From Continuation Passing Style to
Krivine's Abstract Machine

Peter Selinger
Department of Mathematics and Statistics
University of Ottawa
Ottawa, ON K1N 6N5, Canada

Abstract

We describe, for three different extensions of typed landadeulus, how the rules
for a version of Krivine’s abstract machine can be derivexnfithose of contin-
uation passing style (CPS) semantics. The three extensi@sParigot's\yu-
calculus, Pym and Ritter'auv-calculus, and an extension of the call-by-name
lambda calculus with built-in types and primitive functsonWe also show how
Krivine's abstract machine can be implemented on realfsicware by compil-
ing it into an idealized assembly language.

1 Introduction

Abstract machines play an important role in the implemémtadf programming lan-
guages. Examples include Warren’s 1983 abstract machmrédog, which is the
basis for most modern Prolog implementations [12], and @easi’'s 1990 categorical
abstract machine for ML, on which the original Caml implenagion was based (and
from which it derives its name) [2]. The reason abstract rirehare so useful is be-
cause, on the one hand, they are sufficiently “abstract” ledeeasily to other kinds
of mathematical semantics, such as equational semantistinuation passing style
(CPS) semantics. On the other hand, they are sufficient\china-like” to be easily
implementable on real machines.

A particularly nice example of an abstract machine is Ki&snmachine for the
call-by-name lambda calculus [6]. In this paper, we show hdswpossible to “derive”
the rules of Krivine’s abstract machine, in a semi-formal ystematic way, from a
CPS semantics in the style of Hofmann and Streicher [5]. Wehidofor three exten-
sions of the lambda calculus: the-calculus, the\ur-calculus, and an extension of
lambda calculus with built-in basic types and primitive ¢tions. For each of these
extensions, we also give an implementation of Krivine'stias machine, which takes
the form of a compiler into an idealized assembly language.

It is interesting to note that Hofmann and Streicher's CR8as#ics can itself be
derived, via a categorical completeness theorem, from anpeé abstract category-
theoretical semantics. This semantics is based on thenetation of the\uv-calculus

in a so-calledcontrol category, and it generalizes the familiar interpretation of the
simply-typed lambda calculus in cartesian-closed categdi0]. Thus, one obtains
the following sequence of constructions, leading systerally from the very abstract
to the very concrete:

Categorical Semanticss CPS Semantics» Abstract Machine— Compiler

Krivine's abstract machine therefore fits nicely into a matep process for design-
ing implementations which are essentially “correct by caction”, relative to a given
high-level semantics. In this paper, we only consider thetigo steps in this sequence;
the first step, namely the relationship between the categlsemantics and the CPS
semantics, is discussed elsewhere [10].

It should be stressed that, from a practical point of view, ithplementation of
the call-by-name lambda calculus derived in this paperasnefficient to be of much
use. Because our implementation follows the design of Kei abstract machine
very closely, it embodies a “naive” version of call-by-naewaluation, in which each
subterm is possibly evaluated many times. More realistigémentations of call-by-
name languages typically use a form of “lazy” evaluationuoid this problem.

The development of CPS semantics, abstract machine, andzleg as presented
in this paper, is a rational reconstruction and does notatgfie historical development
of these concepts. As a matter of fact, Krivine’s formulata¥ his abstract machine
predates the CPS semantics of Hofmann and Streicher, whitlriis predates the
categorical semantics in terms of control categories. Afke connection between
continuation semantics and abstract machines is well-knfaw example, a treatment
in the context of denotational semantics was given in [118.d&' not claim originality
for any of the results presented in this article; rather, eeeito present them under a
unique and unifying point of view.

2 The Apu-calculus

The \u-calculus was originally introduced by Parigot as a prawfyt calculus for clas-
sical logic [7]. Following Griffin's earlier work, who showlethat under the Curry-
Howard isomorphism, classical logic corresponds to laggeavith control operators
[4], the \u-calculus can also be regarded as a prototypical call-logerlanguage with
control primitives for handling continuations. In this pest, it is similar to program-
ming languages withallcc or Felleisen’sC operator [3], except that the latter lan-
guages are call-by-value. The rewrite semantics ohjhealculus is not very intuitive,
and Krivine's abstract machine offers a more easily acbéssiay to understand its
operational behavior. The control primitives are giventra interpretation as certain
manipulations of stack closures.

The \u-calculus extends the simply-typed lambda calculus wittaia @f control
operators which can influence the sequential flow of contuoing) the evaluation of
a term. Normally, in call-by-name, a ter represents a computation which, upon
demand, returns some result to its environment. For instdahthe termM appears in
a contextC[—], then the result whicli/ computes will be returned 0.

Table 1: The typing rules for thiu-calculus

(var) m if :Ael
*) TF T A
. I'FM:A|A TFN:B|A
(pair) TFOLN ANB] A
F"]\/IZAl/\AQ|A
(mi) FEmM:A; | A
'M:A—B | A 'EN:A|A
(@pp) TFMN:B|A
(abs) Pe:AFM:B | A
TFxx*M:A—-BJ|A
(name) FFI—'_[QZ]%W.:AJ_‘ ‘AA if :AeA
'EM:1 | aAA
() TFpadM:A| A

In the \p-calculus, terms are given the ability to ignore their imimaéslcontext and
to return a result someplace else. Intuitively, this carhbeight of as “sending” a result
on a “channel”. We introduce a set of channel namgs, etc., which are distinct from
the usual lambda calculus variableg), z. The terma] M causes the result dff to be
sent on channet. Dually, the termV = pa . P will start by evaluating?, but if in the
process of doing so, anything is sent on the chann#éien this immediately becomes
the result ofN. Channel names are typed, and we say that a chanhas typeA if
values of typed can be sent along it. As we are in a sequential world, chararels
refered to asontinuations, and channel names (3 are refered to asontrol variables,
or simplynames.

This first interpretation of th&p-calculus in terms of “channels” is only an intuitive
approximation; a more accurate interpretation can be fonnde description of the
CPS translation or Krivine’s abstract machine below. Moedidme minor differences
in typing, the termua®.M is a call-by-name analogue @filicc(A\a™4.M) in the
call-by-value world, whereallcc is the call-with-current-continuation operator as it
appears for instance in Scheme or Standard ML.

