Determinacy Proofs for Long games

Itay Neeman

Department of Mathematics
University of California Los Angeles
Los Angeles, CA 90095-1555
ineeman@math.ucla.edu

- 1. Preliminaries:
 - (a) The games.
 - (b) Extenders, iteration trees.
 - (c) Auxiliary game representations.
 - (d) Example: Σ_2^1 determinacy.
- 2. Games of length $\omega \cdot \omega$ with Σ_2^1 payoff.
- 3. Continuously coded games with Σ^1_2 payoff.

Let $C \subset \mathbb{R}^{<\omega_1}$ be given.* Let $f: \mathbb{R} \to \mathbb{N}$, a partial function, be given. $G_{\text{cont}-f}(C)$ is played as follows:

In round α , I and II alternate playing natural numbers $y_{\alpha}(i)$, $i < \omega$, producing a real y_{α} .

If $f(y_{\alpha})$ is not defined, the game ends. I wins iff $\langle y_0, y_1, \ldots, y_{\alpha} \rangle \in C$.

Otherwise we set $n_{\alpha} = f(y_{\alpha})$. If there exists $\xi < \alpha$ so that $n_{\alpha} = n_{\xi}$, the game ends. Again I wins iff $\langle y_0, y_1, \dots, y_{\alpha} \rangle \in C$.

Otherwise the game continues.

The game ends at a countable α ; the map $\xi \mapsto n_{\xi}$ embeds α into \mathbb{N} . This map is produced continuously in ξ . The game is said to have **continuously coded length**.

^{*}Following standard abuse of notation, we use $\mathbb R$ to denote $\mathbb N^\omega.$

Let $C \subset \mathbb{R}^{\omega} = \mathbb{N}^{\omega \cdot \omega}$ be given. In $G_{\omega \cdot \omega}(C)$ the players plays ω rounds as follows, producing $y_k \in \mathbb{R}$ for $k < \omega$.

I wins iff $\langle y_k \mid k < \omega \rangle$ belongs to C.

Let $C \subset \mathbb{R} = \mathbb{N}^{\omega}$ be given. In $G_{\omega}(C)$ the players plays one round as follows, producing $y \in \mathbb{R}$.

I wins iff $y \in C$.

We intend to prove that $G_{\text{cont}-f}(C)$ are determined, for all continuous f and all Σ_2^1 payoff sets C.

As an illustrative case we will first prove that $G_{\omega \cdot \omega}(C)$ are determined, for all Σ_2^1 payoff sets C.

Before that, we will prove that $G_{\omega}(C)$ are determined for all Σ_2^1 sets $C \subset \mathbb{R}$.

Determinacy for games of length ω was proved by Martin and Steel.

Determinacy for games of fixed length $\omega \cdot \alpha$, α limit, was proved by Woodin.

Determinacy for games of continuously coded length was proved by Neeman.

An **extender** on κ is a directed system of measures on κ . If E is an extender on κ , we use dom(E) to denote κ .

An extender E allows us to form an **ultrapower** of V, denoted Ult(V, E), and an elementary **ultrapower embedding** $\pi: V \to Ult(V, E)$.

We use P, Q, M, N to denote models of ZFC.

We say that Q and Q^* agree to κ if $\mathcal{P}(\kappa) \cap Q^* = \mathcal{P}(\kappa) \cap Q$.

Suppose $Q \models$ "E is an extender on κ ". Suppose Q^* and Q agree to κ . Then E can be applied also to Q^* : We can form the **ultrapower** Ult (Q^*, E) , and an elementary **ultrapower embedding** $\sigma: Q^* \to \text{Ult}(Q^*, E)$.

 $Ult(Q^*, E)$ needn't always be wellfounded. If it is wellfounded, we assume it's transitive.

An iteration tree $\mathcal T$ of length ω consists of

- ullet a tree order T on ω ,
- ullet a sequence of models $\langle M_k \mid k < \omega \rangle$, and
- ullet embeddings $j_{k,l} \colon M_k \to M_l$ for $k \ T \ l$.

Each model M_{l+1} for l+1>0 is an ultrapower of a preceding model. More precisely: $M_{l+1}=\operatorname{Ult}(M_k,E_l)$, where E_l an extender picked from M_l , and $k\leq l$ is the T predecessor of l+1. $j_{k,l+1}$ is the ultrapower embedding.

 $(M_l \text{ and } M_k \text{ must agree to dom}(E_l).)$

An iteration tree on M is a tree with $M_0 = M$.

Our trees will generally have an **even branch**, M_0, M_2, M_4, \ldots , giving rise to the direct limit M_{even} .

The tree structure on the odd models will usually be some permutation of $\omega^{<\omega}$. With each **odd branch** b we associate the direct limit M_b .

