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1. Preliminaries:
(a) The games.
(b) Extenders, iteration trees.
(c) Auxiliary game representations.
(d) Example: 1 determinacy.

2. Games of length w-w with 3 payoff.

3. Continuously coded games with Z% payoff.

0



Let C C R<*1 be given.* Let f:R — N, a partial
function, be given. Geont—f(C) is played as
follows:

I......... Yo (0) Yo (2)
I | Ya(1) ya(3)

In round «, I and II alternate playing natural
numbers yqo(i), i < w, producing a real yq.

If f(ya) is not defined, the game ends. I wins
itF (yo, y1,-----. ,Ya) € C.

Otherwise we set nqa = f(yo). If there exists
§ < a so that nq = n¢, the game ends. Again
I wins iff {(yg,y1,.-.... ,Ya) € C.

Otherwise the game continues.

The game ends at a countable «; the map
£ — ng embeds « into N. This map is produced
continuously in &. The game is said to have
continuously coded length.

*Following standard abuse of notation, we use R to de-
note Nv.



Let C C RY = N¥% be given. In Gu.o(C) the
players plays w rounds as follows, producing
yr € R for k < w.

I|y(0) ... y1(0)
ig yo(1) y1(1)

I wins iff (y | kK < w) belongs to C.

Let C C R = N¥ be given. In G, (C) the players
plays one round as follows, producing y € R.

I]y(0) y(2)
II y(1) y(3)

I wins iff y € C.



We intend to prove that Gcont— ¢(C) are deter-
mined, for all continuous f and all 3 payoff
sets C.

As an illustrative case we will first prove that
Gu.w(C) are determined, for all 3 payoff sets
C.

Before that, we will prove that G, (C) are de-
termined for all =3 sets C C R.

Determinacy for games of length w was proved
by Martin and Steel.

Determinacy for games of fixed length w-«a, «
limit, was proved by Woodin.

Determinacy for games of continuously coded
length was proved by Neeman.



An extender on « is a directed system of mea-
sures on . If FE is an extender on k, we use
dom(FE) to denote k.

An extender E allows us to form an ultrapower
of V, denoted Ult(V, FE), and an elementary
ultrapower embedding «:V — UIt(V, E).

We use P,Q, M, N to denote models of ZFC.

We say that @Q and Q* agree to « if P(k)NQ* =
P(r)NQ.

Suppose @ = “FE is an extender on k". Sup-
pose Q* and @ agree to k. Then E can be ap-
plied also to Q*: We can form the ultrapower
Ult(Q*, E), and an elementary ultrapower em-
bedding o: Q* — UIt(Q*, F).

Ult(Q™*, E) needn’t always be wellfounded. If it
iIs wellfounded, we assume it's transitive.
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An iteration tree 7 of length w consists of
e a tree order T' on w,
e a sequence of models (M, | k < w), and

e embeddings j ;: My, — M, for kT [.

Each model M4, for [+ 1 > 0 is an ultra-
power of a preceeding model. More precisely:
M;41 = Ult(Mg, E;), where E; an extender
picked from M;, and k£ <[ is the T' predecessor
of [+ 1. ji ;41 is the ultrapower embedding.

M4 q

Jk,l+1
El & Ml

M,

(M; and M; must agree to dom(E;).)

An iteration tree on M is a tree with Mg = M.
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My

My

e

Our trees will generally
have an even branch,
Mg, Mo, Mg, ..., giving
rise to the direct limit

Meven .

The tree structure on
the odd models will
usually be some permu-
tation of w<%“. With
each odd branch b
we associate the direct
limit M.

(In this example, 0T 1, 0T 2, 1T 3, 0T 3,

etc.)



In the iteration game* on M, players ‘‘good”
and “bad” collaborate to produce a sequence
of iteration trees as follows:

Iy % p 4 b1y, b2

“Bad"” plays an iteration tree Tg on Mg.
“Good” plays a branch bg through 7’5 We let
M4 1 be the direct limit model determined by
bg and proceed to the next round. For limit A\
we let M) be the direct limit of M, for preced-
ing £&. We start with Mgy = M.

If ever a model (Mg, £ < w1) is reached which
is illfounded, ‘“bad” wins. Otherwise *‘“good”
wins.

*The definition given here is specialized to our context.
The concept of iteration games is due to Martin—Steel.
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We also consider iteration games were round &
has the following form:

“Bad’ plays an iteration tree 7'5 on Mg.
“Good" plays a branch bg, giving rise to the
direct limit, Pg.