2.1 Syntax

We start from a simply-typed lambda calculus with finite pro$. Binary products
are denotedi A B, and the terminal type (or empty product) is denotedby

To obtain the\u-calculus, we first add a new type. The typel is thought of as
the “empty type”, or the type of a term which never returnssulteto its immediate

context. Thus, the types of the:-calculus are given as follows, wheseranges over
a set ofbasic types:

A,B:::J|T|A/\B|A—>B|J_

As usual, we sometimes writeA as an abbreviation for the typé — L. The Au-
calculus uses two sets of identifiekgriables andnames, which are ranged over by
x,y,...anda, 3, . .., respectively. Variables and names belong to two sepasgaiten
spaces, which are usually assumed to be disjoint. Sembwytiaiables are bound to
terms, whereas names are bound to continuations. The tdrthe &u-calculus are
obtained from the terms of the simply-typed lambda calcblpadding two new term
constructorsja] M andua. M. Thus, terms are given as follows:

M,N =gz || (M,N) | mM | maM | MN | \z*. M | [a]M | pa*.M

A term of the formua”. M is called au-abstraction, and a term of the fornn] M is
called anamed term. In the terms\z4. M andua® .M, the variabler, respectively the
nameq, is bound. As usual, terms are identified up to capture-aaming of bound
variables and names. We write EM) and FN M) for the set of free variables and
free names oM, respectively. For simplicity, we do not consider basioteonstants
at this point; we will show how to add them in Section 4.

The typing rules for\u-terms are shown in Table 1. HeFeranges ovevariable
contexts and A ranges ovename contexts, which are (finite) assignments of types to
variables and names, respectively. typing judgment is an expression of the form
I'EM:A|A. It asserts that the terdy/ is well-typed of typeA, assuming that its
free variables and names have the types declar&d respectivelyA. Note that the
turnstile ", the colon “”, and the vertical bar|" are all part of the syntax of typing
judgments; thus, a typing judgment is a 4-tuple consistirap@riable context, a term,
a type, and a name context. Valid typing judgments are thdsehacan be derived
from the rules in Table 1.

Note the typing rules formame) and (). The term[a]M has typel, reflecting the
fact that such a term never returns anything to its immed@iat&onment. Similarly, in
the termua? .M, we assume that the subteivh has typel, as we have no use for its
value. These typing conventions differ slightly from Patig original formulation of
the Au-calculus, where the typé only occured implicitly, and only at the top level.

One notable difference between thg-calculus and its call-by-value cousins is
that we use a separate name space for continuations, rattreidentifying them with
variables of type-A (or A cont, as this type is known in ML). While this distinction
would make no difference in call-by-value, it turns out toemeimportant optimization
in call-by-name.

Another difference is that in ML, the term which is analogémi$a] M would be
given an arbitrary typé, and inua*. M, the subternd/ would have typed. However,
this difference is unimportant, as we can replace the firsn tey 37.[a]M, for a
dummy name3, and the second one . [a] M, in cases where the alternate typing
is required.

The fact that we write the name contekton the right-hand side of a typing judg-
mentis motivated by logic: under the formulas-as-typesxspondence, a typing judg-

Table 2: Axioms of the call-by-namgu-calculus

Axioms for the lambda calculus with products:

(6-) (at.M)N = M]JN/z]: B
(n=) Mz Mux = M:A—>B if z ¢ FV(M)
(Br) mi(My, Ma) = M;: 4
(nn) (mi M, M) = M:AAB
() = = M:T
Axioms for Au:
¢=) (waA=BM)N = ppB.M[BI-N/[a]>)]: B if B €FN(M,N)
(€) mi(pat A2 M) = Bt M{[Blmi() /()] s Aiif 3 ¢ FN(M)
B [olpat.M = Md/a]: L
(ny) patla]lM = M:A if « ¢ FN(M)
(Br) [M = M:1

mentzy: Ay, ..., 2 AnEM:Blag:By,. .., an: By, corresponds to a logical impli-

cationA; A...ANA, = BV B; V...V B, Operationally, we think of/ as a function
in n arguments, withn + 1 alternative ways of returning a result.

2.2 Equational theory

The equational theory of thiu-calculus is an extension of that of the call-by-name
lambda calculus. The axioms are shown in Table 2. These axim® three kinds of
substitution. We writel/[N/x] for the usual substitution of a teriN for a variable
x in M. We write M[o'/«] for the substitution of a name’ for another namex in
M. Finally, we consider the so-calledixed substitution: If A is a term,C(-) is a
context, andx is a name, then theaixed substitution M [C'(-)/[a](-)] is the result of
recursively replacing any subterm of the fofaj(-) by C(-) in M. For all three kinds
of substitution, appropriate care must be taken to avoiccépture of free variables.
Also note that technically, each equatidéh = N is understood to be stated within a
particular typing context, and equations are only betweelttyped terms. However,
we usually omit the typing context from the notation. For endetails, see e.g. [10].

It is possible to give an operational semantics of Mecalculus in terms of a
reduction relation based on a directed version of the axiofmiEable 2. However,
this notion of reduction is neither intuitive nor partictileenlightening. We prefer to
discuss the operational semantics of Mecalculus in terms of a CPS translation (in
Section 2.3) and via an abstract machine (in Section 2.4).

Table 3: The CPS translation of the call-by-naiecalculus

z = kKA gk wherez : A

* = MET.Ogk

M.N) = MkfarB[M Nk whereM: A, N:B
mM = AFa M(inl k) whereM : AN B

oM = MeKe M(inrk) whereM : AANB

MN = MHEB.M(N, k) whereM:A— B/ N:A
A M = Nz, k)K2-5 ME whereM : B

M = MeEr Ma whereM : A

not M = Aafa Mx wherelM : L

2.3 CPS semantics

We give a continuation passing style (CPS) semantics oAthealculus in the style
of Hofmann and Streicher [5]. The target language of this @®Sslation is a lambda
calculusA™* with finite sums, products, and a distinguished typecalled the type
of responses. Function types in the target calculus are restricted tactis®A — R.
Thus, every applicatiod/ N in the target calculus is of typR, as is the body of any
lambda abstraction.

To keep the notation brief, we use various forms of syntatgar for the sums and
products of the target calculus. We use patterned lambdeaatien \(z, y)4* 5. M
as an abbreviation fokz4* 2. M|r, 2 /2, Tz /y]. We also use the co-pairing notation
[M, N] as an abbreviation for the term

AT casek ofinl ky — Mk, |inrky — Nk,

Notice thatlM, N] is the term that corresponds{d/, N) under the canonical isomor-
phism(A+ B) — R~ (A — R) x (B — R). The initial type0 is equipped with a
type cast operator: I#/ has type), thend 4 M has typeA.

Definition (Call-by-name CPS translation). We assume that the target calculus has
a chosen typé& for each basic constantof the Au-calculus. For each typd of the
Au-calculus, we define a pair of typdé, and C'4 of the target calculus, which are
respectively called the type abntinuationsand ofcomputations of type A:

K, = 7, if o is a basic type
K+ = 0,

Kanp = Ka+ Kp,

Ka.p = CaxKsg,

KL = 17

Ca = Ky — R.

