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used to discover the strength, relative to standard axioms,
of INDEC, the first non-logical statement shown to be a
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Reverse mathematics

is a program in mathematical
logic that seeks to determine which axioms are required
to prove theorems of mathematics. The method can
briefly be described as “going backwards from the
theorems to the axioms”. This contrasts with the ordinary
mathematical practice of deriving theorems from axioms.

Wikipedia

Primary reference, Simpson [1999].
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Reverse mathematics

Work over a weak base system. Various standard axioms
provide strengthening. Given a theorem Φ, find, ideally, a
standard axiom A so that, over the base system:

1. A is enough to prove Φ.

2. A is necessary to prove Φ.

A retreat from 2:

2′. The standard axioms weaker than A are not enough
to prove Φ.

Equivalently:

2′. There is a model of the base system satisfying the
standard axioms weaker than A, in which Φ fails.

Conceptually similar to consistency proofs in set theory.
But concerned mainly with theorems of analysis (second
order number theory).
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Reverse mathematics, continued
Some theorems addressed by reverse mathematics:

I Heine-Borel theorem on [0,1].
I Sequential completeness of R.
I Bolzano–Weierstrass theorem.
I The perfect set theorem.
I Open determinacy.
I Cantor-Bendixson theorem.
I . . . .

Natural base system: axioms of PA for the natural
numbers (or PA− and limited induction), and ∆0

1
comprehension.

Additional axioms provide sets of natural numbers,
beyond the recursive sets one gets from the base system.

Reverse mathematics measures how much of this extra
strength is needed for each theorem.
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Subsystems of analysis
Standard markers of strength include the following set
existence axioms,

increasing over the base system RCA0,
consisting of PA−, Σ0

1 induction, and ∆0
1 comprehension.

1. ∆0
1 comprehension: for Σ0

1 formulas ϕ, ψ, if
ϕ(n) ↔ ¬ψ(n), then {n | ϕ(n)} exists.

2. Weak König lemma: each infinite subtree of the
binary tree has a branch.

3. Arithmetic comprehension.
4. Jump iteration: Turing jumps exist, and existing

iterations can be continued.
5. Weak Σ1

1 choice: if (∀n)(∃!x)ϕ(n, x), then there is
〈yn | n < ω〉 so that (∀n)ϕ(n, yn). Arithmetic ϕ

6. ∆1
1 comprehension.

7. Σ1
1 choice: as 5, but without assuming uniqueness.

8. Arithmetic transfinite recursion: arithmetic
comprehension can be iterated transfinitely.

9. Π1
1 comprehension.
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Subsystems of analysis, continued

1. ∆0
1 comprehension.

2. Weak König lemma.

3. Arithmetic comprehension.

4. Jump iteration: Turing jumps exist, and existing iterations can be
continued.

5. Weak Σ1
1 choice. (With uniqueness.)

6. ∆1
1 comprehension.

7. Σ1
1 choice.

8. Arithmetic transfinite recursion.

9. Π1
1 comprehension.

Added to RCA0, forming subsystems of analysis.

1, 2, 3, 8, 9 give big five systems of reverse mathematics.

4, 5, 6, 7 give systems of hyperarithmetic analysis:

T is a theory of hyperarithmetic analysis if (a) its ω
models are closed under joins and hyperarithmetic
reducibility; (b) it holds in HYP(x) for all x .
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6. ∆1
1 comprehension.

7. Σ1
1 choice.

8. Arithmetic transfinite recursion.

9. Π1
1 comprehension.

Added to RCA0, forming subsystems of analysis.

1, 2, 3, 8, 9 give big five systems of reverse mathematics.

4, 5, 6, 7 give systems of hyperarithmetic analysis:

T is a theory of hyperarithmetic analysis if

(a) its ω
models are closed under joins and hyperarithmetic
reducibility; (b) it holds in HYP(x) for all x .
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Steel forcing

Starting model M = Lωck
1

= HYP.

Forcing adds a tree T on ω, with a generic countable set
of branches B.

Key property: Lα[T ] (α < ωck
1 ) cannot distinguish between

ranks > α in the tree T .

More generally, for finite F ⊆ B, Lα[T ,F ] cannot
distinguish between ranks > α in T−{t | t extends to
b ∈ F}.

For finite F ⊆ B, set MF = M[T ,F ] = HYP[T ,F ].

For K ⊆ B, set MK =
⋃

F⊆K , finite M[T ,F ].

With choice of K , powerful way to produce models of
hyperarithmetic analysis.
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Steel forcing, example 1

I Lα[T ] cannot distinguish between ranks > α in the tree T .
I Lα[T , F ] cannot distinguish between ranks > α in T − {t | t extends to

b ∈ F}.
I MK =

S
F⊆K , finite M[T , F ].

For example, take K = B.

The only branches through T in M[T ,F ] are those in F .

So, in MK there is no infinite sequence of branches
through T . In particular MK does not satisfy Σ1

1 choice.

But MK satisfies ∆1
1 comprehension.

Theorem (Steel [1977, 1978])
∆1

1 comprehension does not imply Σ1
1 choice.
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Steel forcing, example 2

Pick K ⊆ B so that the set D = {t ∈ T | t extends to
b ∈ K} codes its own complement.

