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Abstract

The search for a semantics for higher-order quantum cortipnteeads naturally
to the study of categories of normed cones. In the first pahispaper, we develop the
theory of continuous normed cones, and prove some of thsit peoperties, including
a Hahn-Banach style theorem. We then describe two diffe@mtretex-autonomous
categories of normed cones. The first of these categoriesilisfltom completely
positive maps as in the author’s semantics of first-ordenguma computation. The
second category is a reformulation of Girard’s quantum cartitespaces. We also point
out why ultimately, neither of these categories is a sattsfg model of higher-order
guantum computation.

1 Introduction

In quantum computation, one often considers programs wdhégiend parametrically on
a so-calledblack box which is typically a quantum circuit that computes somengovin
function. The black box is considered to be part of the inguhe program, but it dif-
fers from ordinary data, such as qubits, in that it can onlytdsted via observing its
input/output behavior. In the terminology of functionabgramming, programming with
black boxes is a special case of what is knowmigher-order functional programming
which means, programming with functions whose input anoiéiiput may consist of other
functions.

Recently, there have been some proposals for higher-ouwdetam programming lan-
guages, based on linear versions of the lambda calculuslP,110]. These languages
have been given meaning syntactically, in terms of tbperationalbehavior; however,
there is currently no satisfactodenotationalsemantics of such higher-order quantum
programming languages. This is in contrast to the firstiocdse, where a complete de-
notational description of the quantum computable function finite data types, based on
superoperators, has been given [8].
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In trying to extend this work to the higher-order case, onledsto search for a sym-
metric monoidal closed category which contains the categbsuperoperators from [8]
as a full, symmetric monoidal subcategory. This leads mdifuto the study of categories
of normed cones, as pioneered by Girard in his study of quactherent spaces [5].

In the first part of the present paper, we attempt to develogsgesatic account of
normed cones and their basic properties. The study of noooees is similar, in many
respects, to the study of normed vector spaces, but themoare important differences,
notably the presence of a partial order, the so-cadlede order This order allows us
to use techniques from domain theory [2], and to work withessitheoretic notions of
convergence and continuity which are rather stronger thaorresponding notions that
are usually available in normed vector spaces such as Bapacikes.

In the second part of this paper, we report on two instrudfiee ultimately failed)
attempts at constructing a model of higher-order quantumpetation based on normed
cone techniques. We describe two concrete categories mfatbcones. The first such cat-
egory is a direct generalizations of the category of supsaiprs from the author’s work
on first-order quantum computation [8]. The second categoogsed on a reformulation
of Girard’s quantum coherent spaces. Both categories tuirmodbex-autonomous, and
thus possess all the structure required to model higherdircear language features (and
more). However, neither of these categories yields theecbanswer at base types, and
thus they are not correct models of quantum computation. attleor believes that the
techniques used here are nevertheless interesting and tomiglout to be building blocks
in the construction of a model of higher-order quantum cotaipen in the future.

Acknowledgments and Errata. |am grateful to Andrea Schalk for many useful discus-
sions on the topics of this paper, and to Vincent Danos fareations. The current version
of this paper differs from the published version. | have eored errors in Lemma 2.10
and Example 2.11, as well as some minor typos.

2 Cones

In this section, we develop the basic theory of continuousneal cones. The techniques
used are similar to those employed in the study of normedvepaces, except that we
also make extensive use of domain-theoretic methods tixpe partial order which
naturally exists on cones. Another domain-theoretic tnesit of cones was given by Tix
[9], but the present work differs in many key details, suclth&spresence of a norm, and
the consequently modified notion of completeness.

2.1 Abstract cones

Let R, be the set of non-negative real numbers. glastract conds analogous to a real
vector space, except that we tdke as the set of scalars. Sine. is not a field, we have
to replace the vector space lawt (—v) = 0 by acancellation laww + v = w + u =

v = w. We also requirstrictnesswhich means, no non-zero element has a negative.



Definition (Abstract cone) An abstract conds a setV/, together with two operations
+:V xV —=>Vand : Ry xV — V and a distinguished elemeit V, satisfying the
following laws for allv, w,u € V and\, p € R:

0O+v=w lv=w

vt (wtu) = w+w) +u (Ao =Au)

vtw=w+wv A+ p)v = v+ po
Av 4+ w) = Av + dw,

v+tu=w+u = wv=w (cancellation)
v+w=0 = wv=w=0 (strictness)

Example2.1 R, is an abstract cone. The set
Ri = {(J)l7 e

is an abstract cone, with the coordinate-wise operationsreMenerally, ifVy,...,V,
are abstract cones, then solis x ... x V. The set of all complex hermitian positive
n X n-matrices,

) | X1y, 2 €ERYY

Pn={AeC"" | A= A*andvv € C".v*Av > 0}
is an abstract cone.

Definition (Linear function) A linear functionof abstract cones is a functigh: V- — W
such thatf (v + w) = f(v) + f(w) andf(Av) = Af(v), forallv,w € V andX € Ry.

Remark.Every abstract con¥ can be completed to a real vector space(V'), which we
call theenveloping spacef V. The elements ofnv(V') are pairdv, w), wherev, w € V,
modulo the equivalence relatidm, w) ~ (v, w’) if v + w' = v + w. Addition and
multiplication by non-negative scalars are defined poiséwand we define (v, w) =
(w,v). We say that an abstract condiiste dimensionaif its enveloping space is a finite
dimensional vector space.

Definition (Convexity) A subsetD of an abstract con¥ is said to beconvexif for all
u,v € DandX € [0,1], Au + (1 — A)v € D. Theconvex closuref a setD is defined to
be the smallest convex set containifg

2.2 The cone order

Definition (Cone order) Let V' be an abstract cone. Titene orderis defined byy C w
if there existsu € V such that + « = w. Note that the cone order is a partial order. If
v C w, then we sometimes also write— v for the unique element such that + v = w.

Remark. Note that every linear function of abstract corfesV — W is alsomonotone

i.e.,v C v implies f(v) C f(v'). Also, addition and scalar multiplication are monotone

operations.

Example2.2 OnR, the cone order is just the usual ordeof the reals. O, itis the
pointwise order. OrP,, it is the so-called-dwner partial order{7].

