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Abstract

The search for a semantics for higher-order quantum cortipntieads naturally
to the study of categories of normed cones. In the first pahispaper, we develop the
theory of continuous normed cones, and prove some of theic peoperties, including
a Hahn-Banach style theorem. We then describe two diffe@mtretes-autonomous
categories of normed cones. The first of these categoriesilisfltom completely
positive maps as in the author’s semantics of first-ordentyuima computation. The
second category is a reformulation of Girard’s quantum carfitespaces. We also point
out why ultimately, neither of these categories is a sattsfg model of higher-order
guantum computation.

1 Introduction

In quantum computation, one often considers programs wiégend parametrically on
a so-calledblack box which is typically a quantum circuit that computes somenawn
function. The black box is considered to be part of the induhe program, but it dif-
fers from ordinary data, such as qubits, in that it can onlytdsted via observing its
input/output behavior. In the terminology of functionabgramming, programming with
black boxes is a special case of what is knowmigher-order functional programming
which means, programming with functions whose input andiddput may consist of other
functions.

Recently, there have been some proposals for higher-oudetgm programming lan-
guages, based on linear versions of the lambda calculuslpL110]. These languages
have been given meaning syntactically, in terms of tbpirationalbehavior; however,
there is currently no satisfactodenotationalsemantics of such higher-order quantum
programming languages. This is in contrast to the firstdocdse, where a complete de-
notational description of the quantum computable funation finite data types, based on
superoperators, has been given [8].

*This is a corrected version of an article which appearedroteedings of the 2nd International Workshop
on Quantum Programming Languagsirku Centre for Computer Science General Publication 8|@p. 127-
143, June 2004. Example 2.11 has been corrected. An expaadsdn with full proofs is also available.

T Department of Mathematics and Statistics, University aa®&, Ottawa, Ontario KIN 6N5, Canada. Email:
selinger@mathstat.uottawa.ca. Research supported bRNSE



2 P. Selinger

In trying to extend this work to the higher-order case, onledsto search for a sym-
metric monoidal closed category which contains the categbsuperoperators from [8]
as a full, symmetric monoidal subcategory. This leads a#i{uto the study of categories
of normed cones, as pioneered by Girard in his study of quactherent spaces [5].

In the first part of the present paper, we attempt to develogstematic account of
normed cones and their basic properties. The study of noooees is similar, in many
respects, to the study of normed vector spaces, but thesoare important differences,
notably the presence of a partial order, the so-catiede order This order allows us
to use techniques from domain theory [2], and to work witheoitheoretic notions of
convergence and continuity which are rather stronger thardrresponding notions that
are usually available in normed vector spaces such as Bapaciks.

In the second part of this paper, we report on two instrudtieet ultimately failed)
attempts at constructing a model of higher-order quantumpedation based on normed
cone techniques. We describe two concrete categories wfatbcones. The first such cat-
egory is a direct generalizations of the category of supenaprs from the author’s work
on first-order quantum computation [8]. The second catedogsed on a reformulation
of Girard’s quantum coherent spaces. Both categories tutrtoobe x-autonomous, and
thus possess all the structure required to model higheardireear language features (and
more). However, neither of these categories yields theecbanswer at base types, and
thus they are not correct models of quantum computation. allteor believes that the
techniques used here are nevertheless interesting and teniglout to be building blocks
in the construction of a model of higher-order quantum cotaiion in the future.

Acknowledgments and Errata. | am grateful to Andrea Schalk for many useful discus-
sions on the topics of this paper, and to Vincent Danos faiections. The current version
of this paper differs from the published version. | have eored errors in Lemma 2.10
and Example 2.11, as well as some minor typos.

2 Cones

In this section, we develop the basic theory of continuousieal cones. The techniques
used are similar to those employed in the study of normedvagaces, except that we
also make extensive use of domain-theoretic methods twigstpe partial order which
naturally exists on cones. Another domain-theoretic tneat of cones was given by Tix
[9], but the present work differs in many key details, suchhaspresence of a norm, and
the consequently modified notion of completeness.

2.1 Abstract cones

Let R, be the set of non-negative real numbers. aastract conés analogous to a real
vector space, except that we take as the set of scalars. Sine. is not a field, we have
to replace the vector space lawt (—v) = 0 by acancellation lawv + u = w + u =

v = w. We also requiratrictnesswhich means, no non-zero element has a negative.
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Definition (Abstract cone) An abstract conds a setV/, together with two operations
+:VxV —=Vand : R, xV — V and a distinguished elemeit V, satisfying the
following laws for allv, w,u € V andA, i € Ry:

O+v=vo lv=w
vt () = (0w tu o= A()
v+w=w+v A+ p)v=Xv+ po

AMv +w) = v+ \w,

v+u=w+u = wv=w (cancellation)
v+w=0 = wv=w=0 (strictness)

Example2.1 R, is an abstract cone. The set
Rﬁ = {(CCl,...,In) | Tly---yTn €R+}

is an abstract cone, with the coordinate-wise operationsreNgenerally, if\;, ..., V,
are abstract cones, then solis x ... x V,,. The set of all complex hermitian positive
n X n-matrices,

Pp={AeC™" | A= A"andVv € C".v"Av > 0}
is an abstract cone.