(In this example, 0 T 1, 0 T 2, 1 T 3, 0 T 3, etc.)

In the **iteration game*** on M, players "good" and "bad" collaborate to produce a sequence of iteration trees as follows:

$$M \xrightarrow{b_0} M_1 \xrightarrow{b_1} M_2 \xrightarrow{b_2} M_3 - \cdots$$

$$-\cdots M_{\omega} \xrightarrow{b_{\omega}} M_{\omega+1} - \cdots$$

"Bad" plays an iteration tree \mathcal{T}_{ξ} on M_{ξ} . "Good" plays a branch b_{ξ} through \mathcal{T}_{ξ} . We let $M_{\xi+1}$ be the direct limit model determined by b_{ξ} and proceed to the next round. For limit λ we let M_{λ} be the direct limit of M_{ξ} for preceding ξ . We start with $M_0=M$.

If ever a model $(M_{\xi}, \, \xi < \omega_1)$ is reached which is illfounded, "bad" wins. Otherwise "good" wins.

^{*}The definition given here is specialized to our context. The concept of iteration games is due to Martin–Steel.

We also consider iteration games were round ξ has the following form:

"Bad" plays an iteration tree \mathcal{T}_{ξ} on M_{ξ} . "Good" plays a branch b_{ξ} , giving rise to the direct limit, P_{ξ} .

Then "good" plays an extender E_{ξ} in P_{ξ} , with $\mathrm{dom}(E_{\xi})$ within the level of agreement between M_{ξ} and P_{ξ} . We set $M_{\xi+1} = \mathrm{Ult}(M_{\xi}, E_{\xi})$ and continue to the next round.

If ever a model $(P_{\xi} \text{ or } M_{\xi}, \ \xi < \omega_1)$ is reached which is illfounded, "bad" wins. Otherwise "good" wins.

We refer to this game too as an **iteration** game.

M is **iterable** if the good player has a winning strategy for each of the iteration games described above. We refer to such winning strategies as **iteration strategies**.

Countable elementary substructures of V are iterable in this sense (Martin–Steel).

Suppose $M \models$ " δ is a Woodin cardinal", and in V there are M-generics for $\operatorname{col}(\omega, \delta)$. Let \dot{A} name a set of reals in $M^{\operatorname{col}(\omega, \delta)}$.

Work with some $x \in \mathbb{R}$. We work to define an auxiliary game, $\mathcal{A}[x]$, of ω moves, taken from M. In this game I tries to witness that $x \in \dot{A}[h]$ for some generic h. II tries to witness the opposite.

The auxiliary game is played as follows:

In round n I plays

- $l = l_n$, a number < n, or $l_n =$ "new".
- \mathcal{X}_n , a set of names for reals of $M^{\mathsf{col}(\omega,\delta)}$.
- p_n , a condition in $col(\omega, \delta)$.

II plays

- ullet \mathcal{F}_n a function from \mathcal{X}_n into the ordinals.
- \mathcal{D}_n , a function from \mathcal{X}_n into {dense sets in $col(\omega, \delta)$ }.

$$\mathcal{A}[x]$$
: I \ldots l_n, \mathcal{X}_n, p_n \ldots II $\mathcal{F}_n, \mathcal{D}_n$ \ldots

If $l_n =$ "new" we make no requirements on I. Otherwise, we require $p_n < p_l$ and $\mathcal{X}_n \subset \mathcal{X}_l$. We further require that for every name $\dot{x} \in \mathcal{X}_n$:

- 1. p_n forces " $\dot{x} \in \dot{A}$ ".
- 2. p_n forces " $\dot{x}(0) = \check{x_0}$ ", ..., " $\dot{x}(l) = \check{x_l}$ ".
- 3. p_n belongs to $\mathcal{D}_l(\dot{x})$.

We make the following requirement on II:

4. For every name $\dot{x} \in \mathcal{X}_n$, $\mathcal{F}_n(\dot{x}) < \mathcal{F}_l(\dot{x})$.

If there is h so that $x \in A[h]$, I can pick a name for x, play \mathcal{X}_n containing this name, and play $p_n \in h$. Condition 4 ensures defeat for II.

On the other hand, if there is an infinite run of A[x] where I covered all possible names and chains of conditions, condition 4 ensures that $x \notin \dot{A}[h]$ for all generic h.

Note 1. Rather than play the sets \mathcal{X}_n directly, I plays their *type*. I plays $\kappa_n < \delta$, and a set u_n of formulae with parameters in $M \| \kappa_n \cup \{\kappa_n, \delta, \dot{A}\}$.* We take \mathcal{X}_n to be the set of names which satisfy all these formulae.