Definition (Down-closure) Let D C V be a subset of an abstract cone.dd¢svn-closure
ID is the set{u € V|3v € D.u C v}. We say thatD is down-closedf D = |D.
The concept ofip-closureis defined dually. Note that the down-closure of a convexsset i
convex.

2.3 Normed cones

Definition (Norm). LetV be an abstract cone. #ormonV is a function|—|| : V' — R4
satisfying the following conditions for all, w € V and\ € R;.:

[[v 4+ wl| < [Jof| + [lw]|
[Av]| = Allv]l
lv|=0=v=0

v Ew= o <

A normed cond” = (V, ||—||) is an abstract cone equipped with a norm.

Remark.The first three conditions of a norm are just the usual comdfitfor a norm on a
vector space, except of course that the scalar propertgtisated to non-negative scalars.
The last condition ensures that the nornmisnotone

Definition (Unitideal) Theunitidealof a normed con& is the set
Dy ={veV [l <1}

It is akin to the unit ball in a normed vector space.

2.4 Complete normed cones
We recall the definition of a directed complete partial ofdem domain theory [2].

Definition (Directed complete partial order (dcpo)) partially ordered set is called
directedif for all a,b € A, there exista € A with a,b C c. A partially ordered setD, C)
is called adirected complete partial order (dcpdf)every directed subsed of D has a
least upper bound if. The least upper bound of a directed subsés denoted by/A,
and it is also called thdirected supremupor sometimes thémit, of A.

If Iis a directed poset an is a dcpo, then a monotone map I — D is called
andirected net(or simplynef). As usual, we write a net 8%,);c;. The image of a net
is a directed subset dP, and its directed supremum is written V',Sezai- Note that an
increasing sequence is a particular kind of directed net.

Definition (Complete normed coneA normed coné/ is calledcompletsf its unit ideal
is a directed complete partial order.

Remark. A normed coné/ is complete if and only if the following two conditions hold,
for all directed netga;);cr in V:

o if \f.a; exists, ther|\/,a;|| = \/|a:]|, and



o if {||ai|| | i € I} is bounded, thel,a; exists.

The first of these condition states that the normsi®tt-continuous.e., it preserves di-
rected suprema. The second conditioné®mpletenessondition; it is akin to the require-
ment, in complete normed vector spaces, that every Caugfugeee has a limit. However,
unlike in normed vector spaces, we require convergencerasihect to therder, not with
respect to theorm The norm merely serves to rule out unbounded sequences.

2.5 Examples

We write z U y for the maximum of two numbers,y € R.. Note that this operation
is commutative and associative, has uhitand is distributive with respect to addition:
(zUy)+2z=(x+2)U(y+ 2).

Example2.3. R, is a complete normed cone wiflx|| = z. The setR?, is a complete
normed cone with thé-norm

Iz, ... ;zn)|i =21+ ...+ Zpe

The sefR” is also a complete normed cone with tkenorm
T p

@1, ) |loo = 21 U oo U 2y

More generally, ifV;,...,V, are complete normed cones, then each of the following
formulas makéd/; x ... x V,, into a complete normed cone:

(01, vn) = Noallve + - 4 lloallv,,
(01,5 on) oo := lluallv U U fon]lv, -

We write V; @ ... @ V,, for the normed conéV; x ...
Vi&... &V, forthe normed conél; x ... x Vi, || —llco)-

The setP,, of complex hermitian positive. x n-matrices is a complete normed cone
with the1-norm (or trace norm)

X Vo, ||-1l1), and we write

JAlL = Al =tr A= as.

It is also a complete normed cone with tkenorm (or operator norm
[Allec = sup{|Av]| | v e C", |v] <1},

where|v| = v/v*v denotes the usual norm of a complex vector. Note [t} is the sum
of the eigenvalues ol (counted according to multiplicity), arffi || is the maximum of
the eigenvalues.

Example2.4. Consider the seV = {(z,9) |z =y =0o0rz,y >0} C R? with the
norm||(z,y)|| = =z +y. Clearly,V is a normed cone. However, it is not complete: the
increasing sequeneg = (2 — 1/4,2 — 1/i) has many upper bounds, none of which is
least. For examplé?2, 2) and(2, 3) are two incomparable minimal upper bounds.

Example2.5. Let/; be the set of sequencesin of bounded sum, together with the sum
norm||(z;): |1 = >, =:. Letls be the set of bounded sequenceRin together with the
supremum nornfj(z;)i||c = sup x;. Then both/; and?,, are complete normed cones.
Least upper bounds are given pointwise.

Example2.6. Let P be any partially ordered set, and R be the set of bounded mono-
tone mapsf : P — R,. LetRY be equipped with the pointwise operations of addition
and scalar multiplication, and with the supremum ndjtffi.c = sup{f (i) | ¢ € P}. Then
Ri is a complete normed cone. Least upper bounds of directsdaneigiven pointwise.
However, note that the cone orderon RY" does not in general coincide with the point-
wise order, because fgrC g, we must have that — f is not only non-negative, but also
monotone.

2.6 Continuous normed cones
We recall some additional concepts from domain theory [2].

Definition (Continuous dcpo)If w, v are elements of a dcpb, we say thatw is way
beloww, or in symbolsw < v, if for any directed setl with v C \f4, there exists some
a € Asuchthatw C a. We write{v = {w | w < v} and?v = {w | v < w}. A dcpo
D is calledcontinuousf for everyv € D, the set|v is directed and = \/‘y;.

Definition (Continuous normed coneA continuous normed corie a complete normed
cone whose unit ideal is a continuous dcpo.

Remark.If V' is a complete normed cone, th&nis continuous iff for every € V, the
setlw is directed and = \fL.v in V. In particular, continuity, as a property of complete
normed cones, is independent of the norm; it only dependsearder.

2.7 Examples

Example2.7. The complete coneR,, R, P,, £, and/; from Examples 2.3 and 2.5
are all continuous. IR, we haver <« yiff + = 0 orz < y. In R}, we have
(1, y2n) < (Y1,...,yn) iffforall i, z;, = 0 orz; < y,;. InP,, we haved <« B iff
forallv € C", v*Av = 0 orv* Av < v*Bu. In{,, and/;, we haver <« § iff Z is finitely
supported and for all z; = 0 orx; < y;. Moreover, ifl7, ..., V,, are continuous normed
cones,thensoarg & ... 4V, andV; & ... & V,,, and the way-below relation is given
pointwise in this case.