Definition (Linear function) A linear functionof abstract cones is a functigh: V. — W
such thatf (v + w) = f(v) + f(w) andf(Av) = Af(v), forallv,w € V andX € R,.

Remark.Every abstract con& can be completed to a real vector space(V'), which we
call theenveloping spacef V. The elements afnv (V) are pairv, w), wherev,w € V,
modulo the equivalence relatiqn, w) ~ (v/,w’) if v + w' = v’ + w. Addition and
multiplication by non-negative scalars are defined poiséwiand we define (v, w) =
(w,v). We say that an abstract condiiste dimensionaif its enveloping space is a finite
dimensional vector space.

Definition (Convexity) A subsetD of an abstract con¥ is said to beconvexif for all
u,v € DandX € [0,1], \u + (1 — M\)v € D. Theconvex closuref a setD is defined to
be the smallest convex set containifg

2.2 The cone order

Definition (Cone order) Let V' be an abstract cone. Tleene orderis defined by C w
if there existsu € V such that + » = w. Note that the cone order is a partial order. If
v C w, then we sometimes also write— v for the unique element such that) + v = w.

Remark. Note that every linear function of abstract corfesV — W is alsomonotone
i.e.,v C v implies f(v) C f(v'). Also, addition and scalar multiplication are monotone
operations.

Example2.2 OnR,, the cone order is just the usual ordeof the reals. OR" , it is the
pointwise order. OrP,,, it is the so-called.dwner partial order7].
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Definition (Down-closure) Let D C V' be a subset of an abstract cone.désvn-closure
1D is the set{fu € V|3v € D C v}. We say thatD is down-closedf D = |D.
The concept ofip-closureds defined dually. Note that the down-closure of a convexsset i
convex.

2.3 Normed cones

Definition (Norm). LetV be an abstract cone. #ormonV is a function||—|| : V — R4
satisfying the following conditions for all, w € V andX € R:

v +w| < o] + |lw]
[Av] = Al

[ =0=v=0

v w= v < Jlwl|

A normed con&” = (V, ||—||) is an abstract cone equipped with a norm.

Remark.The first three conditions of a norm are just the usual comtior a norm on a
vector space, except of course that the scalar propertgtisated to non-negative scalars.
The last condition ensures that the normrmisnotone

Definition (Unitideal). Theunitidealof a normed con& is the set
Dy ={veV || <1}

It is akin to the unit ball in a normed vector space.

2.4 Complete normed cones

We recall the definition of a directed complete partial orfd@m domain theory [2].

Definition (Directed complete partial order (dcpo)) partially ordered se# is called
directedif for all a,b € A, there existg € A with a,b C c. A partially ordered setD, C)
is called adirected complete partial order (dcpdf)every directed subsed of D has a
least upper bound ii. The least upper bound of a directed sub$és denoted by/A,
and it is also called thdirected supremunor sometimes thémit, of A.

If I is a directed poset anB is a dcpo, then a monotone map I — D is called
andirected nefor simplyne)). As usual, we write a net &&;);c;. The image of a net
is a directed subset dP, and its directed supremum is written \’;f,»%fai- Note that an
increasing sequence is a particular kind of directed net.

Definition (Complete normed coneA normed coné/ is calledcompletdf its unit ideal
is a directed complete partial order.

Remark.A normed cond/ is complete if and only if the following two conditions hold,
for all directed net$a;);cr in V:

e if \/,a; exists, then|\/,a;|| = \/;||a:||, and
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e if {||a;|| | i € I'} is bounded, thely;a; exists.

The first of these condition states that the norrs@®tt-continuoud.e., it preserves di-
rected suprema. The second conditioné®mpletenessondition; it is akin to the require-
ment, in complete normed vector spaces, that every Caudjogsee has a limit. However
unlike in normed vector spaces, we require convergenceresimect to therder, not with
respect to theorm The norm merely serves to rule out unbounded sequences.

2.5 Examples

We write z U y for the maximum of two numbers, y € R.. Note that this operation
is commutative and associative, has uhitand is distributive with respect to addition:
(@Uy)+2z=(x+2z)U(y+2)

Example2.3. R, is a complete normed cone witlx|| = z. The setR" is a complete
normed cone with thé-norm

[(x1,... zn)l1 =21+ ...+ 2p.

The sefR" is also a complete normed cone with tkenorm
T p

Iz, ..y 2n)|loo i= 21 U U 2y

More generally, ifVy,...,V, are complete normed cones, then each of the following
formulas makd/; x ... x V,, into a complete normed cone:

[(vi, .- on)ll = lloallve + -+ lvnllv,,
[(v1, -y vn) oo = [loaflvy U U o v,
We write V; & ... @ V,, for the normed conéV; x ... x V., ||—|l1), and we write

Vi&... &V, forthe normed conéV; x ... x V,, || —|lc0)-
The setP,, of complex hermitian positive x n-matrices is a complete normed cone
with the 1-norm(or trace normn)

1AL = [Alle =tr A= au.

