Inner models and ultrafilters in $L(\mathbb{R})$

Itay Neeman

Department of Mathematics
University of California Los Angeles
Los Angeles, CA 90095-1555
ineeman@math.ucla.edu

Part 2:

- 1. Review.
- 2. Iteration trees and directed systems.
- 3. Supercompactness measure on $\mathcal{P}_{\omega_1}(\aleph_{\omega})$.
- 4. Ultrafilter on $[\mathcal{P}(\omega_1)]^{<\omega_1}$.
- 5. Forcing over $L(\mathbb{R})$ to collapse \aleph_{ω} to ω_1 .

Large cardinal assumption:

For each $u \in \mathbb{R}$ there is a class model M s.th.

- (1) $u \in M$;
- (2) M has ω Woodin cardinals, say with sup δ ;
- (3) $\mathcal{P}(\delta)^M$ is countable in V; and
- (4) M is iterable.

Any statement (with real parameters) (*) forced to hold in the symmetric collapse of M, holds in the true $L(\mathbb{R})$.

Ultrafilter on ω_1 :

a(M) =first measurable of M.

 $C_M = \{a(P) \mid P \text{ a linear iterate of } M\}.$

Used (*) to show that for every $X \subset \omega_1$ in L(\mathbb{R}), have M so that either $C_M \subset X$ or $C_M \subset \neg X$.

Ultrafilter on $[\omega_1]^{<\omega_1}$:

 κ the first measurable limit of measurables in M.

 $\langle \tau_\xi \mid \xi < \gamma \rangle$ lists the measurables of M below κ in increasing order.

$$a(M) = \langle \tau_{\xi} \mid \xi < \gamma \rangle.$$

 C_M as before.

The sets C_M generate an ultrafilter. Used (*) to get bddness. Used bddness in forcing.

Next, aim to do the same with \aleph_{ω} instead of ω_1 .

In general iterations may be *non*-linear.

Non-linear iterations are called **iteration trees**.

Iteration trees involve some choices at limit stages. M is **iterable** if these choices can be made in a way which secures well-foundedness.

A **correct** iteration tree on an iterable M is one which follows the limit choices needed to secure wellfoundedness.

Already at the level of linear iterations there is an implicit notion of correctness: A linear iteration of "length α " is "correct" if α is well-founded.

This "correctness" for linear iterations is Π_1^1 . In the claim of boundedness last time it was the contribution of correctness to the complexity of the set

(\exists an iterate P of M)($\psi[a(P), x, u]$ holds in a symmetric collapse of P).

that made it Σ_2^1 .

For iteration trees the complexity of correctness is higher. How high depends on the large cardinals involved in the iteration.

Let M be iterable and let $\tau \in M$ be least such that $L(M||\tau) \models \text{``}\tau$ is Woodin.''

For iteration trees on M using extenders from below τ , correctness is roughly Π_2^1 .

Let M now be fine-structural over a real u.

Any two correct iterates of M can be com- pared.

In other words, for any two correct iterations $j_1: M \to P_1$ and $j_2: M \to P_2$ there are further iterations $h_1: P_1 \to Q_1$ and $h_2: P_2 \to Q_2$ so that $Q_1 = Q_2$.

Further, the embeddings given by correct iterations are unique, by the Dodd-Jensen lemma. $k_1: M \to Q$ and $k_2: M \to Q$ both iteration embeddings, then $k_1 = k_2$.

Use $\pi_{M,Q}$ for the iteration emb from M to Q.

In the situation of the comparison above the uniqueness implies that $h_1 \circ j_1$ equals $h_2 \circ j_2$.

By iteration from now on we mean a correct iteration of countable length.

Comparisons allow considering the directed system of all iterates of M.

Let \mathcal{D} be the set of pairs $\langle P, x \rangle$ so that P is a an iterate of M, and x belongs to P.

For $\langle P, x \rangle$ and $\langle P', x' \rangle$ both in \mathcal{D} set $\langle P, x \rangle \sim \langle P', x' \rangle$ iff in the comparison of P and P' get h(x) = h'(x').

 \sim is an equivalence relation on \mathcal{D} .

Define further $\langle P, x \rangle \in^* \langle P', x' \rangle$ iff in the comparison of P and P' get $h(x) \in h(x')$.

 \in * induces a wellfounded relation on \mathcal{D}/\sim . Set $M_{\infty} =$ transitive collapse of $(\mathcal{D}/\sim; \in$ *).

 M_{∞} is the direct limit of all (countable) iterates of M. Have $\pi_{M,\infty}$ from M into M_{∞} defined by $\pi_{M,\infty}(x)=$ equivalence class of $\langle M,x\rangle$.