Example2.8. Let I = [0,1] be the unit interval with the natural order. Consider the
complete con®’ of monotone functiong : I — R (see Example 2.6). We claim that
R! is nota continuous cone. Indeed, consider the pfap = =, and suppose thgt < g.

We will show thatf = 0. We first show that for any € I, there exists a neighborhood of
x on whichf is constant. Fixc € I. For anye > 0, defineg, by

Y ify<ax—e
ge(y) =< z—€ fz—e<y<az+e
y—2¢ ifxt+e<y.



Then the netg.).~o converges tg. Hencef C g, for somee > 0. Sincey. is constant
on a neighborhood af, and bothf andg. — f are monotone, it follows thaf is also
constant on a neighborhood.of As = was arbitrary, and is connected, it follows thaft

is a constant function, hence necessafily: 0. As there is only one element way below
g, it follows thatIRﬁ’r is not a continuous cone.

Open Problem. Characterize the partially ordered sétfor which R% is a continuous
normed cone.

2.8 Order convergence and norm convergence

We have already remarked that, in the theory of normed comeshormally consider
convergence with respect to the order, and not with respeittet norm. However, it is
sometimes useful to know more about the relationship betletwo concepts.

Remark.Order-convergence does not in general imply norm-convexgdor instance, in
!, the increasing sequenece = (1,1,...,1,0,0,...) has least upper bourd, 1, .. .),
but it does not converge in norm.

On the other hand, norm-convergence of increasing seqsémqdies order-conver-
gence, as shown in the following lemma:

Lemma 2.9. Let V be a complete normed confgy;); an increasing sequence (or a di-
rected net), and let be an upper bound such thi — v;|| — 0. Thenv = \/,v;.

Proof. By completeness, a least upper bound exists, so let\/,v;. Sincev is an upper
bound, we havey C v. Now for all 7, we havev; C w, hencev — w C v — v;, hence
lv —w| < ||lv—wv]. As the latter quantity converges@owe must havélv — w|| = 0,
hencev = w. O

2.9 Bounded and non-expanding functions

Definition (Bounded and non-expanding linear functiohet V' and W be complete
normed cones. A linear function of congs: V' — W is boundedif there exists a
constanic € R, such that foralb € V, || f(v)|| < ¢|Jv]|. Itis non-expandingf for all
veV,[[f@)] < vl

Perhaps surprisingly, the definition of boundedness isnddnt, as the following
lemma shows:

Lemma 2.10. Any monotone function satisfyirfg\v) = \f(v) (and therefore any linear
function) between complete normed cones is bounded.

Proof. Supposef : V. — W is monotone but unbounded. For edagckhoose an element
v; € V such thafl|v;|| = 1 but||f(v;)|| > 4 - 2°. Now consider the sequence whage
elementis

IS AR AR
U; = Vo 21}1 41}2 N 22.’02.

Then (u;); is an increasing sequence ¥, with ||u;|| < 2 for all ;. By completeness,
this sequence has a least upper bound \#,u; with ||u|| < 2. On the other hand, by

construction, we havéf (u;)|| > ||f(v:)||/2" > i. Now for all i, we haveu; C u, thus
fui) E f(u), thusi < ||f(w)] < ||f(w)]]. This contradicts the fact thgt(«) has finite
norm. O

2.10 Continuous linear functions

Definition (Continous linear function)Let IV andWW be complete normed cones. A func-
tion of conesf : V' — W is calledScott-continuougor simply continuou} if it preserves
directed suprema, i.e., ff(\f,a;) = \£, f(a;) for all bounded directed neta;);.

Example2.11 Consider/,, as in Example 2.5, and Iéf be an ultrafilter orN. For
any sequenceé = (z;); € {x, definelimy Z to be the supremum of all € R, such
that{i | x; > a} € U. Then the functionf(z) = limy z is linear (and thus bounded
by Lemma 2.10), but not continuous: it maps each member ointreasing sequence
v; =(1,1,...,1,0,0,...) to 0, but maps its least upper boundito

Lemma 2.12. In a complete normed cone, addition and scalar multiplisatire contin-
uous.

Proof. Note that for any fixed, the functionf(v) = a + v is an order isomorphism from
Vito{u € V| a C u}; hence, it preserves least upper bounds of non-empty sigise S
Scott continuity is pointwise, addition as a function of targuments is also continuous.
Similarly, for any non-zero scalax, the functiong(v) = Av is an order isomorphism
from V to itself, thus preserving least upper bounds. In case 0, there is nothing to
show. Thus\v is continuous as a function ef Finally, the fact that\v is continuous
as a function of\ follows from Lemma 2.9, because = \f,\; implies | \v — \v|| =

|A = Ailllv]| — 0. o

2.11 Properties of the way-below relation

Recall that a subséf of a dcpoD is calledScott-openor simplyopen if it is up-closed
and for any directed set with \#A € U, there exists some € ANU. A setisScott-closed
or closedif its complement is open.

Remark2.13 If D is a continuous dcpo, thdi C D is Scott-open if and only if for all
v € U there exists some € U with w < v.

One of the fundamental properties of continuous dcpo’seédaliowing interpolation
property, which is proved e.g. in [2]:

Lemma 2.14(Interpolation) Given elements,, ..., v, andw in a continuous dcpd’,
such that; < w for all 4, there exist® € V such that; < v < w for all s.

The following corollary is an easy consequence of interfamta
Corollary 2.15. In a continuous dcp®’, the setfv is open, for all.

In general, the way-below relation is not preserved by cmmtus functions on cones.
For example, iR, we have) < 1, butl < 2; thus the functiory (z) = 1 + « does not
preserve the way-below relation. We do, however, have thadimg properties:



Lemma 2.16.In a complete cone; < v' andw < w' impliesv+w < v'+w’. Further
v < v’ impliesAv < A\’ for any scalarh € R,

Proof. For the first claim, assume < v andw < w’, and consider a directed net
(ai)ier such that’ + w’ C \f,c;a;. Thenv' C \f, . a;, hence there exists somjec [
such thaty C a;. LetJ = {i € I |i > j}. Sincel is directed, we hav&f,. ;a; =
\f;crai. Furtherv C a; for all i € .J, so we may consider the net; — v);c;. We have
w Cv' +w —vC (\eyai) —v =\ (a; —v). Sincew < ', there is some € .J
with w C a; — v, thusv + w C q;, as desired. For the second claim, note that \v
defines an order isomorphismif> 0, and there is nothing to show = 0. O

Corollary 2.17. (a) Ifv < v/ andw < v/, then\v + (1 — Mw << A’ + (1 — Mw'.