For each variable and each name of the A\u-calculus, we assume a distinct chosen
variablez, respectivelyr, of the target calculus. The call-by-name CPS translatibn

of a typed termV/ is defined in Table 3. It respects the typing in the followiegse:

x1:B1, ..., xn: By FM A | aq:Ay, .. QA
21:Cpy, ... Zn:Cp,,,01:K4,,...,0m:Ka, FM:Cy ’

This CPS translation, for the fragment without product g/g@e due to Hofmann and
Streicher [5]. It differs from Plotkin’s original call-bpame translation [8] by introduc-
ing one less double negation at function types, thus takingrtage of the products of
the target language.

The CPS translation respects the equational theory in theesbat\/ = N holds
in the equational theory of thiu-calculus if and only ifM = N holds in the equa-
tional theory of the target calculus.

Remark. The above CPS translation for thg-calculus can be derived abstractly, via a
categorical representation theorem, from a categoryrétieanterpretation of the .-
calculus. This interpretation takes place in a class ofaled “control categories”,
and it generalizes the well-known interpretation of thepiyrrtyped lambda calculus
in cartesian-closed categories. For details, see [10].

2.4 From the CPS semantics to Krivine’'s abstract machine

In this section, we describe a rational reconstruction af/ike’s abstract machine
directly from the CPS semantics, adopted to Mpecalculus. Note that an abstract
machine interpretation was already sketched in the vetypasagraph of Parigot's
original paper on theu-calculus [7].

We start by observing that each continuation type is equipped with a set of
canonical term constructors, shown in the following tablere,k ranges over contin-
uations andV/ over computations.

Type: Constructors:

Kt =0 -

Kinp =Ka+ Kp inl k,inr k&
KAHBICA XKB <]\/[,k>
KL =1 *

There is also op-level continuation «, which is the first continuation passed (presum-
ably by the operating system) to the entire program.

Next, we change the notation for continuations. A gaif, k) will be written in
infix notation M ::k. Instead of inlk and inrk, we will write tag, ::k andtag,::k, re-
spectively. We writenil for *, and also fok, the top-level continuation. To summarize,
we arrive at the following syntax for continuations:

k::=tag;:k | tag,::k | M::k | nil.

As this notation suggests, we will think of a continuatioraasordered list, which will
be used as atack. The elements of this stack are the tagg andtag,, as well as
computations\/. The symbohil represents the empty stack.

Table 4: The transitions of the abstract machine

CPS Abstract Machine

zk — Tk {z,0,k} — {M,7,k}, whereo(z)=M".
(M, N)(inl k) — Mk {{M,N),o,tag,::k} — {M,o,k}

(M. N)(inrk) — Nk {(M,N),o,tag,::k} — {N,o,k}

T Mk — M(inl k) {miM,o,k} — {M, o,tag, =k}

T Mk — M(inr k) {m2M,0,k} — {M, o, tag,::k}

MNE — M (N, k) {MN,o,k} — {M,o,N7::k}

Az M(N, k) — M[N/#]k {A.M,o0,N"::k} —{M,o(x+— N7),k}

oMk — Ma {[a]M, 0, k} —{M,o,k'}, whereo(a)=Fk.
po ME — Mk/a)* {pa.M, o, k} —{M,o(a — Ek),nil}

After having changed the notation for continuations, we méw also change the
notation for computations, i.e., for translated terms. fdeo to avoid having to do
substitutions, we introduce the notion of a closurecldsureis a pairdM/? of a termM
and an environmenmnt. An environment for M is a map from the free variables df to
closures, and from the free namesidfto continuation, i.e., stacks. An environment
o is also sometimes called agtivation record.

The states of Krivine's abstract machine are trigl&$, o, k}, consisting of a term,
an environment, and a stack. Informally, a stgté, o, k} represents the terd/’k of
type R of the target language of the CPS transform, whetes the term represented
by the closuré\/?. The transition rules of the abstract machine can be reatireftly
from the corresponding transitions of the CPS semanticsh Bets of transitions are
shown in Table 4.

Note how the continuation-manipulating operations ofXpecalculus, namely the
termspa®. M and[a] M, correspond to manipulations of entire stacks, rather ifan
dividual stack elements. In particular, tjre. construction requires saving an image
of the entire current stack into a variakle In actual implementations, such an op-
eration can be implemented in several different ways. Omsipity, which we will
follow in Section 5, is to make an actual copy of the curreatktsomewhere on the
heap, and to store a pointer to it in the variableSuch a stack copy is calledsack
closure. This implementation is conceptually simple, but potdhtiaxpensive if the
stack tends to be large. Another possibility is to implenstatks as linked lists, and
to use sharing instead of copying to implement theperation. This reduces the cost
of eachu-operation, but it can lead to an increased load for the ggrioallector. See
[1] for a thorough discussion of the tradeoffs of the varionglementations.

The initial state for a closed prograid is { M, (), nil}. In other words, a program
starts executing in the empty environment, and with an ergjatyk. It is easy to see
from Table 4 that the transition relation of the abstract Inae is deterministic, i.e.,
each state has at most one successor state. On the othetheredare clearly some
states from which no transition is possible. Several suatiesiare designated as special

halting states, and we write:

{*,0,nil} — halt“unit”
{{M, N), o,nil} — halt“pair”
{\z.M,o,nil} — halt“function”

In these cases, we say that the macHalés and outputs aesult, which is one of the
strings “unit”, “pair”, or “function”. This indicates thathe \pu-expression has been
reduced to a unit term, to a pair, or to a lambda abstractieith@r of which will be
evaluated further).

A state which neither allows a valid transition nor is a deaigd halting state is
called anerror state. An example of an error state {M, N), o, P7::k}. This state
represents a run-time typing error, because if the curegm ts a pai{M, N), then
the abstract machine expects eittagy; or tag, on top of the stack, to indicate which
of two possible branches is to be taken. It does not make san#as situation, to
find P™ on top of the stack. We imagine that the abstract machinealwdkt execution
when it encounters an error state; a real machine might enigagndefined behavior
or even crash.

Note that, as we can see from Table 4, the transitions of ts&adt machine,
starting from an initial stat€), (), nil}, correspond precisely to the top-most reduction
sequence of the ter/ x (modulo some administrative reductions).

2.5 Type soundness

A crucial property of the abstract machine is that a welletyprogram does not reach
an error state.