Then “good” plays an extender Eg in Pg, with
dom(E¢) within the level of agreement between
Méf and Pg We set M£_|_1 = U|t(M€,E€) and
continue to the next round.

If ever a model (P: or Mg, £ < wi) is reached
which is illfounded, “bad” wins. Otherwise
“good’ wins.

We refer to this game too as an iteration
game.



M is iterable if the good player has a win-
ning strategy for each of the iteration games
described above. We refer to such winning
strategies as iteration strategies.

Countable elementary substructures of V are
iterable in this sense (Martin—Steel).



Suppose M = “§ is a Woodin cardinal”, and
in V there are M—generics for col(w,§). Let A
name a set of reals in M<ol(w:d)

Work with some z € R. We work to define an
auxiliary game, Alx], of w moves, taken from
M. In this game I tries to witness that = €
A[R] for some generic h. II tries to witness the
opposite.

The auxiliary game is played as follows:

I ‘ ln,Xn,pn
I | Frn, D

In round n I plays

e | =1[,, a number <n, or l, = “new’.
e X, a set of names for reals of Mol (w:d)
e pp, a condition in col(w, ).

IT plays
e F,, a function from A, into the ordinals.

e D,, a function from X, into {dense sets in
col(w, d)}.
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II | Fn, Dn

If [, = “new” we make no requirements on I.
Otherwise, we require p, < p; and X, C A;. We
further require that for every name z € &X};:

1. p, forces “z € A".
2. pp forces “z(0) = zg", ....,"z(1) = ;"
3. pn belongs to D;(x).

We make the following requirement on II:
4. For every name z € Xy, Fn(x) < F(x).

If there is h so that = € A[h], I can pick a name
for z, play X, containing this name, and play
pn € h. Condition 4 ensures defeat for II.

On the other hand, if there is an infinite run
of A[z] where I covered all possible names and
chains of conditions, condition 4 ensures that
x & A[h] for all generic h.
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Note 1. Rather than play the sets X}, directly,
I plays their type. I plays k, < 6, and a set u, of
formulae with parameters in M|| knU{kn, 5, A}.*
We take X, to be the set of names which sat-
isfy all these formulae.

The fact that this still allows I enough con-
trol over her choice of X, has to do with our
assumption that 6 is a Woodin cardinal.

Fn and D,, are played similarly.

Observe that moves in A[x] are therefore ele-
ments of M|| 4.

Note 2. The association z — A[x] is continu-
ous: The rules governing the first n+ 1 rounds
of A[x] depend only on z[n.

We in fact defined an association s — A[s] (s €
w<¥, Als] a game of Ih(s) +1 many rounds).
This association belongs to M.

*By M]|| Kk, we mean V.
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Recall that g is col(w, §)—generic/M. We alter-
nate between thinking of g as a generic enu-
meration of 4, and as a generic enumeration of
M|l 9.

Let ogen[z, g], @ strategy for Iin A[x] be defined
as follows:

ogenl[z,g] plays in each round the first (with
respect to the enumeration ¢g) legal move.

Note. The association z,g — ogen|x, g] is con-
tinuous.

Lemma 1. Suppose that there exists an infi-
nite run of A[x], played according to ogenlz, g].
Then x & A[g]. (This is only useful if x € M|[g].)

Proof: In playing for I, ogenlg, z] goes over all
possible names and all possible generics. (This
uses the genericity of the enumeration g.) So
in fact « € A[h] for all generic h. O]
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We wish to phrase a similar lemma with a strat-
egy for II, which puts = in A. To do this we
have to give II additional control. We let II

“shift” the play board along an even branch of
an iteration tree.

TN TN

M =M, M, M, Ms My Ms Mg

lo
I Xo s
Po
Fo
I1 Do
l1
I X1~
P1
Fi
I1 D,
lo
I X> s
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The game A*[x] is played as follows:

I‘ ln, Xn, pn

II \ Eop, Eopny 1, Fn, Dn
At the start of round n we have a model Mo,
an embedding jo op: M — Moy, and a position
P, of n rounds in jg 2, (A)[x].

I plays In, Xn,pn, a legal move in jg o, (A)[x]
following Pj,.