(b) For anywv, the setfv is convex.
(c) In a continuous cone, the convex closure of an open s@ies.o

Proof. (a) is immediate from Lemma 2.16. (b) follows from (a) by kv = w. (c)
follows from (a) and Remark 2.13. O

3 Some properties of continuous normed cones

3.1 A separation theorem

Definition (Generating set)Let V' be an abstract cone, and BtC V' be a down-closed,
convex subset. We say thBtgenerated/ if for all v € V, there exists somg& > 0 such
that\v € B.

Theorem 3.1 (Separation) Let V' be a continuous normed cone, and Btand U be
convex sets such tha&is down-closed]/ is up-closed and open, ad@iNU = (). Further,
assume thaB generated/. Then there exists a continuous linear functipn V- — R,
such thatf(v) < 1forall v € Band f(u) > 1forallu € U.

Let M be the collection of subseld C V" with the following properties)M is convex
and openlJ C M, andB N M = . Clearly,U € M, andM is closed under unions of
increasing chains. Therefore, by Zorn’s Lemma, there €zishaximal element/, € M.

Lemma 3.2. The complement d¥/, is convex.

Proof. We use the following convention: for scalakse [0, 1], we write A = 1 — \.
Let M§ = V \ My, and assume thal/§ is not convex. Then there existv’ € M
and\ € [0,1] such that” = \v + X\v' € M,. Now sinceV is a continuous normed
cone, we have = \f|v andv’ = \#{+’, and hence, by continuity of addition and scalar
multiplication,»” = \#{\a 4+ Xa’ | a < v anda’ < v'}. By openness ol/;, there exist

a < vanda’ < v with A\a + \a’ € M,. By Corollary 2.15, the seta is open. Let\’

be the convex closure dfa U M,. SinceM’ is open (by Corollary 2.17(c)) and convex,
it must intersecB by maximality of M. Letb € BN M’. Thenb = pu + wm for some

u € fa, m € My, andp € [0,1]. SinceB is down-closed and C w, it follows that

pa +@m € B. For symmetric reasons, there exists € M, andv,7 € R such that
v+ 7 =1andvd +7m’ € B. Note that\, \, i, v # 0. Now consider the point

w = L,(/Ja +7m) + Ailt(ya’ +vm)
AV 4+ Ap AV 4+ Ap _
= Miy_()\a—i—Xa’) + )\Vﬁ_ m )\,uﬁ_ m’
AV 4+ Al AV 4+ A AV 4+ A

By constructiony is a convex linear combination giz + zm € B andva’ +7m’ € B,
and thereforeyw € B. On the other handy is a convex linear combination &f + \a’ €
My, m € My, andm’ € My, and thereforev € M, a contradiction. Od

Proof of Theorem 3.1:1f A is a subset of a cone ande R, we writeAA = {X\a | a €
A}. Note thatA is convex iff for all\,u > 0, AMA + pA C (A + p)A. We define
f:V — Ry as follows:

f)=inf{A>0]|veAMS}.

Note that becausB generate¥d’, for all v there exists somg > 0 such that\v € B, thus
Av € M§. Thus, f(v) is well-defined and finite. We note thgk > 0 | v € AM§} is an
up-closed subset &... SinceB C M, it follows that f(v) < 1 forallv € B. On the
other hand, ifu € U, thenu € My, henceu ¢ 1M§; thus f(u) > 1. It remains to be
shown thatf is linear and continuous.

First, we show that is monotone; this follows directly from its definition ancetfact
that M is down-closed. Also immediate is the fact thfghv) = Af(v). The inequality
flv+w) < f(v) + f(w) follows from the convexity of\/§.

To prove the converse inequalitf(v) + f(w) < f(v + w), we consider two cases.
If f(v) = 0or f(w) = 0, then this inequality follows from monotonicity. Othereijs
supposef (v), f(w) # 0. Consider any\, i > 0 such that\ < f(v) andy < f(w). Then
by definition of f, we havev ¢ AM§ andw ¢ pM§, hencev € AM, andw € M.
Convexity of M, implies thatv + w € (A 4+ u) Mo, hence\ + pu < f(v + w). SinceA,
were arbitrary, this showg(v) + f(w) < f(v + w).

Finally, to show thatf is continuous, consider a directed riet); with least upper
bounda = \/,a;. Lety = \£, f(a;). Then by monotonicityy < f(a); we want to show
equality. Assume, on the contrary, thak f(a). Choose\ such thafu < A < f(a). By
definition of f(a), a & AM(§, thusa € AM,. SinceM, is open, we have somg € A M,
thusA < f(a;) < p, a contradiction. d

3.2 A Hahn-Banach style theorem

An important application of the separation theorem is tHfing Hahn-Banach style
theorem for continuous normed cones:

Theorem 3.3. Let V be a continuous normed cone, anddet V with ||a|| > 1. Then
there exists a continuous linear functigh: V- — R, with f(v) < ||v|, forallv € V,
such thatf(a) > 1.

10



Proof. Since the norm is continuous, we can find sarhe< « such thaf|a’|| > 1. Now
apply the separation theorem to the sBts- {v € V' | |jv|| < 1} andU = #d’. O

Remark. One might ask whether the functighin Theorem 3.3 can be chosen so that
f(a) = ||a||. Contrary to basic intuitions, this is not in general poksibinless one gives
up the continuity off. Consider the following counterexample. Uét= /.., the set of
bounded sequences k. with the supremum norm (see Examples 2.5 and 2.7). Note
that every sequende:;); € V is a directed supremum of finitely supported sequences;
therefore, every continuous linear function is uniquelyedaained by its action on the
standard basis vecto&g = (6;5);i € V. Now leta = (a;); wherea; = 2 — L
Then|la|| = supa; = 2. However, we claim that there exists no continuous funct|on
f:V = Ry with f(v) < |jv], forallv € V, such thatf (a) = 2. For assume that there
was such a functiorfi. For everyi, letv; = a + ZJrlel € V. Thenf(v;) = f(a) = 2, but
alsof(v;) < ||vi]| = 2, hencef (v;) = f(a) + l+1f(ez) = 2. Butalsof(a) = 2, which
implies thatf(e;) = 0 for all ;. Sincef is uniquely determined by all thg(e;), it follows
that f = 0, a contradiction.