It is also a complete normed cone with tikenorm (or operator norm
[Alleo = sup{|Av| [ v € C", o] <1},

where|v| = v/v*v denotes the usual norm of a complex vector. Note 8l is the sum
of the eigenvalues ofl (counted according to multiplicity), anf4 ||« is the maximum of
the eigenvalues.

Example2.4. Consider the se¥V = {(z,y) |z =y=0o0rz,y >0} C R? with the
norm||(z,y)|| = « + y. Clearly,V is a normed cone. However, it is not complete: the
increasing sequencg = (2 — 1/4,2 — 1/i) has many upper bounds, none of which is
least. For exampl€2,2) and(2, 3) are two incomparable minimal upper bounds.



6 P. Selinger

Example2.5. Let ¢, be the set of sequencedin of bounded sum, together with the sum
norm||(z;)|l1 = >, xi. Letl be the set of bounded sequenceRin together with the
supremum nornf{(x;);|lcc = sup x;. Then both¢; and/., are complete normed cones.
Least upper bounds are given pointwise.

Example2.6. Let P be any partially ordered set, and Rt be the set of bounded mono-
tone mapsf : P — R,. LetRY be equipped with the pointwise operations of addition
and scalar multiplication, and with the supremum ndjiffi.. = sup{f(i) | i € P}. Then
Ri is a complete normed cone. Least upper bounds of directschnegiven pointwise.
However, note that the cone orderon R”’ does not in general coincide with the point-
wise order, because fgrC g, we must have that — f is not only non-negative, but also
monotone.

2.6 Continuous normed cones

We recall some additional concepts from domain theory [2].

Definition (Continuous dcpo) If w,v are elements of a dcpb, we say thatv is way
beloww, or in symbolsw < v, if for any directed sett with v C \/4, there exists some
a € Asuchthatw C a. We write{v = {w | w < v} andfv = {w | v < w}. A dcpo
D is calledcontinuousf for everyv € D, the set|.v is directed and = \|.v.

Definition (Continuous normed coneA continuous normed corig a complete normed
cone whose unit ideal is a continuous dcpo.

Remark.If V' is a complete normed cone, th&his continuous iff for everw € V, the
setlwv is directed and = \#Lv in V. In particular, continuity, as a property of complete
normed cones, is independent of the norm; it only dependsenrder.

2.7 Examples

Example2.7. The complete coneR,, R}, P,, /-, and{; from Examples 2.3 and 2.5
are all continuous. IR,, we haver < y iff + = 0 orz < y. In R}, we have
(x1,...,2n) < (Y1,...,y,) iffforall 4, z; = 00rz; <vy;. InP,, we haved < B iff
forallv € C", v*Av = 0 orv* Av < v*Bwv. Inf,, and/;, we haver <« iff Zis finitely
supported and for all, z; = 0 orz; < y;. Moreover, ifl, ..., V,, are continuous normed
cones, thensoarg, & ...d V, andV; & ... & V,,, and the way-below relation is given
pointwise in this case.

Example2.8. Let I = [0, 1] be the unit interval with the natural order. Consider the
complete con&®’_of monotone functiong : I — R, (see Example 2.6). We claim that
R’ is not a continuous cone. Indeed, consider the piap = =, and suppose thdt < g.

We will show thatf = 0. We first show that for any € I, there exists a neighborhood of
z on which f is constant. Fixc € I. For anye > 0, defineg, by

Y ify<z—e
ge(y): r—e frx—e<y<a+e
y—2 faxte<y.
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Then the netg.).~o converges tg. Hencef C ¢, for somee > 0. Sinceg, is constant
on a neighborhood af, and bothf andg. — f are monotone, it follows thaf is also
constant on a neighborhood:of As = was arbitrary, and is connected, it follows that

is a constant function, hence necessafily=- 0. As there is only one element way below
g, it follows thatRﬂr is not a continuous cone.

Open Problem. Characterize the partially ordered sétfor which RY is a continuous
normed cone.

2.8 Order convergence and norm convergence

We have already remarked that, in the theory of normed comespormally consider
convergence with respect to the order, and not with respeittet norm. However, it is
sometimes useful to know more about the relationship betileztwo concepts.

Remark.Order-convergence does not in general imply norm-convergdor instance, in
¢+, the increasing sequencg = (1,1,...,1,0,0,...) has least upper bourid, 1, . . .),
but it does not converge in norm.

On the other hand, norm-convergence of increasing seqaemgdies order-conver-
gence, as shown in the following lemma:

Lemma 2.9. Let V be a complete normed con@y); an increasing sequence (or a di-
rected net), and let be an upper bound such thit — v;|| — 0. Thenv = \/,v;.