IT plays extenders Eop,, Eo,41 9iving rise to
models Mo, 41, Mo,42, and to an embedding
Jon2n+42: Moy, — Moy o. (The T—predecessor
of 2n+4+ 1 is 2, + 1 if I, # “new” and 2n oth-
erwise.)

We let Qn = jop on42(Pn—;ln, Xn,pn). (This
is the “shifting” mentioned before.)

IT plays Fn,Dn, a legal move in jg op42(A)[x]
following @y,.

We let P41 = Qn—,Fn,Dn and proceed to
the next round.
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Definition. A pivot for xz is a pair 7, a so that

1. 7 is an iteration tree on M, with an even
branch.

2. a is a run of jeven(A)[z].

3. For every odd branch b of 7, there exists
some h so that

(a) h is col(w, jy(6))—9generic/M,; and
(b) = € jp(A)[h].

Any run of A*[x] produces 7, d which satisfy
conditions 1 and 2.

Lemma 2. There exists opjy[z, g], a strategy
for II in A*[z], so that every run according to
opivlT, g] is a pivot.

The association x, g — opjy[z, g] is continuous.

The proof of Lemma 2 draws heavily on the
techniques of Martin—Steel's “A proof of pro-
jective determinacy”. The assumption that §

is a Woodin cardinal is crucial.
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To sum: Have continuous associations
r — Alz]; xz,9 — ogenlz,g]; x — A*[x]; and

L,gt— Upiv[wag]-

ogen[x, g] is a strategy for I in A[x].

If @ is an infinite run of A[x] according to
ogen(z, g], then = & Alg].

opivlz, g] is a strategy for II in A*[x].

If 7, @ is an infinite run of A*[x] according to
opivlT, g], then

for every odd branch b of 7, there exists
some h so that

e h is col(w,j,(6))—generic/ My, and

o € jy(A)[hl.
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>1 determinacy:

Fix ACR, a Z% set (say the set of reals which
satisfy a given =3 statement ¢).

Suppose there is an iterable class model M
with a Woodin cardinal §. Suppose that (in
V) there is g which is col(w, §)—generic/M.

We intend to prove that (in V) Gyw(A) is de-
termined.

Let A € M name A. More precisely, A names

the set of reals of M w.9) which satisfy ¢ in
Apcol(w,é)

We have z — Alx], x,9 — ogenlz,g], etc. as
before.
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Let G be the following game, defined and
played inside M:

[ |zg ag_g a1-I T2

IT | ag—11 <1 al-II
I and II alternate playing natural numbers, pro-
ducing together x = (xg,z1,...) € R. In addi-
tion they play moves ag_1,ag_gp, ... in Alx].

IT is the closed player; she wins if she can last
all w moves. Otherwise I wins.

(G is a closed game, hence determined. A win-
ning strategy exists in M.

Case 1: I wins G. Fix > € M a winning strat-
egy for I (the open player).

We wish to show that I wins G, (A) in V. Let
us play Go(A) against an imaginary opponent.
We describe how to play, and win.
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We construct a run x € R of G,(A). At the
same time we construct 7, d, a run of A*[z].

T he participants in our construction are:

e T he imaginary opponent: playing =z, for
odd n.

e The strategy opiylg,z]: playing for II in
A*[x].

e [ he strategy > and its shifts along the
even branch of 7: playing x, for even n
and playing for I in A*[z] (i.e. playing for I
in shifts of A[x]).

We obtain x € R and 7, @ a run of A*[z] ac-
cording to opiy[z, g].

We must check that x belongs to A.
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Opiv
Oppnt
7o,2(X)

Opiv
jo,4(X)

jo,4(X)

M =My M; M, Ms

0
lo
X0
Po
Fo
Do
1
l1
Xy s
p1

M, Ms
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Note that x,ad is an infinite run of jeven(G) ac-
cording to jeven(X).

Now 2 is a strategy for the open player in
(G. So there are no infinite runs according to
> . But there is an infinite run according to
jeven(Z). Thus Mevyen is illfounded.

M is iterable. So there exists some branch b
of 7 so that M, is wellfounded. b must be an
odd branch.

By Lemma 2, 7, a is a pivot for . Thus there
IS h so that

e h is col(w, j,(6))—generic/ M, and
® T & jb(A)[h]

This means that in M[h], = satisfies the >3
statement ¢.

By absoluteness, x satisfies ¢ in V. (This uses
the wellfoundedness of My.)

So x € A as required. [1(Case 1.)
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