Proposition 2.1 (Type soundness)If M is a well-typed, closed term of the Au-
calculus, then there is no sequence of transitions leading from state { M, (J, nil} to an
error state.

As a matter of fact, the simply-typedl-calculus without explicit recursion is
strongly normalizing, and thus a halting state is alwayshed in a finite number
of steps. However, once recursion is added, it is possibidbtain a non-terminating
sequence of reductions.

Type soundness is best proved by giving a typed version adltiseract machine.
Typed closures and typed stacks are defined by mutual recurd\ typed closure
isapar{l'-M:A|A o}, wherel'-M : A| A is a valid typing judgment and is
an environment that maps the variables and names ftand A to typed closures,
respectively typed stacks, of the appropriate types. Stamktyped as follows:

k:A k:B
tagf’B::k: :ANB tagg"B::k :ANB

k:B
{TFM:A|Ao}:k: A— B nilt: 1 nil Aer s Avop
Here,A,,, is the top-level type of the entire program. Note that noyaatm closures,
but also the tagtag, andtag, and the empty stachil carry type annotations. Finally,

a typed abstract machine state{is8- M : A| A, 0, k}, where{T'FM: A|A,c}is a
typed closure and is a typed stack of typd. Note that the type of matches that of
M. Itis now straightforward to check the following:

1. The initial state{ M, @, nil} is typable, if M is a well-typed closed u-term.
2. The transitions of the abstract machine preserve wpdpess.

3. Every well-typed abstract machine state is either arigplitate, or else it has a
unique successor state. In particular, a well-typed stteat be an error state.

3 Adding classical disjunction

The Auv-calculus is an extension of theu-calculus with a typed v B of classical
disjunctions, first introduced by Pym and Ritter [9]. In elayl-name languages, the
type of classical disjunctions is distinct from the more iizan intuitionistic “sum”
type A + B, which is usually defined via left and right injections andedistinctions.

In fact, the two disjunctions (intuitionistic and clasd)care related by the type iso-
morphismA + B = (-—A) vV (—-—B). This implies that classical disjunctions can be
regarded as more primitive than sum types. As we will sessatal disjunctions can
be naturally interpreted in Krivine’s abstract machine taes ability to push and pop
entire stack closures to and from the current stack.

3.1 The\uv-calculus

Pym and Ritter [9] propose the following straightforwardywe adding a disjunction
type to the\u-calculus:

Types: A, B
Terms: M,N :=

.. |AvB
| ()M | var M

with typing rules:

TFM:AVB| A

(ang) 'FM:B | awAA
9 TrM: B A

ifa:AdeA, (v TFuvaXM:AVB | A

Like u-abstractions and named terms, these two additional tenstreators manipu-
late continuations. One can think of a tedthof type AV B as a term of type3 which
has access to an unnamed continuation of t§p&he term(a) M gives this unnamed
continuation the name. Dually, the termva® .M abstracts a continuation of name
ain M. The resulting calculus is known as thgv-calculus. Its equational theory is
obtained from that of th&u-calculus by adding the following three axioms:

) [Bllayuy*VE.M M{[B{a)(=)/])] = L
(Bv) (yWwalr M = M[d/a]: L
() vot{a)M = M:AVB

if o ¢ FN(M)

We also need to extend the definition of a mixed substituti€j’(—) /[«](-)] to replace
any subterm of the forni) (-) by 82.C(na.[8]{a)(-)), whereg is a fresh name.

10

3.2 Classical and intuitionistic disjunction

In the lambda calculus, one usually defines a “disjoint sume’'tyl + B via the “inl”,
“inr”, and “case” constructs. Pym and Ritter remark thathie tall-by-name case,
the disjunction typed v B, as defined in the previous section, does not coincide with
the disjoint sum typed + B. To distinguish them, we sometimes refer4o/ B as
“classical” disjunction and tal + B as “intuitionistic” disjunction.

An interesting fact is that intuitionistic disjunction che defined in terms of clas-
sical disjunction. Namely, we can define

A+ B = —-—AV--B

inl M = va.pf. o] \k.kM

inr M = va.pf.[BAkkM

caseM ofinlz — N |intry - P = py.(ua.({a)M)(Ay.[7]P))(Az.[y]N)

Here,—A is an abbreviation for the function typé — L. With these definitions, the
usual equational call-by-name laws for “inl”, “inr”, anddse” are derivable from those
of the A\uv-calculus. On the other hand, the classical disjunctionB is not definable
in terms of the intuitionistic disjunction type. Thus, dasl disjunction should be
throught of as a very primitive operation, a low-level bilgl block from which more
high-level constructs can be built.

To further illustrate the difference between the two dispions, we remark that
classical disjunction satisfies certain type isomorphisath as associativityd v B) Vv
C = AV (BVC)and dominatiod vV T 2 T. The corresponding isomorphisms do
not hold for intuitionistic disjunction. For a more in-dépdiscussion of type isomor-
phisms, see e.g. [10].

3.3 Alternative syntax

A different, more symmetric syntax for the classical digjtion type was used in [10].
Readers who are familiar with [10] may appreciate knowirgg the two notations are
interdefinable as follows:

vad M = pu(a?, BB).[BIM
@M = b o M

wla?, BB M = vat.upB.M
[a, B M = [Be)M.

and

3.4 CPS semantics and abstract machine interpretation

The CPS translation of Section 2.3 easily extends to clalsdisjunction: We define

Kavp = KaxKp,
()M = X\eEe. M(a,k) whereM : AV B,
va.M = Ma, k) ave Mk whereM : B.

To derive an abstract machine model from this CPS semamtisgrve that the dis-
junction introduces a new kind of continuation of the foti, k). In the context of
abstract machines, we write this continuationkask, and we interpret it as a stack

11

whose topmost element is (a pointer to) a stack closure. dhesponding abstract
machine transitions are derived directly from the CPS se¢ics&n
CPS Abstract Machine

(@WMk — M{@,k)
va.M{k' k) — M[k'/alk

{{ayM,0,k} — {M,o,k':k}, whereo(a) =k
{va.M,o,k":k} — {M,o(a— k'), k}

Thus, we see that the connectives of classical disjunctorespond to the ability
to push and pop stack closures to/from the current stack. [¥éeiatroduce a new
halting state, which applies in case-abstraction encounters an empty stack:

{va.M, o, nil} — halt“disjunction”.