Proof. By completeness, a least upper bound exists, so let\f,v;. Sincev is an upper
bound, we havev T v. Now for all ¢, we havev; C w, hencev — w C v — v;, hence
[lv —w| < |Jv—wv;||. As the latter quantity converges@we must havélv — w|| = 0,
hencev = w.

2.9 Bounded and non-expanding functions

Definition (Bounded and non-expanding linear functiomet V' and W be complete
normed cones. A linear function of congs: V' — W is boundedif there exists a
constanic € Ry such that for alb € V, || f(v)]| < c|lv]. Itis non-expandingf for all
veV, @) < vl

Perhaps surprisingly, the definition of boundedness isrrdduot, as the following
lemma shows:

Lemma 2.10. Any monotone function satisfyiffg\v) = A\ f(v) (and therefore any linear
function) between complete normed cones is bounded.

Proof. Supposef : V. — W is monotone but unbounded. For edclkhoose an element
v; € V such that|v;|| = 1 but| f(v;)|| > i -2°. Now consider the sequence whatie

elementis
1 1 1
ui:vo—l—ivl—i—zvg—i—...—i—?vi.

Then (u;); is an increasing sequence ¥, with ||u;|| < 2 for all i. By completeness,
this sequence has a least upper bound \f,u; with ||u| < 2. On the other hand, by
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construction, we havéf (u;)| > ||f(v:)||/2¢ > i. Now for all i, we haveu; C u, thus
f(u;) C f(u), thusi < || f(us)]] < ||f(uw)|. This contradicts the fact thgt«) has finite
norm. O

2.10 Continuous linear functions

Definition (Continous linear function)Let V- andW be complete normed cones. A func-
tion of conesf : V — W is calledScott-continuougor simply continuousif it preserves
directed suprema, i.e., ff(\!;a;) = \/, f(a;) for all bounded directed nefa;);.

Example2.11 Consider/,, as in Example 2.5, and |éf be an ultrafilter onN. For
any sequence = (x;); € {~, definelimy = to be the supremum of all € R, such
that{i | x; > a} € U. Then the functionf(z) = limy z is linear (and thus bounded
by Lemma 2.10), but not continuous: it maps each member ofnitreasing sequence
v; =(1,1,...,1,0,0,...) to 0, but maps its least upper boundito

Lemma 2.12. In a complete normed cone, addition and scalar multiplisatare contin-
uous.

Proof. Note that for any fixed, the functionf(v) = a + v is an order isomorphism from
Vto{u € V | a C u}; hence, it preserves least upper bounds of non-empty sietse S
Scott continuity is pointwise, addition as a function of targuments is also continuous.
Similarly, for any non-zero scalax, the functiong(v) = Av is an order isomorphism
from V to itself, thus preserving least upper bounds. In case 0, there is nothing to
show. Thus\wv is continuous as a function ef Finally, the fact that\v is continuous
as a function of\ follows from Lemma 2.9, because = \f,\; implies | \v — \v|| =
A= Adll[ol] = 0. O

2.11 A separation theorem

Definition (Generating set)Let V' be an abstract cone, and BtC V' be a down-closed,
convex subset. We say thBtgenerated/ if for all v € V, there exists somg > 0 such
thativ € B.

Recall that a subséf of a dcpoD is calledScott-openor simplyopen if it is up-
closed and for any directed sétwith \fA € U, there exists some ¢ AN U. A setis
Scott-closear closedif its complement is open.

Theorem 2.13(Separation) Let V' be a continuous normed cone, and Igtand U be
convex sets such th&is down-closed/ is up-closed and open, a®iNU = (). Further,
assume thaB generated/. Then there exists a continuous linear functipn V" — R
such thatf(v) < 1forallv € Band f(u) > 1forallu e U. d

2.12 A Hahn-Banach style theorem

An important application of the separation theorem is tHefdng Hahn-Banach style
theorem for continuous normed cones:
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Theorem 2.14.LetV be a continuous normed cone, anddet V with |ja|| > 1. Then
there exists a continuous linear functigh: V' — R with f(v) < |jv||, forallv € V,
such thatf(a) > 1.

Proof. Since the norm is continuous, we can find sarhe« a such that|a’|| > 1. Now
apply the separation theorem to the sBts- {v € V' | ||v|| < 1} andU = $d’.

Remark. One might ask whether the functighin Theorem 2.14 can be chosen so that
f(a) = ||la]|. Contrary to basic intuitions, this is not in general poksibinless one gives
up the continuity off. Consider the following counterexample. Llét= /., the set of
bounded sequences R, with the supremum norm (see Examples 2.5 and 2.7). Note
that every sequence:;); € V is a directed supremum of finitely supported sequences;
therefore, every continuous linear function is uniquelyedained by its action on the
standard basis vectoes = (4;;); € V. Now leta = (a;); wherea; = 2 — z%
Then|la|| = sup a; = 2. However, we claim that there exists no continuous function
f:V = Ry with f(v) < |lv||, forallv € V, such thatf (a) = 2. For assume that there
was such a functioif. For everyi, letv; = a + H%el- € V. Thenf(v;) > f(a) =2, but
alsof(v;) < ||(Jlvi) = 2, hencef (v;) = f(a) + H%f(ei) = 2. Butalsof(a) = 2, which
implies thatf (e;) = 0 for all i. Sincef is uniquely determined by all th&e;), it follows
that f = 0, a contradiction.