The fact that this still allows I enough control over her choice of \mathcal{X}_n has to do with our assumption that δ is a Woodin cardinal.

 \mathcal{F}_n and \mathcal{D}_n are played similarly.

Observe that moves in $\mathcal{A}[x]$ are therefore elements of $M \parallel \delta$.

Note 2. The association $x \mapsto \mathcal{A}[x]$ is continuous: The rules governing the first n+1 rounds of $\mathcal{A}[x]$ depend only on $x \upharpoonright n$.

We in fact defined an association $s \mapsto \mathcal{A}[s]$ ($s \in \omega^{<\omega}$, $\mathcal{A}[s]$ a game of lh(s) + 1 many rounds). This association belongs to M.

^{*}By $M \| \kappa_n$ we mean $\mathsf{V}^M_{\kappa_n}$.

Recall that g is $\operatorname{col}(\omega, \delta)$ —generic/M. We alternate between thinking of g as a generic enumeration of δ , and as a generic enumeration of $M \parallel \delta$.

Let $\sigma_{gen}[x, g]$, a strategy for I in $\mathcal{A}[x]$ be defined as follows:

 $\sigma_{\text{gen}}[x,g]$ plays in each round the *first* (with respect to the enumeration g) legal move.

Note. The association $x, g \mapsto \sigma_{gen}[x, g]$ is continuous.

Lemma 1. Suppose that there exists an infinite run of A[x], played according to $\sigma_{gen}[x,g]$. Then $x \notin \dot{A}[g]$. (This is only useful if $x \in M[g]$.)

Proof: In playing for I, $\sigma_{\text{gen}}[g,x]$ goes over all possible names and all possible generics. (This uses the genericity of the enumeration g.) So in fact $x \notin \dot{A}[h]$ for all generic h.

We wish to phrase a similar lemma with a strategy for II, which puts x in A. To do this we have to give II additional control. We let II "shift" the play board along an even branch of an iteration tree.

The game $\mathcal{A}^*[x]$ is played as follows:

At the start of round n we have a model M_{2n} , an embedding $j_{0,2n}: M \to M_{2n}$, and a position P_n of n rounds in $j_{0,2n}(\mathcal{A})[x]$.

I plays l_n, \mathcal{X}_n, p_n , a legal move in $j_{0,2n}(\mathcal{A})[x]$ following P_n .

II plays extenders E_{2n}, E_{2n+1} giving rise to models M_{2n+1}, M_{2n+2} , and to an embedding $j_{2n,2n+2}: M_{2n} \to M_{2n+2}$. (The T-predecessor of 2n+1 is $2l_n+1$ if $l_n \neq$ "new" and 2n otherwise.)

We let $Q_n = j_{2n,2n+2}(P_n -, l_n, \mathcal{X}_n, p_n)$. (This is the "shifting" mentioned before.)

II plays $\mathcal{F}_n, \mathcal{D}_n$, a legal move in $j_{0,2n+2}(\mathcal{A})[x]$ following Q_n .

We let $P_{n+1} = Q_n - \mathcal{F}_n, \mathcal{D}_n$ and proceed to the next round.

Definition. A **pivot** for x is a pair \mathcal{T} , \vec{a} so that

- 1. \mathcal{T} is an iteration tree on M, with an even branch.
- 2. \vec{a} is a run of $j_{\text{even}}(\mathcal{A})[x]$.
- 3. For every odd branch b of \mathcal{T} , there exists some h so that
 - (a) h is $col(\omega, j_b(\delta))$ -generic/ M_b ; and
 - (b) $x \in j_b(A)[h]$.

Any run of $\mathcal{A}^*[x]$ produces \mathcal{T} , \vec{a} which satisfy conditions 1 and 2.

Lemma 2. There exists $\sigma_{piv}[x,g]$, a strategy for II in $\mathcal{A}^*[x]$, so that every run according to $\sigma_{piv}[x,g]$ is a pivot.

The association $x, g \mapsto \sigma_{\mathsf{piv}}[x, g]$ is continuous.

The proof of Lemma 2 draws heavily on the techniques of Martin–Steel's "A proof of projective determinacy". The assumption that δ is a Woodin cardinal is crucial.

To sum: Have continuous associations $x\mapsto \mathcal{A}[x];\ x,g\mapsto \sigma_{\mathsf{gen}}[x,g];\ x\mapsto \mathcal{A}^*[x];$ and $x,g\mapsto \sigma_{\mathsf{Div}}[x,g].$

 $\sigma_{gen}[x,g]$ is a strategy for I in $\mathcal{A}[x]$.