An alternative way to think of the classical disjunctionéyip as a kind of function
type, where the argument is a continuation variable instdadterm. Thus, a term
of type A v B can be thought of as a kind of function which accepts a coatioo
variable of typeA and turns into a term of typ8. Note the perfect analogy between
the following pairs of reduction rules of Krivine’s absttacachine:

{MN,o,k} {M,o0,N°::k}, whereM : A — B,
{a)M,0,k} {M,o,k:k}, whereM : AV B, and

{Az.M,o0, N7 ::k} {M,o(x+— N7),k}, wherehz.M : A — B,
{vae. M, 0,k ::k} {M,o(a—Fk'),k}, whereva.M : AV B.

I A

This helps explain why, in call-by-name, there is a type isgghism betweeml —
(BvC)andBV (A — C). Aterm of either type can be regarded as expecting an
argument of typed and a continuation of typ&; the only difference is the order in
which these two items are expected.

4 Adding basic types and operations

We now consider how the addition of built-in datatypes, saslintegers or booleans,
affects the CPS semantics and Krivine’s abstract machiasicBypes complicate the
semantics somewhat, because they lead away from a “puretycalame discipline.
This is because primitive operations on basic types, faairee addition or multiplica-
tion, must necessarily evaluate their arguments beforeatipg on them. Thus, even
in a call-by-name language, basic operations are neclyssaltiby-value.

Itis therefore necessary to extend Krivine’s machine withlaby-value evaluation
mechanism at basic types. It is interesting that the rulethi® abstract machine can
again be derived systematically from the corresponding §#&antics.

4.1 CPS semantics

In call-by-name languages, built-in basic types, such sgars or booleans, differ
from other types, because they are equipped with a natutiaimaf value. These val-
ues are never stored in variables, but they are computebégfiste a built-in operation

12

is applied. For simplicity, we assume for the moment thaballt-in functions, such
as addition or logical “and”, aretrict, i.e., they evaluate all their arguments before
they operate on them. Thus we do not at first consider “lazgidaperations such as
lazy multiplication, which evaluates its second argumenty df the first argument is
non-zero. We will get back to the question of lazy functiamSection 4.3.

We consider the\uv-calculus over a givealgebraic signature, i.e., over a set of
basic typess, 7, ... and a set of typed constant symbels o and of typed function
symbolsf : 11 — ... — 7, — 0. As usualy is called thearity of the function symbol
f. For the CPS semantics, we consider the same target caksihesfore. Moreover,
we assume that each basic typef the \uv-calculus is interpreted by a chosen type
V. of the target calculus, together with chosen interpretatio : V,,, respectively
f:Vy — ... = V. — V,, of the primitive constants and functions. The tylpe
is called the type ofalues of typeo. We refine the CPS semantics from Sections 2.3
and 3.4 by lettingk, = V, — R, wheno is a basic type. Thus, continuation and
computation types are defined as before:

K, = V,—R, if o is a basic type
K+ = 0,

Karnp = Ka+ Kp,

KA—)B = CA XKB7

K, - 1,

Kavp = KAXKB,

Ca = Kjs— R.

Notice that a value typ&, is only defined whem is a basic type, and not when
A is an arbitrary type. We extend the CPS translation of Tableét8 the following
interpretation of primitive constants: o and functionsf : 1y — ... — 7, — o

¢ = Me.ke, 1)
£ o= Mzy,.. x, k)2 (v, za(Ay. . n (o, k(for..00). (2)

Herek : K,, z; : C;,, andv; : V,,. Notice that the interpretation of a constant symbol
c is actually a special case of the interpretation ofiaary function symbolf, namely
the case when = 0. The reader should check that this CPS translation doegdhde
have the required behavior. In particular, the tefiN; ... N, is evaluated by first
evaluating all arguments from left to right, and then appdyf to the result.

4.2 Abstract machine interpretation

We extend the abstract machine interpretation to accomtedisic types and func-
tions. As usual, we start by examining the kinds of contifmregintroduced by the new
language feature. The CPS translation of primitive fumjcshown in equation (2),
introduces a new kind of continuation which is a function. &éed to fit this into the
“continuations as stacks” paradigm of Section 2.4. Forteigaa careful examination
of the CPS semantics reveals that, all the continuationtimme which occur during
the g-reduction of the CPS translation of a term are of one pdetidorm:

)\’Uj.Nj+1()\Uj+1. e Nn()\’ljn.k(fcl e ijlvj,Uj+1 e ’Un))), (3)

13

wherel < j < n. In the abstract machine, each tein is represented by a closure
N;*, and we will represent a continuation of the form (3) by therfal expression
[fer.o.cji e NI N7 k.
The expressioff c1...cj—1 ® NJ‘,’QI ... NZn]is called drame, and it is typically im-
plemented as a fixed-size array of data on top of the currankgi.e., whose size
depends only on the symbg). This is analogous to the notion of a stack frame in
imperative programming languages, i.e., a data structutb®stack, containing vari-
ables belonging to a particular scope or procedure. The slfebis a special place
holder which corresponds to a memory location which preslipcontained the closure
NJ‘.”, and where the value; is going to be stored next.

Before giving the transition rules of the extended abstraathine, we need to
introduce one more new feature, and that is the notionaae state. Recall that a
state{ M, o, k} of Krivine’s abstract machine corresponds to a term of thenfd/k
under CPS. Because of the presence of values in the CPS sesntm@re is now a new
kind of state which is of the forrhc, wherek is a continuation of a basic typég, andc
is a value of typed, i.e., an element df 4. We call a state of the forrhc avalue state,
and we denote it in the abstract machine as afpait}¥. Note that, unlike an ordinary
state of the forr{ M, o, k}, a value statdc, k}" does not require an environment.

The CPS semantics of primitive constants and functionsydmdied in equations
(1) and (2), has the following transitions, where: n andd = fe; ...cp_1c:

ck — ke 3

L(N1, ...y Np, k) . — Nl()\vl....Nn()\vll.k(fvl...vn)))

(Av; Njg1 (- (Avy k(fer..cjm1vj..vn))))e = Njpa (o (v, k(fer..cj1cvjt1...0n)))
(A, .k(fer...cnm1vp))e — kd,

These can now be immediately translated to transition flfse abstract machine:

{c,0,k} — {e, k}Y
— {Ny,01,[f @ NJ*...NJ"|::k}
{c,[fercj—1 o N;ﬁl NIk} — {Njt11,0541, [fci...cj—1ce N;QQ...NT‘{"}::k}
{¢,[fc1e.cn10]:k}Y — {d,k}".
In these rules, it is again assumed tlias ann-ary function symbol, thaj < n, and
thatd = fer...ch—1c. We also introcuce two new halting states: a value state with
empty stack is a halting state with resultand ann-ary built-in function f will halt
with value “function” if the stack contains fewer than thgué&edn arguments.

{¢,nil}V — halte,
{f,0,k} — halt“function”; if size(k) < n.