We are working in L(\mathbb{R}). ω_2 is equal to δ_2^1 . ω_3 , ω_4 , etc. are all singular cardinals of cofinality ω_2 . \aleph_{ω} is the size of a homogeneous tree for Π_2^1 sets. $\aleph_{\omega+1}$ is equal to δ_3^1 .

Suppose M is iterable, $\tau = \tau(M)$ is least such that $L(M||\tau) \models \text{``}\tau$ is Woodin,'' and τ is countable in V.

Theorem (Woodin): $\pi_{M,\infty}(\tau)$ is equal to \aleph_{ω} .

This is connected to the fact that correctness for trees below τ is roughly Π^1_2 .

Recall our scheme for getting ultrafilters:

Define a(M) somehow.

Set $C_M = \{a(P) \mid P \text{ is an iterate of } M\}.$

Use the C_M s to generate an ultrafilter.

Here we want an ultrafilter on $\mathcal{P}_{\omega_1}(\aleph_{\omega})$. So we need $a(M) \in \mathcal{P}_{\omega_1}(\aleph_{\omega})$.

Natural attempt: set $a(M) = \pi_{M,\infty}'' \tau(M)$.

Then $a(M) \in \mathcal{P}_{\omega_1}(\aleph_{\omega})$ and $C_M \subset \mathcal{P}_{\omega_1}(\aleph_{\omega})$.

As before the sets C_M generate an ultrafilter.* It's the supercompactness measure on $\mathcal{P}_{\omega_1}(\aleph_{\omega})$.

^{*}The finite intersection property takes more work here than in the case of ω_1 . More on this in the next talk.

Proof of normality:

Fix $f \in L(\mathbb{R})$ on $\mathcal{P}_{\omega_1}(\aleph_{\omega})$ such that $f(X) \in X$ for all X.

Wlog, f is definable from a real u. Fix φ so that $f(X) = \alpha$ iff $L(\mathbb{R}) \models \varphi[u, X, \alpha]$.

Take M satisfying L.C. assumption with $u \in M$. Let τ be least so that $L(M||\tau) \models \text{``}\tau$ is Woodin.''

Look at $\alpha = f(a(M))$.

 α belongs to $a(M) = \pi_{M,\infty}'' \tau$.

Have $\bar{\alpha} < \tau$ in M so that

$$f(\pi_{M,\infty}''(\tau)) = \pi_{M,\infty}(\bar{\alpha}).$$

This statement (about M, τ , and $\bar{\alpha}$) is true in L(\mathbb{R}); hence true in the symmetric collapse of M; hence true in the symmetric collapse of every iterate P of M, about P, $\pi_{M,P}(\tau)$, and $\pi_{M,P}(\bar{\alpha})$; hence true in L(\mathbb{R}) about P, $\pi_{M,P}(\tau)$, and and $\pi_{M,P}(\bar{\alpha})$.

So

$$f(a(P)) = f(\pi_{P,\infty}"\pi_{M,P}(\tau))$$

$$=^* \pi_{P,\infty}(\pi_{M,P}(\bar{\alpha}))$$

$$= \pi_{M,\infty}(\bar{\alpha})$$

$$= \alpha$$

for every iterate P of M.

In other words, $f(X) = \alpha$ for all $X \in C_M$.

An ultrafilter on $[\mathcal{P}_{\omega_1}(\aleph_{\omega})]^{<\omega_1}$:

Let M be an iterable fine-structural model over a real u.

Say that $\tau \in M$ is **good** if $M \| \tau \models \text{``}\tau$ is Woodin.''

Suppose M has a measurable limit of good cardinals, and let $\kappa = \kappa(M)$ be the least such.

Suppose κ is countable in V.

Let $\langle \tau_{\xi} \mid \xi < \gamma \rangle$ list the good cardinals of M below κ , in increasing order.

For each $\alpha < \gamma$ let g_{α} be generic over M for collapsing $\sup \{ \tau_{\xi} \mid \xi < \alpha \}$. Let M_{α} denote $M[g_{\alpha}]$.

 τ_{α} is the first good cardinal of $M_{\alpha} = M[g_{\alpha}]$.

Set
$$a_{\alpha} = \pi_{M_{\alpha},\infty} " \tau_{\alpha}$$
, and $a(M) = \langle a_{\alpha} \mid \alpha < \gamma \rangle$.

Then each a_{α} belongs to $\mathcal{P}_{\omega_1}(\aleph_{\omega})$, and a(M) belongs to $[\mathcal{P}_{\omega_1}(\aleph_{\omega})]^{<\omega_1}$.

Set $C_M = \{a(P) \mid P \text{ is an iterate of } M\}.$

Our earlier proofs all carry over to the current settings.

The sets C_M generate an ultrafilter on $[\mathcal{P}_{\omega_1}(\aleph_{\omega})]^{<\omega_1}$, call it \mathcal{F} .

The ultrafilter concentrates on long sequences.

