equation in the one dimensional Cantorian system. Adv. Math. Phys. 2013, 2013, 291386. [Google Scholar] [CrossRef]
- Yang, X.J.; Hristov, J.; Srivastava, H.M.; Ahmad, B. Modelling Fractal Waves on Shallow Water Surfaces via Local Fractional Korteweg–de Vries Equation. Abstr. Appl. Anal. 2014, 2014, 278672. [Google Scholar] [CrossRef]
- Yang, A.M.; Zhang, Y.Z.; Zhang, X.L. The Nondifferential Solution for Local Fractional Tricomi Equation Arising in Fractal Transonic Flow by Local Fractional Variational Iteration Method. Adv. Math. Phys. 2014, 2014, 983254. [Google Scholar] [CrossRef]
- Niu, X.F.; Zhang, C.L.; Li, Z.B.; Zhao, Y. Local Fractional Derivative Boundary Value Problems for Tricomi Equation Arising in Fractal Transonic Flow. Abstr. Appl. Anal. 2014, 2014, 872318. [Google Scholar] [CrossRef]
- Chen, G.Q.; Feldman, M. Shock Reflection-Diffraction and von Neumann’s Con-jectures. In Annals of Mathematics Studies Series; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Morawetz, C.M. Mixed equations and transonic flow. J. Hyperbolic Differ. Equ. 2004, 1, 1–26. [Google Scholar] [CrossRef]
- Tricomi, F. On Second-Order Linear Partial Differential Equations of Mixed Type; Moscow: Leningrad, Russia, 1947. (In Russian) [Google Scholar]
- He, J.H. Homotopy perturbation method: A new nonlinear analytical technique. Appl. Math. Comput. 2003, 135, 73–79. [Google Scholar] [CrossRef]
- He, J.H. Comparison of homotopy perturbation method and homotopy analysis method. Appl. Math. Comput. 2004, 156, 527–539. [Google Scholar] [CrossRef]
- He, J.H. The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. Math. Comput. 2004, 151, 287–292. [Google Scholar] [CrossRef]
- Watugala, G.K. Sumudu transform—A new integral transform to solve differential equations and control engineering problems. Int. J. Math. Educ. Sci. Technol. 1993, 24, 35–43. [Google Scholar] [CrossRef]
- Belgacem, F.B.M.; Karaballi, A.A.; Kalla, S.L. Analytical investigations of the Sumudu transform and applications to integral production equations. Math. Probl. Eng. 2003, 3, 103–118. [Google Scholar] [CrossRef]
- Belgacem, F.B.M.; Karaballi, A.A. Sumudu Transform Fundamental Properties Investigations and Applications. J. Appl. Math. Stoch. Anal. 2006, 2006, 91083. [Google Scholar] [CrossRef]
- Katatbeh, Q.K.; Belgacem, F.B.M. Applications of the Sumudu transform to fractional differential equations. Nonlinear Stud. 2011, 18, 99–112. [Google Scholar]
- Gupta, V.G.; Sharma, B.; Belgacem, F.B.M. On the solutions of generalized fractional kinetic equations. Appl. Math. Sci. 2011, 5, 899–910. [Google Scholar] [CrossRef]
- Belgacem, F.B.M. Applications with the Sumudu transform to Bessel functions and equations. Appl. Math. Sci. 2010, 4, 3665–3686. [Google Scholar]
- Belgacem, F.B.M. Introducing and analyzing deeper Sumudu properties. Nonlinear Stud. 2006, 13, 23–42. [Google Scholar]
- Bulut, H.; Baskonus, H.M.; Belgacem, F.B.M. The analytical solutions of some fractional ordinary differential equations by Sumudu transform method. Abstr. Appl. Anal. 2013, 2013, 203875. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Kilicman, A. Numerical solutions of nonlinear fractional partial differential equations arising in spatial diffusion of biological populations. Abstr. Appl. Anal. 2014, 2014, 535793. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Golmankhaneh, A.K.; Baleanu, D.; Yang, X.J. Local Fractional Sumudu Transform with Application to IVPs on Cantor Sets. Abstr. Appl. Anal. 2014, 2014, 620529. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, J.; Kumar, D.; Nieto, J.J. A Reliable Algorithm for a Local Fractional Tricomi Equation Arising in Fractal Transonic Flow. Entropy 2016, 18, 206. https://doi.org/10.3390/e18060206
Singh J, Kumar D, Nieto JJ. A Reliable Algorithm for a Local Fractional Tricomi Equation Arising in Fractal Transonic Flow. Entropy. 2016; 18(6):206. https://doi.org/10.3390/e18060206
Chicago/Turabian StyleSingh, Jagdev, Devendra Kumar, and Juan J. Nieto. 2016. "A Reliable Algorithm for a Local Fractional Tricomi Equation Arising in Fractal Transonic Flow" Entropy 18, no. 6: 206. https://doi.org/10.3390/e18060206
APA StyleSingh, J., Kumar, D., & Nieto, J. J. (2016). A Reliable Algorithm for a Local Fractional Tricomi Equation Arising in Fractal Transonic Flow. Entropy, 18(6), 206. https://doi.org/10.3390/e18060206