4.3 “Impure” functions

So far, we have only considered primitive functions of therfof : 7 — ... —
7, — o, where all ofr, ..., 7,, ando are basic types. Sometimes, it is useful to allow

14

primitive functions with arbitrary result type, i.e., ofttiormf : 74 — ... —» 7, — A,
whereA is any type. We refer to these more general basic functiofisgsire”.

One example of an impure basic function is the if-then-alsetionif ; : bool —
(B — B — B) which mapsrue to Azy.x andfalse to A\xy.y. Here,bool is a built-
in type of booleans, an® is any type. Another example is the “lazy multiplication”
functionlazymult : int — (int — int), whereint is the type of integers. By definition,
the functionlazymult maps0 to the constant functionz.0, and any other integer to
Az.mult n x, wheremult is the usual strict multipliction operation. We can reganthb
if andlazymult as impure, strict basic functions in one argument.

Another useful example of an impure function is the sideafhgprint function.
In call-by-name, one can model sequential composifion\/ by applicationN M,
whereN is a term that performs some effects and then retdsns. As an application
of this idea, we can consider a family of basic functipnisty : int — (B — B). The
intended meaning is théprintn); M prints the integen and then behaves likk/.

4.4 Semantics of impure functions

The CPS semantics of impure basic functions is straighticswior each impure basic
function symbolf : 71 — ... — 7, — A, we need a chosen terfn: Vo — oo —
V., — C4 of the target language of the CPS translation. The tgisithen translated
as follows:

£ o= Mzy, .. xn k)21 (v, 2o(Avy. .. xn (Ao, .(for .. v)k). (4)

Here,k : K4, z; : C;,, andv; : V,,. Note that the only difference between equations

(2) and (4) is the order of the ternfs . .. v, andk. For impure functions, the term
fur ... v, is of typeC, whereas for pure functions, it is of typ& . It follows that the
interpretation of an impure function does not coincide whidt of a pure function, even
in the case wherel happens to be a basic type: the interpretation of a pureiamct
always produces a value, whereas the interpretation of panenfunction potentially
produces an arbitrary computation.

In concrete cases, we rely on the target language of the GRSform to supply
us with “native” implementations of the required functitiya To interpret the basic
functionif : bool — (B — B — B), we assume thdlth is the type of booleans
of the target language, and we define the functfoni — Cp—.p—.p such that
if true = \zy.x andif false = Axy.y. The interpretation ofazymult is similar.

The easiest way to interpret the side-effectprgnt function (although there are
better ways) is to assume that the target language of thei@Rsdrm also allows side
effects. In this case, we need a primitive functmimt : Vi — Cp_.p of the target
language, such thatint»n has the behavior of printing and then returningz.x.

For the abstract machine interpretation, we will overldael frame notation by
writing [fc1...¢;—1 ® NJJi' ... Ng]::k for the expression

)\’Uj.Nj+1()\Uj+1. e Nn()\vn-(fcl e Cj,ﬂ)j/l}jJrl e Un)k))

in the case wher¢ is an impure basic function. Note that this is not quite thesas
equation (3). From the CPS semantics of the impure basiditursif andprint, we

15

have ~
(Av.(ifv)k)true — Azy.xk
Ow.(ifv)k)false — lazyuk
(\w.(printv)k)c SR Ap.ak.

Here the label “output’ denotes a side effect taking place as part of the reduction.
This immediately gives rise to the corresponding abstratiime rules:

{true, [if o]::k} — {dz) y.z,0,k}
{falsg, [ife]::k} — {Dx)y.y,0,k}
{c,[printe]:k} 2P (Nz.,0,k}

5 Implementing the abstract machine

In this section, we give an implementation of Krivine’s abst machine, and its var-
ious extensions, in an idealized, low-level assembly laggu This illustrates that,
despite its name, the abstract machine is not as “abstraci@ might think; it can be
implemented, with relatively little effort, on a standamivNeumann style “concrete”
machine. Note that the implementation takes the form obrapiler, and not of an
interpreter; thus, the final program does not run by updating a data streicbut by
executing actual code.

As already pointed out in the introduction, the implementagiven here is not
efficient enough to be useful in practice. Its main flaw is thases a naive call-by-
name evaluation strategy, in which each subterm is possidjuated many times.
This is the same evaluation strategy which is embodied ixieis abstract machine,
and since our goal is to follow the abstract machine modediisfélly as possible, we
resist the temptation to optimize. It can be argued that abgtantial improvement to
the implementation is best carried out at the abstract madbvel, or even at the level
of CPS translations, rather than at the compiler level.

We also take the liberty to ignore certain practical aspesplementations, such
as garbage collection and efficient register allocationoun“ideal” implementation,
we simply assume that there are infinitely many registersamahfinite amount of
memory available.

5.1 Target assembly language

The target language of our compiler is an idealized assefabtuage whose instruc-
tion set shown in Table 5. It differs from actual assemblyglzages in several respects.
First, we assume that there are infinitely many registersoi®t we assume that there
are built-in instructions for certain high-level operatsosuch as memory allocation
(ALLoc) and the manipulation of stack closuresg, RESTORB; these would not
normally be available as separate instructions, but woeliriplemented as macros or
system calls.

The only data type of the assembly language v&ed, which can be interpreted
as an integer, a boolean (with= false, 1 = true), or as a pointer. We assume that

16

Instruction Meaning
MOVEw,v Store the value in locationw

ADD w, v Addv tow

PUSHv Push the value onto the stack

POPw Pop a value from the stack and store itin

CMPuvi,v3 Compare the two values, and remember the result

BNEwv If previouscMP resulted in not equal, jump to locatien

BGEwv If previouscMP resulted in greater than or equal jump to location
JUMPY Jump to address

CALL v Call subroutine at address

ALLOC w,v Allocatev words of memory and store a pointer to themuin

SAVE w Make a stack closure from the current stack, and store agydmit in w

RESTOREv Replace the current stack by a copy of the stack closuregubiotbyv
EXITv Exit with resultv

Table 5: Instruction set of the idealized assembly language

there are infinitely manyegisters Ry, Ro, .. ., as well as four distinguished registers
SP,SS, C,andV, each of which can hold a word.

We assume that there are infinitely many addressable meratlsy €@ach of which
holds a word. Amemory reference takes the fornR, n], whereR is a register ane
is a literal integer. The expressigR, n] refers to the contents of the memory cell at
addresd?+n. An £-value (assignable value) is either a register or a memory referenc
A valueis either ar/-value or a literal integer. Literal integers are often teritas#n
in assembly language instructions.