4 Completely positive maps and superoperators

Categories of completely positive maps and superoperatas naturally in the seman-
tics of quantum programming languages, see [8]. In thisi@ectve briefly recall the

definition of these concepts. The category of superoper@&mymmetric monoidal, but
it lacks closed structure. Thus, it forms a useful semamtidgst-order, but not higher-
order quantum programming languages. In Sections 5 and wjlaiscuss two different

x-autonomous categories derived from the category of speeators.

4.1 Signatures, linear maps, and the category V

Definition (Signature, matrix tuple)A signatureis a finite sequence = ny,...,ns of
positive natural numbers, whese> 0. If n is a positive natural number, [&}, = C™*™ be
the set of complex. x n-matrices, regarded as a complex vector space. More ggneral
if o = ni1,...,nsiS asignature, le¥, = V,,;, x ... x V,,_ be the set ofnatrix tuples
(A1,...,As), whered,; € Cnixni,

Definition (The category/). The category has signatures as objects, and a morphism
from o to 7 is a complex linear functioyfi : V, — V..

Note that the category is equivalent to the category of finite dimensional complex
vector spaces; we have defined the objects in a special wayubeave will equip them
with additional structure later.

Let o @ o’ denote concatenation of signatures. Them o’ is a biproduct in the
categoryV, with the obvious projection and injection maps. The nduibdect for this
biproduct is the empty signature, which we denoté.as

The tensor product of two signatures= nq,...,n, andr = mq, ...,
as

my is defined

OCQRQT =N1M1yee oy MMty oy NgM,y .., Mgy,
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Note that there is a canonical isomorphishy, = V, ® V,, whereV,, ® V, denotes the
usual tensor product of vector spaces. With this identiboathe operatiom® is seen to
give rise to a symmetric monoidal structure dn The unit for this tensor product is the
signaturd = 1.

Moreover, there is a canonical natural isomorphismV (o ® 7,p) = V(0,7 ® p)
[8]. Therefore, the categot, just like the category of finite dimensional vector spaces,
is compact closed with —o 7 = 0 ® 7 andL = | = 1. As a matter of fact, the category
V is even strongly compact closed in the sense of Abramsky aedke [1].

4.2 Completely positive maps and the category CPM

For a positive natural number, let P,, C V,, be the set of hermitian positive x n-
matrices as in Example 2.1. More generally, for any sigmadue n4, ..., ns, letP, =
Pn, X ... %x Py, CV, be the set of hermitian positive matrix tuples.

Definition (Completely positive map)Let o, o’ be signatures. A linear functigh: V,, —
V, is positiveif for all A € P,, one hasf(A) € P,. Further, we say that is completely
positiveifid, ® F : V;g, — Vrgo IS positive for all signatures.

ab ac .
Example4.1 The linear functionf : Vo — V4 defined byf cal =\palis
positive, but not completely positive. To see this, notd tﬁamaps hermitian positive
matrices to hermitian positive matrices, buf il f does not; for instance,

‘00

aby_(ad is completely positive
cd)=\od pietely p :

10‘01

. {0 oloo

2@ f{ 5100 | =
10‘01

0
0
1
0

(e len] Nanly o
o o=
—= OO

On the other hand, the functi@r(
Definition (The categorfCPM). The categoryCPM of completely positive maps has the
same objects a¢, and has the completely positive maps as morphisms.

Lemma 4.2. CPMis a subcategory o, and it inherits the biproducts and (strongly)
compact closed structure from. O

Remark.The categorfCPM was calledV in [8].

4.3 Superoperators and the category Q

Lete = ny,...,ns be asignature, and let = (A4, ..., A;) € V, be a tuple of matrices.
We define thdraceof A to the sum of the traces of, ..., A:

trA:ZtrAi.

Definition (Superoperator)Let o, ¢’ be signatures. A linear functiof: V, — V,/ is
called asuperoperatoif f is completely positive and for all € P, tr f(A) < tr A.

12



Definition (The category). The category of superoperators has the same object$ as
andCPM, and has the superoperators as morphisms.

Lemma 4.3. Qis a subcategory o€CPM. It inherits coproducts and the symmetric
monoidal structure fron€PM, but it fails to have products and it is not monoidal closed.
O

The reason the catego@fails to inherit the products fror@PM is that the diagonal
mapf : o — o @ o with f(A) = (A, A) is trace increasing, and thus not a superoperator.
The fact thaQ is not monoidal closed follows from the characterizatiosberoperators
in [8, Thm. 6.7]; it is easily seen that the hom-8dw, 7) is not in one-to-one correspon-
dence withQ(l, p) for any p.

However, the categor®) also has some additional structure which is not present in
CPM: it is dcpo-enriched, and consequently, it possesses adramnoidal structure
for the coproductsp (see [6, Ch. 7]). This structure can be used to interpretdcom
recursion in first-order functional quantum programminggiaages; for details, see [8,
Thm. 6.7].

5 Normed matrix spaces

Our goal is to find anonoidal closeatategory which contains the categ@y preferably

as a full subcategory. In this section, we will describe oppraach to defining such a
category, which we cal). The idea is very simple: in the definition of a superoperator
replace the “trace” on each object by an arbitrary norm.

5.1 The category Q

Definition (Normed matrix space)A normed matrix space a pairV. = (o, || —|lv),
whereo is a signature an¢/—||, is a norm on the con®,. We sometimes also call
a normed matrix space @ncrete coneand we often identify it with the “underlying”
normed conéP,, ||—||v). We also often writePy, for P,,, and similarlyDy, for the unit
ideal.

Definition (The categoryQ’). The categoryQ’ has as its objects normed matrix spaces
V = (o,]|—|lv). Amorphism fromV = (o, |—||v) to W = (7, ||—|w) is a completely
positive mapf : V, — V; which is norm-non-increasing, i.e., which satisfigg A) | <
|A||v forall A € P,.