If \vec{a} is an infinite run of $\mathcal{A}[x]$ according to $\sigma_{\text{gen}}[x,g]$, then $x \notin \dot{A}[g]$.

 $\sigma_{\mathsf{piv}}[x,g]$ is a strategy for II in $\mathcal{A}^*[x]$.

If \mathcal{T} , \vec{a} is an infinite run of $\mathcal{A}^*[x]$ according to $\sigma_{\mathsf{DiV}}[x,g]$, then

for every odd branch b of \mathcal{T} , there exists some h so that

- h is $col(\omega, j_b(\delta))$ —generic/ M_b ; and
- $x \in j_b(A)[h]$.

Σ_2^1 determinacy:

Fix $A \subset \mathbb{R}$, a Σ_2^1 set (say the set of reals which satisfy a given Σ_2^1 statement ϕ).

Suppose there is an iterable class model M with a Woodin cardinal δ . Suppose that (in V) there is g which is $col(\omega, \delta)$ —generic/M.

We intend to prove that (in V) $G_{\omega}(A)$ is determined.

Let $\dot{A} \in M$ name A. More precisely, \dot{A} names the set of reals of $M^{\operatorname{col}(\omega,\delta)}$ which satisfy ϕ in $M^{\operatorname{col}(\omega,\delta)}$.

We have $x \mapsto \mathcal{A}[x]$, $x, g \mapsto \sigma_{\text{gen}}[x, g]$, etc. as before.

Let G be the following game, defined and played inside M:

I and II alternate playing natural numbers, producing together $x = \langle x_0, x_1, \ldots \rangle \in \mathbb{R}$. In addition they play moves $a_{0-I}, a_{0-II}, \ldots$ in $\mathcal{A}[x]$.

II is the closed player; she wins if she can last all ω moves. Otherwise I wins.

G is a closed game, hence determined. A winning strategy exists in M.

Case 1: I wins G. Fix $\Sigma \in M$ a winning strategy for I (the open player).

We wish to show that I wins $G_{\omega}(A)$ in V. Let us play $G_{\omega}(A)$ against an imaginary opponent. We describe how to play, and win.

We construct a run $x \in \mathbb{R}$ of $G_{\omega}(A)$. At the same time we construct \mathcal{T} , \vec{a} , a run of $\mathcal{A}^*[x]$.

The participants in our construction are:

- The imaginary opponent: playing x_n for odd n.
- The strategy $\sigma_{\mathsf{piv}}[g,x]$: playing for II in $\mathcal{A}^*[x]$.
- The strategy Σ and its shifts along the even branch of \mathcal{T} : playing x_n for even n and playing for I in $\mathcal{A}^*[x]$ (i.e. playing for I in shifts of $\mathcal{A}[x]$).

We obtain $x \in \mathbb{R}$ and \mathcal{T} , \vec{a} a run of $\mathcal{A}^*[x]$ according to $\sigma_{\mathsf{piv}}[x,g]$.

We must check that x belongs to A.

$$M = M_0 \quad M_1 \quad M_2 \quad M_3 \quad M_4 \quad M_5 \quad M_6 \quad \cdots$$

$$\Sigma$$
 x_0

$$\sum \begin{array}{c} l_0 \\ \mathcal{X}_0 \\ p_0 \end{array}$$

$$\sigma_{ extsf{piv}}$$
 $egin{array}{c} \mathcal{F}_0 \ \mathcal{D}_0 \end{array}$

Oppnt
$$x_1$$

$$j_{0,2}(\mathbf{\Sigma})$$
 l_1
 \mathcal{X}_1
 p_1

$$\sigma_{\mathsf{piv}}$$
 \mathcal{F}_1 \mathcal{D}_1

$$j_{0,4}(\Sigma)$$
 x_2

$$j_{0,4}(\Sigma)$$
 l_2 χ_2 p_2

Note that x, \vec{a} is an infinite run of $j_{\text{even}}(G)$ according to $j_{\text{even}}(\Sigma)$.

Now Σ is a strategy for the open player in G. So there are no infinite runs according to Σ . But there is an infinite run according to $j_{\text{even}}(\Sigma)$. Thus M_{even} is **illfounded**.

M is iterable. So there exists some branch b of \mathcal{T} so that M_b is wellfounded. b must be an odd branch.

By Lemma 2, \mathcal{T} , \vec{a} is a pivot for x. Thus there is h so that

- h is $col(\omega, j_b(\delta))$ -generic/ M_b and
- $x \in j_b(A)[h]$.

This means that in $M_b[h]$, x satisfies the Σ_2^1 statement ϕ .

By absoluteness, x satisfies ϕ in V. (This uses the wellfoundedness of M_b .)

So $x \in A$ as required. $\square(\text{Case 1.})$