3 Completely positive maps and superoperators

Categories of completely positive maps and superoperatotg naturally in the seman-
tics of quantum programming languages, see [8]. In thisi@ectve briefly recall the

definition of these concepts. The category of superoper&mymmetric monoidal, but
it lacks closed structure. Thus, it forms a useful semamtidgst-order, but not higher-
order quantum programming languages. In Sections 4 and wjlldiscuss two different

x-autonomous categories derived from the category of sypeeators.

3.1 Signatures, linear maps, and the category V

Definition (Signature, matrix tuple)A signatureis a finite sequence = ng,...,n, of
positive natural numbers, whese> 0. If n is a positive natural number, 18}, = C"*" be
the set of complex x n-matrices, regarded as a complex vector space. More gbneral
if o = n1,...,nsiS asignature, le¥, = V,,, x ... x V,,_ be the set ofnatrix tuples
(A1,...,As), whered,; € C™ixmi,

Definition (The category). The category/ has signatures as objects, and a morphism
from o to 7 is a complex linear functioif : V,, — V.

Note that the category is equivalent to the category of finite dimensional complex
vector spaces; we have defined the objects in a special wayubeave will equip them
with additional structure later.

Let 0 @ o’ denote concatenation of signatures. The® o’ is a biproduct in the
categoryV, with the obvious projection and injection maps. The ndubgect for this
biproduct is the empty signature, which we denoté.as
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The tensor product of two signatures= n1, ...,ns andr = mg,...,m; is defined
as
OCRQT =N1M, ..., NIMt, «ovy NgMp,y. .., NgMy.

Note that there is a canonical isomorphispy,- = V, ® V., whereV, ® V. denotes the
usual tensor product of vector spaces. With this identiboathe operatiom® is seen to
give rise to a symmetric monoidal structure \8n The unit for this tensor product is the
signaturd = 1.

Moreover, there is a canonical natural isomorphismV (o ® 7,p) = V(0,7 ® p)
[8]. Therefore, the category, just like the category of finite dimensional vector spaces,
is compact closed with —o 7 = 0 ® T andL = | = 1. As a matter of fact, the category
V is even strongly compact closed in the sense of Abramsky aedke [1].

3.2 Completely positive maps and the category CPM

For a positive natural number, let P,, C V,, be the set of hermitian positive x n-
matrices as in Example 2.1. More generally, for any sigmedue nq, ..., ng, let P, =
Pny X ... X P, CV, be the set of hermitian positive matrix tuples.

Definition (Completely positive map)Let o, o’ be signatures. A linear functigh: V,, —
V, is positiveif for all A € P,,, one hasf(A) € P, . Further, we say that is completely
positiveifid, @ F : V,g, = Vyg IS positive for all signatures.

Example3.1 The linear functionf : Vo — V5 defined byf(((lz Z) = (Z 2) is

positive, but not completely positive. To see this, note thanaps hermitian positive
matrices to hermitian positive matrices, buf @ f does not; for instance,

1 0l0 1 1000
. 00l0 0 00[1 0
i@ fl5ot0 0 | =010 0

100 1 00lo 1

On the other hand, the functi@‘( Z Z ) = < 8 2 ) is completely positive.

Definition (The categorfCPM). The categorfCPM of completely positive maps has the
same objects ag, and has the completely positive maps as morphisms.

Lemma 3.2. CPMis a subcategory o¥, and it inherits the biproducts and (strongly)
compact closed structure frokh |

Remark.The categoryCPM was calledW in [8].

3.3 Superoperators and the category Q

Leto = nq,...,ns be asignature, and let = (44, ..., A,) € V, be a tuple of matrices.
We define thdraceof A to the sum of the traces of;, ..., A,:

trA:ZtrAl-.
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Definition (Superoperator)Let o, ¢’ be signatures. A linear functiofi: V, — V.. is
called asuperoperatoif f is completely positive and for all € P,,, tr f(A4) < tr A.

Definition (The categor®). The category of superoperators has the same object¢ as
andCPM, and has the superoperators as morphisms.

Lemma 3.3. Qis a subcategory o€CPM. It inherits coproducts and the symmetric
monoidal structure fron€PM, but it fails to have products and it is not monoidal closed.
O

The reason the catego@fails to inherit the products fror@PM is that the diagonal
mapf : o — o & o with f(A) = (A, A) is trace increasing, and thus not a superoperator.
The fact thaQ is not monoidal closed follows from the characterizatiosgeroperators
in [8, Thm. 6.7]; it is easily seen that the hom-&Hb, 7) is not in one-to-one correspon-
dence withQ(l, p) for any p.