The memory is divided into two separate regions: $teek and theheap. The
stack is manipulated in the usual way via thesHandpPoPinstructions, and also via
the two special registerSP andS'S, which represent thetack pointer and thestack
size, respectively. We assume that the stack grows downward(tsiower memory
addresses), and that the stack poirfiét points to the memory cell just below the
stack, so thatSP, 1] refers to the topmost element on the stack. Setting theteegis
SS to 0 has the effect of emptying the stack.

The instruction set of the assembly language is shown ineTabHere, the letter
w ranges over-values and the lettes ranges over values. The meaning of most
instructions should be clear. Note that there is onlymo®E instruction, which can be
used, among other things, to copy a value from memory to atexgir vice versa. The
pusHandpoPinstructions implicitly update the registe$$” andS.S. Some high-level
operations are included for convenienseLocC is used to allocate memory from the
heap.sAVE andrRESTOREare used to manipulate stack closures and will be explained
in more detail later, and thexiT instruction ends the computation and returns a result
which is a word; it is up to the environmentto interpret thimd/correctly as an integer,
a boolean, or a pointer to a literal string, depending onype bf the program being
run.

17

When writing assembly language code, each instruction eaprbceded by an
optional label, which provides a symbolic reference to ttidrass of the instruction.
We use a semicolon “;” to introduce a comment.

5.2 Data representation

We need to specify how the various kinds of data of Krivindisteact machine are
represented in memory. Specifically, we need to fix a reptatien for term closures,
stack closures, and for items on the stack. Terms themsatee®presented as code,
and will be discussed in Section 5.3.

Term closures and stack closures are allocated on the hetgyméAclosureN? is
represented as + 1 consecutive words, . . . , a,, in memory. Here is a pointer to
the code for the ternV, anda4, . . ., a,, are pointers to representations of the closures
o(x1),...,0(zy,), Wherez,, ..., x, are the free variables and names\of

A stack closure is represented by a recorchef 1 words, of which the first one
holds the numben, and the remaining ones hold the actual stack data. For eonve
nience, we provide 8AVE w instruction, which makes a heap-allocated closure from
the current stack and returns a pointer to iin We also provide &ESTOREv in-
struction, which erases the current stack and replacesdtdmpy of the stack closure
pointed to byw.

The stack of the abstract machine is of course implementérbamative stack of the
assembly language. Most individual items on the stack gmesented as single words,
except for frames, which are represented as records ofadeverds. The tagag,
andtag, are represented as the integeiend2, respectively. Term closures and stack
closures are represented as pointers to the respectivetobje the heap. The repre-
sentation ofil is, of course, the empty stack. A frarfyec; ...cj_1 o Nf_ﬂl NP
is represented as a sequence af 1 words f;, i, ...,¢j—1,b,pjt1, ..., Dn. Here,f;
is a special tag which uniquely determingand; (actually, we will implemenyf; as
a pointer to code)cy, ..., c;—1 are literal valuesp is an undefined word (occupying
the position of the é” in the frame), and;11, ..., p, are pointers to representations

o1 n
of the closureg\fjjr1 yee, NI

5.3 Compilation of terms

Terms are not represented as data structures, but rathedasabe executed. Since
a term needs to be able to access the values of its free \esjabls executed in the
context of a particular closure, threrrent closure of the term. By convention, we
assume that there is a special registewhich always contains a pointer to the current
closure. Thus, the calling convention for invoking a spedfosure is to store a pointer
to it in the registeC, then jump to the addre$s, 0].

When the abstract machine is in a value state, the curreme vededs to be stored
somewhere; by convention, we store it in the special registe(As a matter of fact,
the registerg’ andV are never used simultaneously, so it would be possible tjusse
one register for both purposes. However, doing so would addomceptual clarity).
The representation of stack frames was arranged in such ghagyvhen the machine
reaches a value state, the topmost item on the stack is g tafe interpret this as an

18

Lambda calculus

[]s =
MOVE C, s(z)
Jump [C,0]
M. M], =
CMP S, #0
BNE l
EXIT “function”
l: PoOP R
[[]V[]]s(rcHR)

(wherel is a fresh label andk is a fresh
register.)

[[MN]]S =

; build closure forN
ALLOC R,#(n+1)
MOVE [R,0], #l
MOVE [R,1],s(z1)

MOVE [R,n],s(z,)

PUSH R

[M]
U [Nl@ieion,...en—(Cn)
(where [is a fresh label, R is a
fresh register, and F\W) U FN(N) =
{z1,...,20}.)

(M, N)]s =
CMP S, #0
BNE 5
EXIT “pair”

l1: POP R
CMP R, #1
BNE lo
[M],

ZQZ [[Nﬂs

(wherely, I5 are fresh labels, an is a
fresh register.)

[[m]%]]s =

PUSH #i
[M]s

[x]s =

EXIT “unit”

Au-Calculus
[no.M]s =

; build a stack closure
SAVE R

; clear the stack
MOVE SP,#0

[[M]]S(QHR)
(whereR is a fresh register.)
[l M]s =

RESTOREs(«)

[M]s

Classical disjunction (A ur-calculus)

[va.M], =
CMP SS, #0
BNE l
EXIT “disjunction”
l: POP R
[[M]]s(ou—»R)

(wherel is a fresh label an® is a fresh
register.)

[{e) M]s =

PUSH s(«)
[M]s

Table 6: The compilation of terms

Basic constants

[[n]]s =

MOVE
CMP
BNE
EXIT

l: POP
JUMP

V. #n
S8, #0
!

|4

R

R

Some “impure” basic functions

(wherel is a fresh label and is a fresh
register.)

[true]s = [1]s
[false], = 0],

“Pure” basic functions

[[f]]s =
; check for sufficient arguments
CMP SS, #n
BGE fo
EXIT “function”
fo: Move C,[SP1]
PUSH #f1

Jump [C,0]

(repeat following codefof = 1...n — 1)

fij+ MoOVE [SPj],V
MOVE C,[SP,j+1]

PUSH #fj1
Jump [C,0]

fn: MOVE [SP,n)|,V

; n values are now on top of stack

CALL nativer

POP 14

CMP SS, #0

BNE l

EXIT 14
fnt1 : POP R

JUMP R

(wheren > 1 is the arity of f,
for-+ - .fnt1 are fresh labels, an® is a
fresh register.)

CMP SS, #1

BGE ify

EXIT “function”
ifp: POP c

PUSH #if;

Jump [C,0]
if,: cmP V., #0
BNE if,
[Azy.ylo
ify: [Azy.z]e
(whereify,. .. jf,, are fresh labels.)