D is ∆1
1 in MK , but cannot belong to MK since it

constructs infinitely many branches through T .

∆1
1 comprehension fails in MK .

On the other hand.... let ϕ be a Σ1
1 statement with

parameters in M[T ,F ], and a unique witness in MK . This
witness must belong to M[T ,F ].

Weak Σ1
1 choice holds in MK .

Theorem (Van Wesep [1977])
Weak Σ1

1 choice does not imply ∆1
1 comprehension.
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Steel forcing, recent uses

More recently, Montalbán [2006] introduced new game
comprehension axioms.

State that for certain games, the set of winning positions
(for I, for II) exists.

Montalbán used Steel forcing to separate these axioms in
strength.

Most importantly Montalbán discovered the first “natural”
theorem of hyperarithmetic analysis. The next topic
describes the theorem.
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Basic Definitions

Work throughout with countable linear orders.

Definition

I A linear order (U;<U) is scattered if it does not
embed Q.

I A gap in U is a partition of U into sets L and R,
closed leftward and rightward respectively.

I A gap 〈L,R〉 is a decomposition of U if U does not
embed into L, and does not embed into R.

I U is indecomposable if, for every gap 〈L,R〉, U
embeds into either L or R.

Note
If U is scattered, it cannot embed into both L and R.
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I A gap in U is a partition of U into sets L and R,
closed leftward and rightward respectively.

I A gap 〈L,R〉 is a decomposition of U if U does not
embed into L, and does not embed into R.

I U is indecomposable if, for every gap 〈L,R〉, U
embeds into either L or R.

Note
If U is scattered, it cannot embed into both L and R.
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Jullien’s Indecomposability Theorem

Recall, U is indecomposable if, for every gap 〈L,R〉, U
embeds into either L or R.

Definition
U is indecomposable to the left if whenever 〈L,R〉 is a
gap with L 6= ∅, U embeds into L. Indecomposability to
the right defined similarly.

Theorem (Jullien 1969)
Suppose U is scattered and indecomposable. Then U is
indecomposable to the left, or indecomposable to the
right.

Used classically for classifying linear orders. More
recently by Montalbán working on strength of Fraïssé’s
conjecture.
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Proof of INDEC

Suppose U is scattered, indecomposable.

For each a ∈ U, set
I La = {x | x <U a},
I Ra = {x | x >U a}.

By indecomposability, U embeds into either La or Ra. It
does not embed into both.

Set
I R∗ = {a | U embeds into La},
I L∗ = {a | U embeds into Ra}.

If R∗ is empty, then U is indecomposable to the right, and
we are done. Similarly if L∗ is empty then U is
indecomposable to the left. So suppose neither is .
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Proof of INDEC

Suppose U is scattered, indecomposable.

For each a ∈ U, set
I La = {x | x <U a},
I Ra = {x | x >U a}.

By indecomposability, U embeds into either La or Ra. It
does not embed into both.

Set
I R∗ = {a | U embeds into La},
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Proof of INDEC, continued

For each a, U embeds into either La or Ra, not both.

R∗ = {a | U embeds into La},
L∗ = {a | U embeds into Ra}.

For contradiction, neither R∗ nor L∗ is empty.

L∗,R∗ partition U. R∗ is closed rightward, L∗ is closed
leftward.

By indecomposability, U embeds into L∗ or R∗. Suppose
for definitiveness it is L∗. Let σ : U → L∗.

Fix a ∈ R∗ (possible since R∗ 6= ∅). Let b = σ(a) ∈ L∗.

Then range(σ2) is to the left of b. So U embeds into Lb.
Since b ∈ L∗, U also embeds into Rb. Contradiction.
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L∗,R∗ partition U. R∗ is closed rightward, L∗ is closed
leftward.

By indecomposability, U embeds into L∗ or R∗. Suppose
for definitiveness it is L∗. Let σ : U → L∗.

Fix a ∈ R∗ (possible since R∗ 6= ∅). Let b = σ(a) ∈ L∗.

Then range(σ2) is to the left of b. So U embeds into Lb.
Since b ∈ L∗, U also embeds into Rb. Contradiction.



Steel forcing in
reverse math

I.Neeman

Reverse
Mathematics

Steel forcing

INDEC

Implication

Consistency

Summary

INDEC and hyperarithmetic analysis

INDEC was proved by Jullien [1969]. Part of an
investigation of the structure of linear orders.

Montalbán [2006] was led to it working on strength of
Fraïssé’s conjecture = Laver [1971] theorem.

Investigating INDEC, Montalbán:

1. Observed that INDEC is provable in RCA0 + ∆1
1

comprehension. It follows that INDEC holds in
HYP(X ) for all X .

2. Proved that every ω model of INDEC is closed under
the αth Turing jump, for each ordinal α in the model.
It follows that ω models of INDEC are closed under
hyperarithmetic reducibility.

INDEC is thus a theorem of hyperarithmetic analysis. It is
the first “natural” example of such a theorem.
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Questions

1. ∆0
1 comprehension.