However, the categor) also has some additional structure which is not present in
CPM: it is dcpo-enriched, and consequently, it possesses adramnoidal structure
for the coproductsp (see [6, Ch. 7]). This structure can be used to interpretdcom
recursion in first-order functional quantum programmingglaages; for details, see [8,
Thm. 6.7].

4 Normed matrix spaces

Our goal is to find anonoidal closedategory which contains the categ@y preferably

as a full subcategory. In this section, we will describe oppraach to defining such a
category, which we cal’. The idea is very simple: in the definition of a superopetator
replace the “trace” on each object by an arbitrary norm.

4.1 The category Q

Definition (Normed matrix space)A normed matrix spacé a pairV = (o, |—||v),
whereo is a signature andl—||, is @ norm on the con®,. We sometimes also call
a normed matrix space @ncrete coneand we often identify it with the “underlying”
normed coné?P,, ||—||v). We also often writé?y for P,, and similarlyDy for the unit
ideal.

Definition (The categoryQ’). The categoryQ’ has as its objects normed matrix spaces
V = {0, ||-|lv). Amorphism fromV = (o, ||—||v) to W = (r,||—|lw) is @ completely
positive mapf : V,, — V; which is norm-non-increasing, i.e., which satisfig§ A) || <
||A]|v forall A € P,.

Remark. SinceP, is a finite dimensional cone (i.e., embeddable in a finite dsienal
vector space) and satisfies certain other regularity cimmgitone can show thahy norm
[|=|| in the sense of Section 2.3 is automatically Scott-contisuand make®,, into a
continuous normed cone. Similarly, any linear map of cghe®, — P, is automatically
continuous. Thus, the results of Section 2, and in partidhla Hahn-Banach theorem,
apply in this setting, even though continuity need not béedtaxplicitly as an axiom.
These observations tend to simplify proofs in the finite disienal case.
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4.2 Properties of the category Q

The categon®’ containsQ as a full subcategory. Indeed, to each objecf Q, we can
associate an objet, || —||«) of Q’, where||A||y = tr A is thetrace norm It is then clear
that the morphisms between these objects are precisely digs

The categoryQ’ also inherits products, coproducts, and a symmetric maholdsed
structure from the categoyPM, as we will now show. The structure is preserved by the
forgetful functorQ’ — CPM.

4.2.1 Coproducts and products.

Given two normed matrix spac&s= (o, |—||v) andW = (7, || —||lw), we define
VeW = <U DT, ”_llV@W)’
VEWw = (oo |-lvew)

where|[(4, B)lvew = [|Allv + [[Blw and (A, B)|lvew = [Allv U [|Bllw as in
Example 2.3. Recall that{” denotes the binary “maximum” operation on real numbers.
It is easy to verify that with these normig,& W is a coproduct an®t” & W is a product

in the categon®@’. Further, the objedd, with the empty signature and the unique norm,
serves as the neutral object for the coproducts and praducts

Remark. Just like the categor®, the categonyQ’ is also dcpo-enriched, and hence the
coproduct operatios possesses a traced structure.

4.2.2 Symmetric monoidal structure.

Given normed matrix spacéé = (o, ||—||v) andW = (7, |—|lw), we would like to
define their tensor product

VoW = (oo |-llvew)

The question is how to define the nofim||vew . By analogy with normed vector spaces,
it would seem that the following definition is an obvious calade, forC € Pygw:

HC”V®W = mf{Z ”Az”VHBzHW | C= ZAl ® B;, whereA; € Py, B; € Pw}
1)

However, there is a problem with this definition: the set ovhich the infimum is taken
may in general be empty. In other words, not every elemeRigfy;, can be written of the
form )", A; ® B;, whereA; € Py andB; € Pw. This is best illustrated in an example,
whereo = 7 = 2.

Example4.1. The matrix

Q

Il
= O o
[Nl evian}
SO OO

_ oo
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cannot be written in the fory_, A; ® B;, for positive2 x 2-matricesA;, B;. To see why
this is not possible, suppose it could be written in this vildyen the blockwise transpose

— o oo

100

o o001
ZA1®Bi_010
¢ 0 0O

would also have to be positive, which it is not. O

Remark. The phenomenon described in the previous example is wellvkrin physics.

A density matrixC' € Pygw of a bipartite quantum system can be written in the form
>, 4;® B; if and only if it is entanglement freavhich means that there are omlssical
probabilistic correlations between the two parts. Such a state can berprtepsing only
classical communication.