Remark. SinceP, is a finite dimensional cone (i.e., embeddable in a finite disrenal
vector space) and satisfies certain other regularity cimmditone can show thahy norm
[I—|l in the sense of Section 2.3 is automatically Scott-contisuend make®, into a
continuous normed cone. Similarly, any linear map of cghe®, — P.. is automatically
continuous. Thus, the results of Sections 2 and 3, and inicpkat the Hahn-Banach
theorem, apply in this setting, even though continuity neetdbe stated explicitly as an
axiom. These observations tend to simplify proofs in theédidimensional case.
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5.2 Boundedness.

The following property of normed matrix spaces will be usatt. It only holds in the
finite dimensional case.

Lemma 5.1(Boundedness)Let V' = (o, ||-||v) be a normed matrix space. Then the
unitideal is bounded by some element, i.e., there eXistsP, such that for allA € P,
|Allv < 1impliesA C A. O

Proof. On P,, the tracef(A) = tr A is a linear function, thus by Lemma 2.10, there
exists a constantsuch that trd < c||A||v, for all A. Since the largest eigenvalue of any
component of the matrix tuplé is bounded by the trace of, we haveA C I, for all A
with tr A < 1, wherel, is the tuple consisting of identity matrices. We can therefet
A=cl,. O

5.3 Properties of the category Q

The categon@’ containsQ as a full subcategory. Indeed, to each objedf Q, we can
associate an object, ||—||i) of Q’, where||A||y = tr A is thetrace norm It is then clear
that the morphisms between these objects are precisely ties

The categoryQ’ also inherits products, coproducts, and a symmetric mahcldsed
structure from the categoyPM, as we will now show. The structure is preserved by the
forgetful functorQ’ — CPM.

5.3.1 Coproducts and products.

Given two normed matrix spac&s= (o, ||—||v) andW = (7, ||—|lw), we define

VeW =
V&Ww =

(o l-llvew),
(cor~lvew)

where||(A, B)l[lvew = [[Allv + [[Bllw and (4, B)|lvew = [[Allv U[[Bllw as in
Example 2.3. Recall that " denotes the binary “maximum” operation on real numbers.
It is easy to verify that with these normis,® W is a coproduct and” & W is a product

in the categoryQ’. Further, the objedd, with the empty signature and the unique norm,
serves as the neutral object for the coproducts and pradi¥etsummarize:

Lemma 5.2. The category’ has finite coproducts and products. The initial and terminal
objects coincide.

Remark. Just like the categor, the categoryQ’ is also dcpo-enriched, and hence the
coproduct operatiom possesses a traced structure.
5.3.2 Symmetric monoidal structure.

Given normed matrix spacés = (o, ||—|v) andW = (7, |—|lw), we would like to
define their tensor product

VoW = (eo7|-llvew)
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The question is how to define the nofim||vw . By analogy with normed vector spaces,
it would seem that the following definition is an obvious cialade, forC € Py gw:

ICIvew =inf{> || Aillv[|Billw | C = A; @ B, whereA; € Py, B; € Py }.
@

However, there is a problem with this definition: the set avbich the infimum is taken
may in general be empty. In other words, not every elemeR4qfyy can be written of the
form )", A; ® B;, whereA; € Py andB; € Py . This is best illustrated in an example,
wheres = 7 = 2.

Examples.3. The matrix

C =

—_— o O
(e Nevlenien)

0
0
0
0

—_o O =

cannot be written in the forp_, A; ® B;, for positive2 x 2-matricesA;, B;. To see why
this is not possible, suppose it could be written in this Widyen the blockwise transpose

_— O oo

100
o (001
Y AeBl=| o
i 000

would also have to be positive, which it is not. O

Remark. The phenomenon described in the previous example is wellvkrin physics.

A density matrixC' € Pygw of a bipartite quantum system can be written in the form
>; 4;® B; if and only if it is entanglement freavhich means that there are omlassical
probabilistic correlations between the two parts. Such a state can berptepsing only
classical communication.

In order to arrive at a useful definition of the tensor nornyapn (1) must be mod-
ified in some suitable way. One natural modification, whicidk to ax-autonomous
structure, is to replace=" by “ " in the right-hand-side of the equation. We obtain the
following:

Definition (Tensor product, tensor normiiven normed matrix spacés = (o, |—||v)
andW = (7, ||—|lw), their tensor product is defined 8@ W = (¢ @ 7, ||—|lvew),
where for allC' € P,g-,

ICIvew =inf{> || Aillv[|Billw | C £ A; @ B;, whereA; € Py, B; € Py }.
' )
Lemma5.4. |—|lvgw is a norm orP,g-.

Proof. Three of the axioms|C + C'|| < ||C|| + ||C’]], |AC|| = A||C||, andC E C' =
[C]l < [|C"]], follow immediately from the definition. To show the remaigiproperty,
IC]] =0= C =0,weuselLemmab.l. Let € Py andB € Py as in Lemma 5.1,
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and assumgC|lyew = 0. Then for anye > 0, there exists somel;, B; such that
thusC C 3, A; @ B; T Y, | Aillv||BilwA ® B C A ® B. Since this holds for all
e > 0, we must have® = 0. O

5.3.3 Properties of the tensor norm

The definition of the tensor norm in terms of equation (2) tewfmpractical to work with.
The following is a more practical characterization of thes@r norm in terms of its unit
ideal.

Lemma 5.5. The unitidealDy g of V' ® W is the smallest Scott-closed, down-closed,
convex set containin®y ® Dy = {A® B | A€ Dy,B € Dy }.

Proof. Let I be the smallest Scott-closed, down-closed, convex seaicong Dy @ Dy,
and letD = {C € Pog: | ||Cllvew < 1}. We claim that/ = D. To provel C D,
it suffices to show thabD is Scott-closed, down-closed, convex, alg ® Dy C D.
As the unit ideal of a complete normed comgautomatically possesses the three closure
properties; furtheDy ® Dy, C D follows directly from the definition oD.

