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A ≈ B just in case that there is a function f : A → B so that:

• f is one-to-one. (x 6= y ⇒ f(x) 6= f(y).)

• f is onto. (All elements of B are in the range of f .)
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onto.

Let [0,1] denote the interval {x | 0 ≤ x ≤ 1}.

Define g(x) = f(x) − ⌊f(x)⌋.

Note that g : N → [0,1] is onto.
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ā
3
3

ā
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0
0

ā
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ā
1
1

ā
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ā
4
4

ā
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Theorem (Cantor, 1873). R and N are not of the same size.

Proof. Suppose for contradiction that R ≈ N.

Then there is a function f : N → R, so that f is one-to-one and

onto.

Let [0,1] denote the interval {x | 0 ≤ x ≤ 1}.

Define g(x) = f(x) − ⌊f(x)⌋.

Note that g : N → [0,1] is onto.

Consider the following table:
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The exact size of R cannot be determined from the axioms of

set theory.

It is impossible to prove R ≈ ℵ1 (Cohen, 1963), and it is also

impossible to prove R 6≈ ℵ1 (Gödel, 1938).

Impossible here really means impossible (and provably so).
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G(A) is determined if one of the players has a winning strategy.

(A strategy is a complete recipe that instructs the player pre-
cisely how to play in each conceivable situation.)
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in each level of the hierarchy.

There are sets A so that G(A) is not determined.

But these sets are constructed using a transfinite sequence of

choices which cannot be made in any definable way.

Determinacy is now accepted as a natural hypothesis in the study

of definable sets of reals.

12



Let z = 0.a0 a1 a2 a3 · · · . Let k ∈ N.

13



Let z = 0.a0 a1 a2 a3 · · · . Let k ∈ N.

The set of reals from 0.a0 · · · ak000 · · · to 0.a0 · · · ak999 · · · is

called the kth basic neighborhood of z,

13



Let z = 0.a0 a1 a2 a3 · · · . Let k ∈ N.

The set of reals from 0.a0 · · · ak000 · · · to 0.a0 · · · ak999 · · · is

called the kth basic neighborhood of z, denoted Nz,k.

13



Let z = 0.a0 a1 a2 a3 · · · . Let k ∈ N.

The set of reals from 0.a0 · · · ak000 · · · to 0.a0 · · · ak999 · · · is

called the kth basic neighborhood of z, denoted Nz,k.

These neighborhoods grow smaller as k → ∞,

13



Let z = 0.a0 a1 a2 a3 · · · . Let k ∈ N.

The set of reals from 0.a0 · · · ak000 · · · to 0.a0 · · · ak999 · · · is

called the kth basic neighborhood of z, denoted Nz,k.

These neighborhoods grow smaller as k → ∞, and z is the only

point that belongs to all of them.

13



Let z = 0.a0 a1 a2 a3 · · · . Let k ∈ N.

The set of reals from 0.a0 · · · ak000 · · · to 0.a0 · · · ak999 · · · is

called the kth basic neighborhood of z, denoted Nz,k.

These neighborhoods grow smaller as k → ∞, and z is the only

point that belongs to all of them.

A ⊆ [0,1] is finitely supported if every z ∈ A has a basic neigh-

borhood that is completely contained in A.

13



Let z = 0.a0 a1 a2 a3 · · · . Let k ∈ N.

The set of reals from 0.a0 · · · ak000 · · · to 0.a0 · · · ak999 · · · is

called the kth basic neighborhood of z, denoted Nz,k.

These neighborhoods grow smaller as k → ∞, and z is the only

point that belongs to all of them.

A ⊆ [0,1] is finitely supported if every z ∈ A has a basic neigh-

borhood that is completely contained in A.

Why “finitely supported”?

13



Let z = 0.a0 a1 a2 a3 · · · . Let k ∈ N.

The set of reals from 0.a0 · · · ak000 · · · to 0.a0 · · · ak999 · · · is

called the kth basic neighborhood of z, denoted Nz,k.

These neighborhoods grow smaller as k → ∞, and z is the only

point that belongs to all of them.

A ⊆ [0,1] is finitely supported if every z ∈ A has a basic neigh-

borhood that is completely contained in A.

Why “finitely supported”?

If z = 0.a0 a1 a2 a3 · · · belongs to A then this is secured already

by some finite initial segment a0 · · · ak of the digits of z.
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Q = the set of positions from which player I does not have a

winning strategy.

The empty position is not in Q.

If p = 〈a0, . . . , a2k〉 is not in Q then there is a move a2k+1 for II

so that p⌢a2k+1 is also not in Q.

If p = 〈a0, . . . , a2k−1〉 is not in Q then for every move a2k for I,

p⌢a2k is also not in Q.

It follows that II has a strategy that stays outside Q for the

entire game.

I a0 a2 a4 · · ·
II a1 a3 a5 · · ·

This strategy is winning for II in G(A).
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Theorem (Gale–Stewart, 1953). Let A ⊆ [0,1] be finitely

supported. Then G(A) is determined.

Proof. Suppose that player I does not have a winning strategy

in G(A). We prove that player II does.

Let Q be the set of positions from which player I has a winning

strategy. (By assumption, the empty position is not in Q.)

If z = 0.a0 a1 a2 a3 · · · is won by player I, then there exists k so

that 〈a0, . . . , ak〉 ∈ Q. This uses the assumption that A is finitely

supported.

If there is no k so that 〈a0, . . . , ak〉 ∈ Q, then 0.a0 a1 a2 a3 · · · is

won by player II.

If II can avoid positions in Q for the entire game, then she wins.
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We proved det(Γ) for the very simple class Γ = {all finitely sup-

ported sets}.
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Press Esc.
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