In order to arrive at a useful definition of the tensor normyatopn (1) must be mod-
ified in some suitable way. One natural modification, whichde to ax-autonomous
structure, is to replace=" by “C" in the right-hand-side of the equation. We obtain the
following:

Definition (Tensor product, tensor normgiven normed matrix spacés = (o, ||—||v)
andW = (7, ||—||lw), their tensor product is defined 8@ W = (¢ @ 7, ||—|lvew),
where for allC € P, 5,

IClvew =inf{>_ | Aillv|[Billw | € © > A; @ Bi, whereA; € Py, B; € Pw}.
(2)

The definition of the tensor norm in terms of equation (2) ieimpractical to work
with. The following is a more practical characterizatiortlod tensor norm in terms of its
unit ideal.

Lemma 4.2. The unitidealDy gy of V ® W is the smallest Scott-closed, down-closed,
convex set containin®y ® Dw = {A® B | A€ Dy,B € Dy }. O

With this characterization, it is easy to prove thatdefines a symmetric monoidal
structure on the categofy' .

4.2.3 Monoidal closed structure

Recall from Section 3.2 that the categ@¥M is compact closed with —o7 = c®@ 7. We
can lift this to a monoidal closed structure @ In the following definition, we identify
a completely positive map : V, — V. with an element of/, s, in the standard way, see
[8, Sec. 6.7].

Definition (Monoidal closure) Given normed matrix spacés = (o, ||—||v) andW =
(1, [|=|lw), their function space is defined &—o W = (o0 ® 7, | —||v_ow), Where for
all f € Pogrs

[fllv—ow = sup[lf (ADllw [ Al <1} (3)
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This is the usual definition of an operator norm; note thatol@aness (Lemma 2.10)
guarantees that the supremum in equation (3) always eXis&sproperties of a norm are
easily verified, so that" —o W is a well-defined space. To prove that this indeed yields
the correct monoidal closed structure corresponding teethgor produch, it suffices to
prove the following, which is a consequence of Lemma 4.2:

Lemma 4.3. For normed matrix space®, W, and U, a completely positive map :
V ® W — U is norm-non-increasing if and only if its adjoiftt : V — W —o U is
norm-non-increasing. |

4.2.4 Thex-autonomous structure

A x-autonomous category is a symmetric monoidal closed categjth an objectL, such
that the canonical natural morphisi— (V' — 1) —o L is an isomorphism [3, 4]. The
object_L is called adualizing objectIt is common to writdd + =V —o L.

Lemma 4.4. In the categon®Q’, the objectL := | is a dualizing object.

Proof. LetV = (o, ||—||v) be a normed matrix space. We already know that the canonical
morphism : V — (V—_L)—o L is anisomorphismin the category of completely positive
maps. It remains to be shown that its inverse is norm-noreasing, or equivalently, that

§ is norm-non-decreasing. So lgt € P, with |[Alyy > 1. It suffices to show that
[[6(A)|| > 1. By the Hahn-Banach theorem (Theorem 2.14) there existseardifunction
f:V = Ry with f(B) < ||B]|v for all B, and such thaf(A) > 1. Thenf € V —o L
and|[ f[lv—o. < 1, hencel|5(A)|| > [5(A)(f)]|L = [£(A)]L = f(A) > 1. O

Thus, we have:

Proposition 4.5. The categoryQ’ of normed matrix spaces isautonomous with finite
products and coproducts and a zero object.

4.3 Why @ is not a model of higher-order quantum computation

The construction of the catego® was motivated by the search for a semantics of higher-
order quantum computation, extending the semantics ofdidstr quantum computation
given in [8]. It almost seems like this goal has been accashpli: we have obtained a
categoryQ’ which is*-autonomous and which also contains the cate@pof first-order
guantum computations as a full subcategory. However, tiseadatal problem: The full
embedding of in Q' does not preserve the tensor product. We illustrate thel@mm

an example:

Example4.6. Consider the normed matrix spae= W = (2, ||—||x) of 2 x 2-matrices
with the trace norm. This space lies within the image of théedding ofQ in Q'.
Consider the spadé @ W with the norm||—||vgw, as defined by equation (2). We claim
that the norm orl/ @ W is not the trace norm, and thiis® W does not lie within the
image ofQ in Q'. Let

Q

Il
= O o
(=N levian}
SO OO

_ oo
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as in Example 4.1. We claim th&€||vgw = 4. Indeed, it is easy to see that

ce(28)e(b9)+(89)=(09),

hence||C|lvew < 4 by definition. To see thatC||vew > 4, consider the dual space
VL fora2 x 2-matrix B, || B||y . is the maximal eigenvalue d8. Since this is bounded
by the trace of3, the “identity” functionf : V — V' is norm-non-increasing. Therefore,
by Lemma 4.3, its adjoing : V ® V' — L is also norm-non-increasing; it maps & 4-
matrix (a;;) t0 ago + aos + aso + ags. It follows that||C||vew = [|g(C)||L = g(C) = 4,
as claimed. On the other hand, the trace norm’ofiould be2, and thereforé|C||y o tr
and||C||« do not coincide.