Conversely, to prov® C I, letC € D, so thal||C||yew < 1. Lete > 0 be arbitrary.
By definition of |C||yvew, there existd; € Py, B; € Pw suchthatlC' C >, A, ® B;
and), ||Ail|v]|Billw < 1+e. Leta; = || A;]|v andb; = || B;||w, and assume without
loss of generality that,;,b; # 0 (or else dropgi from the sum). Them\;‘—;HV = land
|2 /lw = 1, hencedt @ £+ € Dy @ Dy . It follows thaty", f-aibi(4: @ £¢) € 1,
becausd is convex,0 € I, and}, +a;b; < 1. Therefore=C € I, becausd is
down-closed. Since this holds for alt> 0, and[ is Scott-closed, it follows that’ € 1.0J

Lemma 5.5 is usually applied in the form of the following citawy, which can be used
to prove that a givenmaf: V ® W — U is norm-non-increasing.

Corollary 5.6. LetV = (o, [|—|lv), W = (7, |-|lw), andU = {p, ||—||v) be normed
matrix spaces, and let : V, ® V. — V,, be a completely positive map. To prove tifat
is norm-non-increasing, it suffices to show thjgt(A ® B)|lyv < 1 forall A € Py and
B € Py such that|A||y < 1and||B|lw < 1.

Proof. Consider the inverse image bf; underf. Sincef is linear, monotone, and Scott-
continuous, and)y; is convex, down-closed, and Scott-closed, it follows thatihverse
image has these properties as well. Moreover, under the gissumptions, the inverse
image containdy ® Dy . Therefore, by Lemma 5.5, it contaitidy gw; hencef is
norm-non-increasing. O

Our first application of Corollary 5.6 is to prove that the oggn V' @ W on the
categoryQ’ is bifunctorial.

Lemma 5.7. Let V, V', W, W’ be normed matrix spaces, and lgt: V — V' andg :
W — W’ be completely positive, norm-non-increasing functiomenf @ g : VeV’ —
W @ W' is also completely positive and norm-non-increasing.
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Proof. We already know thaf ® ¢ is completely positive; we must show that it is norm-
non-increasing. But by Corollary 5.6, it suffices to tesstfar elementsd ® B, where
[Allv < 1 and||B|lw < 1. Butin this case, we havi(f ® g)(A® B)|v.ew =
1/(A) ® g(B)llview: < IIf(A)llv:lg(B)lw: < [|AllvIIBllw < 1. O

Because the tensor productis preserved by the faithfutéu@® — CPM, we already
know that all the required equations are satisfied to nrak&o a bifunctor.

One may similarly use Corollary 5.6 to check that the caralr@ssociativity, symme-
try, and unitisomorphismd ® (B C) = (A B)®(C), AQ B =2 BR A, andA®| = A,
which are known from the catego6PM, are norm-non-increasing; thus, they exist in the
categoryQ’. Herel = (1,|—||) is the tensor unit, whergz|, = 2z onV; = R.. We
summarize:

Lemma 5.8. The categor®’ is symmetric monoidal.

5.3.4 Monoidal closed structure

Recall from Section 4.2 that the categ@¥®M is compact closed with —o7 = c®7. We
can lift this to a monoidal closed structure @. In the following definition, we identify
a completely positive map : V,, — V.. with an element of/, g, in the standard way, see
[8, Sec. 6.7].

Definition (Monoidal closure) Given normed matrix spacés = (o, ||—||v) andW =
(7, ||=|lw), their function space is defined 8— W = (0 ® 7, ||—|lv_w ), Where for
al f € Pygr,

[f[lv—ow = supfllf (A)lw [ [[Allv <1} ®)

This is the usual definition of an operator norm; note thatomaness (Lemma 2.10)
guarantees that the supremum in equation (3) always eXisesproperties of a norm are
easily verified, so that’ — W is a well-defined space. To prove that this indeed yields
the correct monoidal closed structure corresponding taehsor produck, we need to
prove the following:

Lemma 5.9. For normed matrix space¥, W, andU, a completely positive map :
V ® W — U is norm-non-increasing if and only if its adjoirfi : V — W —o U is
norm-non-increasing.

Proof. Supposef is horm-non-increasing, and considére Py with ||Aly < 1. To
show that|| f1(A)||w v < 1, take B € Py with | Bl|w < 1. Then| fT(4)(B)|v =
|f(A® B)|lv < ||[A® Bl|lvew < 1, sof is norm-non-increasing. Conversely, assume
f1 is norm-non-increasing. To show thatis norm-non-increasing, by Corollary 5.6, it
suffices to provd f(A ® B)|lv < 1forall A, B suchthat|Al|v < 1and||B||w < 1. But
then||f(A® B)llu = /1A B)llv < /T Allw-ovlBlw < AllvIBlw <1. O

We summarize:

Lemma 5.10. The categoryQ’ is symmetric monoidal closed.
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5.3.5 Thex-autonomous structure

A x-autonomous category is a symmetric monoidal closed categth an objectl, such
that the canonical natural morphigh— (V' —o L) —o L is an isomorphism [3, 4]. The
object L is called adualizing object It is common to writd/+ =V —o L.

Lemma 5.11. In the categon®’, the objectL := | is a dualizing object.

Proof. LetV = (o, |—||v) be a normed matrix space. We already know that the canonical
morphism : V — (V —o_L)—o_L is anisomorphism in the category of completely positive
maps. It remains to be shown that its inverse is norm-noreasing, or equivalently, that

4 is norm-non-decreasing. So lét € P, with ||Ally > 1. It suffices to show that
lo(A)|| > 1. By the Hahn-Banach theorem (Theorem 3.3) there existsearifunction
f:V = Ry with f(B) < ||B||v for all B, and such thaf(A) > 1. Thenf € V —o L
and|| fllv—-. <1, hence|5(A)[| = |6(A)(H)llL = [F(A)llL = F(A) > 1. U

Thus, we have:

Proposition 5.12. The categoryQ’ of normed matrix spaces isautonomous with finite
products and coproducts and a zero object.