The projection of \mathcal{F} to $[\mathcal{P}_{\omega_1}(\aleph_{\omega})]^1$ is precisely our earlier filter, namely the supercompactness measure, on $\mathcal{P}_{\omega_1}(\aleph_{\omega})$

The projection of \mathcal{F} to $[\mathcal{P}_{\omega_1}(\aleph_{\omega})]^{\alpha}$ is the α -length iteration of the supercompactness measure.

The proof of boundedness for the filter on $[\omega_1]^{<\omega_1}$ also carries over to current settings.

Recall that in that proof we defined E to be the set of reals x so that:

(\exists an iterate P of M)($\psi[a(P), x, u]$ holds in a symmetric collapse of P).

E was Σ_2^1 , and this allowed proving boundedness for functions into $\omega_2 = \delta_2^1$.

In the current settings being a (correct) iterate is Π_2^1 . E is therefore Σ_3^1 , and the proof of boundedness works for $\delta_3^1 = \aleph_{\omega+1}$. We get:

Claim: Let $g: [\mathcal{P}_{\omega_1}(\aleph_{\omega})]^{<\omega_1} \to \aleph_{\omega+1}$. Then there is a set $X \in \mathcal{F}$ so that $g \upharpoonright X$ is bounded below $\aleph_{\omega+1}$.

For the s.c. measure on $\mathcal{P}_{\omega_1}(\aleph_{\omega})$ (as opposed to the iterated measure on $[\mathcal{P}_{\omega_1}(\aleph_1)]^{<\omega_1}$) boundedness is due to Becker (1979) by classical methods.

An application to forcing over $L(\mathbb{R})$:

Recall: can use \mathcal{F} to define a forcing notion.

Conditions are pairs (t, Y) where: t belongs to $[\mathcal{P}_{\omega_1}(\aleph_{\omega})]^{<\omega_1}$; Y is a set of extensions of t; and $\{s \mid t \cap s \in Y\}$ is nice.

 $(X \subset [\mathcal{P}_{\omega_1}(\aleph_{\omega})]^{<\omega_1}$ is **nice** if: $X \in \mathcal{F}$; X is ctbly closed; and $\{r \mid s \cap r \in X\} \in \mathcal{F}$ for each $s \in X$.)

The order on conditions is defined in the natural way: (t',Y')<(t,Y) if t' extends $t, Y'\subset Y$, and $t'\in Y$.

Let \mathbb{A} be this poset. Let H be \mathbb{A} —generic over $L(\mathbb{R})$.

 $\mathbb A$ is countably closed. So it does not add reals. It follows ω_1 is not collapsed by $\mathbb A$, and that δ_3^1 is not changed.

H introduces a sequence $\langle a_{\xi} \mid \xi < \omega_1 \rangle$, with each a_{ξ} a countable subset of \aleph_{ω} .

The genericity of H implies that $\bigcup a_{\xi} = \aleph_{\omega}$. Thus, H collapses \aleph_{ω} to ω_1 . $\xi < \omega_1$

Boundedness implies that $\aleph_{\omega+1}$ is not collapsed.

So $\aleph_{\omega+1}$ becomes ω_2 in the generic extension.

Since δ_3^1 does not change, we have:

$$L(\mathbb{R})[H] \models \text{``}\delta_3^1 = \omega_2.\text{''}$$

Steel-VanWesep-Woodin (\approx 1980) show how to force over L(\mathbb{R}) and introduce the axiom of choice without collapsing ω_2 . Their methods adapt to forcing over L(\mathbb{R})[H], giving:

Theorem (N., Woodin independently): It is consistent with ZFC (and $AD^{L(\mathbb{R})}$) that $\delta_3^1 = \omega_2$.

Same argument works for higher levels.

Can get the s.c. measure on $\mathcal{P}_{\omega_1}(\lambda)$ for any $\lambda \leq \delta_1^2$.

Can collapse $\alpha < \delta_n^1$ to ω_1 without collapsing δ_n^1 . Get the consistency of ZFC + AD^{L(\mathbb{R})} + $\delta_n^1 = \omega_2$.

With a modification, can recover results by Becker–Jackson on the supercompactness of the δ_n^1 s.

For example, to get the supercompactness measure on $\mathcal{P}_{\omega_2}(\aleph_{\omega})$:

Let M be a model with a cardinal τ so that $L(M||\tau) \models \text{``}\tau$ is Woodin.'' Define

$$a(M) = \bigcup {\pi_{Q,\infty}}'' \pi_{M,Q}(\tau).$$
 Q an iterate of M via a tree in $L(M\|\tau)$ (except for final branch).

Then define C_M as before.

a(M) here has size \aleph_1 . Get an ultrafilter on $\mathcal{P}_{\omega_2}(\aleph_{\omega})$.