5 Quantum coherent spaces

Girard introduced quantum coherent spaces as a new modeleaf llogic, inspired by
guantum theory [5]. Quantum coherent spaces are closeyettlo spaces of density
matrices, and they also formxaautonomous category. Thus, one might ask whether they
are suitable as a model for higher-order quantum computatitle will briefly sketch
the definition of a version of quantum coherent spaces, addptthe terminology of the
present paper. We will also point out why they do not form a eiddr higher-order
guantum computation.

The definitions given here differ from those of [5] in sevedatails. For instance,
we view quantum coherent spaces as certain normed coneseagh@irard axiomatizes
them directly in terms of their unit ideals. Also, we work vtrict cones, whereas Girard
allows non-strict cones, where the cone order is only a per@nd its induced equivalence
relation must be factored out. Finally, we work with spacésnatrix tuples whereas
Girard works with spaces of matrices only (expressing matnples, in effect, as block
diagonal matrices). A formal proof of the equivalence of definitions with Girard’s is
not within the scope of this paper, and will be given elsewher

5.1 Tensor product, revisited

To motivate the definition of quantum coherent spaces, identhe problem from Sec-
tion 4.3: if V, W are spaces i, then the norm oV ® W in the categorie® andQ’
does not coincide. Just like the problem with equation i}, problem can be attributed
to the presence of elementslin® W which are not of the form} ., A; ® B;; indeed, it is
easy to check that for elements of the latter form, the twansado indeed coincide.

It therefore seems natural to change the definition of thealeproduct by simply
removing the troublesome elements. This is precisely wiiantym coherent spaces
achieve. Informally, the tensor product®§ and?P; is not taken to bé>, ., but only a
certainsubsetk C P,%-, Namely, the subset consisting precisely of the elementtseof
form )", A, ® B;. The setsRk propagate to higher types. Thus, a quantum coherent space
is a triple(o, R, ||—||) of a signature, a conB C V,, and a norm which makeR into a
continuous normed cone. The formal definition follows in tle&t subsection.
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One important feature of the category of quantum cohereattespis that, unlike the
categoryQ’ of the previous section, it is not based on completely pasithaps, but on
all positivemaps. Informally speaking, this is because one has “redubedsize of the
tensor product, and thus one has to “increase” the size diitiwion spaces to keep the
symmetric monoidal closed structure.

5.2 The category QCS

Definition (Quantum coherent space (adapted from [58)quantum coherent spacga
triple V- = (o, Ry, ||—|lv), whereo is a signatureRy C V, is a cone, and—||y is a
norm makingRy into a continuous normed cone.

Definition (The categorfQCS). The categorfQCS has quantum coherent spaces as ob-
jects. A morphism froml/ = (o, Ry, ||—|lv) to W = (7, Rw,||—||lw) is any linear,
norm-non-increasing map of congs Ry — Ry .

The category of quantum coherent spaces possessesibbnomous structure with

finite coproducts and products, given as follows: For= (o, Ry, ||—|v) andW =
<T7RW7H_HW>’

VoW = (c&r1 Ry x Bw,||~|lvew),

V&W = <U®7-7RVXRW7”_”V&W>7

Vew <U®77RV®RW7”_”V®W>7

VoW = (0®7,Ry — Rw,|~llvow)-

Here,||—|lvew and||—||v ¢ w are defined as in Section 4.2.1. The tensor cone is defined
asR, ® Rw = {>_,c; Ai ® B; | A; € Ry, B; € Rw}, wherel ranges over possibly
infinite index sets such that the given sum converges. Th®terorm||—||vgw is defined

as in equation (2), except of course that we Bseand Ry in place of Py andPy, . The
function space con&, —o Ryy is the set of all continuous linear functions fraRy, to

Ry, and||—||v —ow is the operator norm. The dualizing object is adain R, .

Remark.Note that a morphism between quantum coherent spaces isgdyeg morphism
between normed conésy, || —||v) and(Rw, ||—|lw); thus, the forgetful functor from
QCSto the category of normed cones is full and faithful. On thHeeothand, every finite
dimensional cone can be embedded in sdmgthus, the category of quantum coherent
spaces is equivalent to a suitable category of finite dinogr@éicontinuous normed cones.

5.3 Why QCS is not a model of higher-order quantum computatio

Like the categor®’, the categorfQCS of quantum coherent spacesisutonomous, and
therefore it has the required structure for modeling higireler linear functions. There is
also a canonical embedding@finsideQCS, mapping each signatuseto (o, P,, | —||«)-
However, this embedding is not full, because of the presehpesitive, non-completely
positive maps iMQCS. Since it was shown in [8] that the categdycaptures precisely
the feasible quantum functions at first-order types, ite¢fae follows thafQCS contains
some ground type morphisms, such as the morplfisrom Example 3.1, which do not
correspond to physically computable functions. On the rottaad, there are physically
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feasible density matrices, such as the matfikrom Example 4.1, which do not have a
valid denotation in the categofyCS due to the restricted nature of its tensor cone.
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