[print]s =
CMP SS, #1
BGE print,
EXIT “function”
print, : POP c

PUSH #print,
Jump [C,0]
print; : PUSH V
CALL natiVyint
[Mz.x]g
(whereprint,, print, are fresh labels.)

Table 7: The compilation of terms, continued

address to jump to. Thus, the convention in a value state paitahe value into the
registerV, then pop the topmost address from the stack and jump toatvélue state
encounters an empty stack, then the program halts and thentwalue is the result of
the computation.

A compiled term must know where to find the values of its fregaldes, either as
offsets within the current closure, or in registers or elsere in memory. Therefore,
the translation of a termM is defined relative to aymbol table s, which is a function
from the free variables a¥/ to symbolic values. For example, the symbol table might
specify that the value of the free variables, andz can be found inC, 1], [C, 2], and
in the register,, respectively. Note that a symbol tablés a compile-time concept
and maps variables symbolic values, unlike an environment which is a run-time
concept and maps variablesactual values. We writes(z — v) for the symbol table
obtained froms by adding a mapping of the variabieto the symbolic value.

We use the notatiofil/] to denote the assembly code for the tekmunder the
symbol tables. The rules of translation are derived directly from the esponding
rules of the abstract machine, and they are shown in Tablexl& a Note that the
translation proceeds by recursion on the structure of tedfso note that the trans-
lation [M] of a term is always a piece of assembly code which ultimatefisen a
JUMP Or EXIT instruction.

5.4 The translation of individual terms

The code for a variable simply invokes the closure thatpoints to. According to our
calling convention for closures, this is done by loading af& to the closure into the
registerC, then jumping to the addre§s, 0].

The code for a lambda abstractiam. M simply pops a value from the stack and
binds it to the variable:; thereafter, it behaves lik®/. Three additional lines of code
are needed to test whether the stack is empty, in which cagardiyram halts.

The code for an application/ N builds a term closure folV; this is done by
allocatingn + 1 words of memory, and storing in them the address of the code fo
N, as well as the values of the free variahlgs. .., z, of N. A pointer to the term
closure is then pushed onto the stack befbfes executed. Note that the code for
the termN is given separately, and is generated relative to a new syrable where
the variables;, . . ., x,, are mapped to the respective offsets into the “current'wsi®s
(i.e., the closure which will be current wheéviis invoked).

The translations of pairs, projections, and unit are ditédgward and follow di-
rectly from the corresponding rules of the abstract machihe code for a pair pops a
tag from the stack, whereas the code for a projection pustegsanto the stack.

The code for au-abstractionua. M saves the current stack into a new stack closure,
and then execute¥ in the context of an empty stack, and with the namigound to
the stack closure just created.

The code folla] M replaces the current stack by the stack closure pointed to by

The code for a-abstraction pops a pointer to a stack closure from the stadk
binds it to the variablex. Note that this code is almost identical to that of\a
abstraction, except that, in case of an empty stack, thét efsthe program is “dis-
junction” instead of “function”.

21

The code fofa) M pushes a pointer to a stack closure onto the stack.

The code for basic integer and boolean constants, whichoisrsin Table 7, re-
flects our convention for value states. Namely, the congergpecifies to put the value
into the special registdr, then jump to the address on top of the stack, if any. If the
stack is empty} is returned as the result of the program.

The code for a “pure” basic function is interesting. We filseck whether there
are enough closures on the stack to form a frame. Note thalatserepresentation of
a frame was chosen in such a way that the rule

{f,o, Ny i .. uNZntk} — {Ny, 01, [f e N3? ... NIk}

does not require any rearrangment of thelosures; the first frame is simply built by
pushing the addregs onto the stack. The first closufé™, a pointer to which is stored
in the stack frame, is then invoked. Eventually, this cleswaches a value state, and
following the convention for value states, it will jump taethddress on top of the stack,
in this casefi, with V' being the value just computed. This value is stored in theectir
frame, and then the remaining closuf€$?, ..., NJ» are evaluated in the same way,
until the topn items on the stack contain the actual arguments to the famgtiAt this
point, we call a subroutine which contains some native imglietation of the function
f. The convention is that this native implementation expists arguments on top of
the stack, and returns its result on top of the stack as weterAhe subroutine call
returns, we simply pop the result value off the stack and¥olihe protocol for value
states.

Finally, Table 7 shows the implementation of two “impure’sliafunctions, the
“if” and “print” functions which were already discussed in Section 4.3.hBhese
functions use a simplified form of the mechanism for puredasictions (specialized
for unary functions) to evaluate the closure on top of theksgand to obtain a valug.
The “if” function then simply executekey.x or A\zy.y, depending whethér = true
orV = false. The “print” function calls a subroutine to print the valire then executes
Ax.x.

References

[1] W. D. Clinger, A. H. Hartheimer, and E. M. Ost. Implemetida strategies
for first-class continuationgdigher-Order and Symbolic Computation, 12:7—-45,
1999.

[2] G. Cousineau. The categorical abstract machine. In GetHeditor,Logical
Foundations of Functional Programming, pages 25-45. Addison-Wesley, 1990.

[3] M. Felleisen and R. Hieb. The revised report on the syittdlseories of sequen-
tial control and stateTheoretical Computer Science, 103:235-271, 1992.

[4] T. G. Griffin. A formulae-as-types notion of control. POPL '90: Proceed-
ings of the 17th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 1990.

22

[5] M. Hofmannand T. Streicher. Continuation models areversal for\u-calculus.
In Proceedings of the Twelfth Annual IEEE Symposium on Logic in Computer
Science, pages 387-397, 1997.

[6] J.-L. Krivine. Un interpreteur du lambda-calcul. Drafavailable from
ftp://ftp.logique.jussieu.fr/pub/distrib/krivinefierprt.pdf.

[7] M. Parigot. Au-calculus: An algorithmic interpretation of classical unat de-
duction. InProceedings of the International Conference on Logic Programming
and Automated Reasoning, S. Petersburg, Springer LNCS 624, pages 190-201,
1992.

[8] G. D. Plotkin. Call-by-name, call-by-value and thecalculus.Theoretical Com-
puter Science, 1:125-159, 1975.

[9] D. Pym and E. Ritter. On the semantics of classical digjimm. Preprint, 1998.

[10] P. Selinger. Control categories and duality: on thegatical semantics of the
lambda-mu calculusMath. Struct. in Computer Science, 11(2), 2001.

[11] T. Streicher and B. Reus. Classical logic, continuasemantics and abstract
machinesJournal of Functional Programming, 8(6):543-572, Nov. 1998.

[12] D. H. D. Warren. An abstract prolog instruction set. fieical Note 309, SRI
International, 1983.

23