5.4 Why Q' is not a model of higher-order quantum computation

The construction of the catego®/ was motivated by the search for a semantics of higher-
order quantum computation, extending the semantics ofdindgr quantum computation
given in [8]. It almost seems like this goal has been accahpli: we have obtained a
categoryQ’ which is*-autonomous and which also contains the cate@pof first-order
guantum computations as a full subcategory. However, tisemefatal problem: The full
embedding ofQ in Q" does not preserve the tensor product. We illustrate thelgmom

an example:

Examples.13 Consider the normed matrix spae= W = (2, ||—||«) of 2 x 2-matrices
with the trace norm. This space lies within the image of théveding ofQ in Q’.
Consider the spadé @ W with the norm||—||vgw, as defined by equation (2). We claim
that the norm o/ @ W is not the trace norm, and this® W does not lie within the
image ofQ in Q’. Let

C =

— oo
oo O
oo o
_= O O

as in Example 5.3. We claim th€ ||y ow = 4. Indeed, it is easy to see that

ce(58)e(58)+(88)=(812)

hence||C|lvew < 4 by definition. To see thatC||lvew > 4, consider the dual space
VL fora2 x 2-matrix B, || B||y . is the maximal eigenvalue d3. Since this is bounded
by the trace o3, the “identity” functionf : V — V1 is norm-non-increasing. Therefore,
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by Lemma 5.9, its adjoing : V ® V' — _L is also norm-non-increasing; it mapd & 4-
matrix (a;;) to ago + a3 + aso + ass. Itfollows that||C||lvew = ||g(C)||L = g(C) =4,
as claimed. On the other hand, the trace norm¥'afould be2, and thereford|C||y s «r
and||C| do not coincide.

6 Quantum coherent spaces

Girard introduced quantum coherent spaces as a hew modekaf llogic, inspired by
guantum theory [5]. Quantum coherent spaces are closeljeceto spaces of density
matrices, and they also formxaautonomous category. Thus, one might ask whether they
are suitable as a model for higher-order quantum computatite will briefly sketch
the definition of a version of quantum coherent spaces, addptthe terminology of the
present paper. We will also point out why they do not form a etddr higher-order
qguantum computation.

The definitions given here differ from those of [5] in sevedatails. For instance,
we view quantum coherent spaces as certain normed coneseagh®irard axiomatizes
them directly in terms of their unitideals. Also, we work kvitrict cones, whereas Girard
allows non-strict cones, where the cone order is only a pieg@nd its induced equivalence
relation must be factored out. Finally, we work with spacésnatrix tuples whereas
Girard works with spaces of matrices only (expressing matmples, in effect, as block
diagonal matrices). A formal proof of the equivalence of definitions with Girard’s is
not within the scope of this paper, and will be given elsewher

6.1 Tensor product, revisited

To motivate the definition of quantum coherent spaces, denthe problem from Sec-
tion 5.4: if V, W are spaces i, then the norm oV ® W in the categorie® andQ’
does not coincide. Just like the problem with equation (ii§, problem can be attributed
to the presence of elementslih® W which are not of the formy ", A; ® B;; indeed, itis
easy to check that for elements of the latter form, the twansaio indeed coincide.

It therefore seems natural to change the definition of theaeproduct by simply
removing the troublesome elements. This is precisely wiiantym coherent spaces
achieve. Informally, the tensor product®f andP; is not taken to bé, g, but only a
certainsubsetk C P,g., Nnamely, the subset consisting precisely of the elementiseof
form ", A; ® B;. The setsk propagate to higher types. Thus, a quantum coherent spac
is a triple(c, R, ||—||) of a signature, a cong C V,, and a norm which makeR into a
continuous normed cone. The formal definition follows in tlest subsection.

One important feature of the category of quantum cohereattespis that, unlike the
categoryQ’ of the previous section, it is not based on completely pasithaps, but on
all positivemaps. Informally speaking, this is because one has “redubedsize of the
tensor product, and thus one has to “increase” the size dhtiwion spaces to keep the
symmetric monoidal closed structure.
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6.2 The category QCS

Definition (Quantum coherent space (adapted from [5f)quantum coherent spacea
triple V- = (o, Ry, ||—||v), wherec is a signatureRy C V,, is a cone, and —||v is a
norm makingRy into a continuous normed cone.

Definition (The categonQCS). The categon@QCS has quantum coherent spaces as ob-
jects. A morphism fromVV = (o, Ry, ||—||v) to W = (1, Rw,||—|lw) is any linear,
norm-non-increasing map of congs Ry — Ry .

The category of quantum coherent spaces possessaesitbnomous structure with

finite coproducts and products, given as follows: For= (o, Ry, |—|v) andW =
(7, Rw, [[=llw),

VeWw = <U@T7RVXRW7H7HV€BW>~,

V&W = <0'@7—7RV><RW:H_HV&W>7

VoW = (o®7,Ry ®Rw,|-llvew),

V—OW = <O’®T,RV ‘ORW7H7||V—OW>

Here,||—|lvew and||—||v ¢ w are defined as in Section 5.3.1. The tensor cone is defined
asR, @ Rw = {3 ,c; 4 ® Bi | A; € Ry, B; € Ry}, wherel ranges over possibly
infinite index sets such that the given sum converges. Thterorm||— ||y ow is defined

as in equation (2), except of course that we Bseand Ry in place ofPy andPy, . The
function space con&y — Ry is the set of all continuous linear functions fray, to

Rw, and||—||v _ow is the operator norm. The dualizing objectis agaia R .

Remark.Note that a morphism between quantum coherent spaces isglyee morphism
between normed coné®y, ||—|v) and(Rw, ||—|lw); thus, the forgetful functor from
QCSto the category of normed cones is full and faithful. On theeohand, every finite
dimensional cone can be embedded in sdmgethus, the category of quantum coherent
spaces is equivalent to a suitable category of finite dinogrdicontinuous normed cones.

6.3 Why QCS is not a model of higher-order quantum computatio

Like the categor®)’, the categorfQCS of quantum coherent spacesisutonomous, and
therefore it has the required structure for modeling higireler linear functions. There is
also a canonical embedding@finsideQCS, mapping each signatuseto (o, P,, || —||«)-
However, this embedding is not full, because of the presefpesitive, non-completely
positive maps iQCS. Since it was shown in [8] that the categdpycaptures precisely
the feasible quantum functions at first-order types, itafae follows thatQCS contains
some ground type morphisms, such as the morplfisnom Example 4.1, which do not
correspond to physically computable functions. On the rolttzend, there are physically
feasible density matrices, such as the maftifrom Example 5.3, which do not have a
valid denotation in the categofyCS due to the restricted nature of its tensor cone.
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