2. Weak König lemma.

3. Arithmetic comprehension.

4. Jump iteration: Jump iteration: Turing jumps exist, and existing iterations
can be continued.

5. Weak Σ1
1 choice. (With uniqueness.)

6. ∆1
1 comprehension.

7. Σ1
1 choice.

8. Arithmetic transfinite recursion.

9. Π1
1 comprehension.

The precise strength of INDEC remained open.

Does INDEC imply Jump iteration? (Montalbán’s proof
did not establish this; worked only in ω models.)

Is INDEC even comparable with weak Σ1
1 choice?

Does it imply ∆1
1 comprehension? can it be proved from

weak Σ1
1 choice?
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From INDEC

Theorem
(In RCA∗.) INDEC implies weak Σ1

1 choice.

RCA∗ consists of PA−, Σ1
1 induction, ∆0

1 comprehension.

Proof sketch.
Suppose (∀n)(∃!x)ϕ(n, x), arithmetic ϕ.
Construct, in RCA∗, a linear order (U;<U) so that:

1. U is scattered.

2. L∗ = {a | U embeds into Ra} and R∗ = {a | U
embeds into La} form a non-trivial gap in U.

3. This gap codes a sequence 〈yn | n < ω〉 so that
(∀n)ϕ(n, yn).

By INDEC, 〈L∗,R∗〉 exists, hence 〈yn | n < ω〉 exists.
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1. U is scattered.

2. L∗ = {a | U embeds into Ra} and R∗ = {a | U
embeds into La} form a non-trivial gap in U.

3. This gap codes a sequence 〈yn | n < ω〉 so that
(∀n)ϕ(n, yn).

By INDEC, 〈L∗,R∗〉 exists, hence 〈yn | n < ω〉 exists.
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From INDEC, continued

General tactic

1. U is scattered.

2. L∗ = {a | U embeds into Ra} and R∗ = {a | U embeds into La} form a
non-trivial gap in U.

3. This gap codes a sequence 〈yn | n < ω〉 so that (∀n)ϕ(n, yn).

This general tactic used by Montalbán, U designed so
that gap codes Turing jump.

We need a more powerful order U.

Our U is built from the tree of attempts to construct
B = 〈yn | n < ω〉, modified so it embeds into La for a to
the right of B, and into Ra for a to the left of B.

Can only get scatteredness indirectly:

From uniqueness of 〈yn | n < ω〉 get U has only countably
many branches. Hence <U is scattered.
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Consistency results

1. ∆0
1 comprehension.

2. Weak König lemma.

3. Arithmetic comprehension.

4. Jump iteration: Jump iteration: Turing jumps exist, and existing iterations
can be continued.

5. Weak Σ1
1 choice. (With uniqueness.)

6. ∆1
1 comprehension.

7. Σ1
1 choice.

8. Arithmetic transfinite recursion.

9. Π1
1 comprehension.

Know ∆1
1 comprehension proves INDEC.

Showed INDEC proves weak Σ1
1 choice.

Does weak Σ1
1 choice prove INDEC? Does INDEC prove

∆1
1 comprehension?

Answer is no for both.

Proof uses..... Steel forcing.
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Back to models of hyperarithmetic analysis

Does weak Σ1
1 choice prove INDEC? Does INDEC prove

∆1
1 comprehension?

Use Steel forcing to construct models for:

1. Weak Σ1
1 choice plus failure of INDEC.

2. INDEC plus failure of ∆1
1 comprehension.

Forcing adds a tree T on ω, and a set B of branches
through T .

For F ⊆ B finite, the only branches of T in
MF = HYP(T ,F ) are the ones in F .

Models are MK =
⋃

F⊆K finite MF , carefully selected
K ⊆ B.

The branches of T in MK are those in K . No infinite
sequence of branches in MK .
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1. Weak Σ1
1 choice plus failure of INDEC.

2. INDEC plus failure of ∆1
1 comprehension.

For 1, use the Van Wesep model. K picked so that
D = {t ∈ T | t extends to b ∈ K} codes its own
complement.

Used by Van Wesep to get weak Σ1
1 choice plus failure of

∆1
1 comprehension.

Show INDEC fails in this model. Counterexample to
INDEC similar to earlier U. Involves tree of attempts to
construct D.

For 2: Add a Cohen generic h : ω → 2. Take
K = {branches in B which start with (n,e), e even iff
h(n) = 0}.

h is ∆1
1 over MK , so ∆1

1 comprehension fails. Use
homogeneity, scatteredness, and properties of Steel
forcing, to argue INDEC holds.
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Summary

Steel forcing provides a powerful method for constructing
models of hyperarithmetic analysis.

Previously used to separate axioms.

INDEC: Every scattered indecomposable linear order is
indecomposable to left, or indecomposable to right.

First natural theorem of hyperarithmetic analysis
(Montalbán).

We found its strength relative to reverse mathematics
markers:

Implies weak Σ1
1 choice. Does not follow from weak Σ1

1
choice. Does not imply ∆1

1 comprehension.

Used Steel forcing. Many other recent uses, see
Montalbán [2006], [2008].
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