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Part 2:

1. Review.

2. Iteration trees and directed systems.

3. Supercompactness measure on Py, (Ny).
4. Ultrafilter on [P(wq)]<%1.

5. Forcing over L(R) to collapse N, to wj.
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LLarge cardinal assumption:

For each u € R there is a class model M s.th.
(1) uwe M,

(2) M has w Woodin cardinals, say with sup §;
(3) P(6)M is countable in V; and

(4) M is iterable,

Any statement (with real parameters) (%)
forced to hold in the symmetric collapse
of M, holds in the true L(R).

Ultrafilter on wq:
a(M) = first measurable of M.
Cyr = {a(P) | P a linear iterate of M}.

Used (x) to show that for every X C wy in L(R),
have M so that either Cj; C X or Cp; C —X.

1



Ultrafilter on [wq1]<%1:
k the first measurable limit of measurables in M.

(¢ | § <) lists the measurables of M below x
In increasing order.

a(M) = (1 | £ <7).
C'ys as before.

The sets C); generate an ultrafilter. Used ()
to get bddness. Used bddness in forcing.

Next, aim to do the same with R, instead of
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In general iterations
may be non-linear.

Non-linear iterations
are called iteration
trees.

Iteration trees involve
some choices at limit
stages. M is iter-
able if these choices
can be made in a way
which secures well-
foundedness.

A correct iteration
tree on an iterable M
is one which follows
the limit  choices
needed to secure
wellfoundedness.

M,41
]\{w
Mz
Me
My
M4/
J2.4 M3
M> 71,3
Jo,2 M4
J0,1




Already at the level of linear iterations there
IS an implicit notion of correctness: A linear
iteration of “length «" is “correct” if o is well-
founded.

This “correctness” for linear iterations is IT7.
In the claim of boundedness last time it was the
contribution of correctness to the complexity
of the set

(3 an iterate P of M)(¥[a(P),x,u] holds in a
symmetric collapse of P).

that made it 3.

For iteration trees the complexity of correct-
ness is higher. How high depends on the large
cardinals involved in the iteration.

Let M be iterable and let - € M be least such
that L(M|| ) =" is Woodin.”

For iteration trees on M using extenders from
below 7, correctness is roughly TI3.



Let M now be fine-structural over a real w.

Any two correct iterates of M can be com-
pared.

In other words, for any two correct iterations
71 M — P1; and j>: M — P> there are further
iterations hq1: P — @1 and ho: Pb — (> SO

that Q1 = Q».
Q1 = Q2
T TN
Py P>
iR

Further, the embeddings given by correct iter-
ations are unique, by the Dodd—Jensen lemma.
ki1: M — Q and ky: M — @Q both iteration em-
beddings, then k1 = k».

Use s o for the iteration emb from M to Q.

In the situation of the comparison above the
unigueness implies that Ay o 31 equals ho o jo.
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By iteration from now on we mean a correct
iteration of countable length.

Comparisons allow considering the directed sys-
tem of all iterates of M.

Let D be the set of pairs (P,x) so that P is a
an iterate of M, and x belongs to P.

For (P,z) and (P’ z/Y) both in D set
(P, x) ~ (P’ x') iff in the comparison of P and
P’ get h(x) = h'(2).

~ IS an equivalence relation on D.

Define further (P,z) €* (P’ x') iff in the com-
parison of P and P’ get h(z) € h(2').

€* induces a wellfounded relation on D/~. Set
Mso = transitive collapse of (D/~; €%).

Mo is the direct limit of all (countable) iterates
of M. Have 7y o, from M into Moo defined by
T 0o(x) = equivalence class of (M, x).



We are working in L(R). wo is equal to §3. wa,
w4, €tc. are all singular cardinals of cofinality
wo. N, IS the size of a homogeneous tree for
13 sets. R, 1 is equal to 43.

Suppose M is iterable, 7 = 7(M) is least such
that L(M||7) E="7 is Woodin,” and 7 is count-
able in V.

Theorem (Woodin): m)/ ., (7) is equal to R,.

This is connected to the fact that correctness
for trees below 7 is roughly TI3.



Recall our scheme for getting ultrafilters:
Define a(M) somehow.

Set Cyy = {a(P) | P is an iterate of M}.
Use the Cj/s to generate an ultrafilter.

Here we want an ultrafilter on Py, (Xy). So we
need a(M) € Pu;(Ry).

Natural attempt: set a(M) = mp; o/ 7(M).
Then a(M) € Pu;(Ry,) and Cyy C P (Ny).

As before the sets Cj; generate an ultrafilter.*
It’s the supercompactness measure on Pwl(Nw).

*The finite intersection property takes more work here than in the
case of wi. More on this in the next talk.
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Proof of normality:

Fix f € L(R) on Py, (Ry) such that f(X) € X
for all X.

WIlog, f is definable from a real u. Fix ¢ soO
that f(X) = «a iff L(R) = ¢lu, X, a].

Take M satisfying L.C. assumption with u &
M. Let 7 be least so that L(M| 1) =7 is
Woodin."”

Look at a = f(a(M)).

o belongs to a(M) = mr "7



Have a < 7 in M so that

f(ﬂ'M,oo”(T)) — 7"']\4,00(54)-

This statement (about M, 7, and &) is true
in L(R); hence true in the symmetric collapse
of M: hence true in the symmetric collapse of
every iterate P of M, about P, WM,p(T), and
mpr, p(a); hence true in L(R) about P, mps p(7),

and WM,P(&)-

So

fa(P)) = [f(rpo"mpp(T))
=* Tpoo(mr p(@))
71-M,oo(&)

for every iterate P of M.

In other words, f(X) =« for all X € C),.
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An ultrafilter on [Py, (Ry)]<«1:

Let M be an iterable fine-structural model over
a real u.

Say that r € M isgood if M||r = "r is Woodin."”

Suppose M has a measurable limit of good
cardinals, and let x = k(M) be the least such.

Suppose k is countable in V.

Let (1 | £ < ) list the good cardinals of M
below k, in increasing order.

For each a < ~ let go be generic over M for col-
lapsing sup{7¢ | £ < a}. Let M, denote M|ga].

To IS the first good cardinal of My = M|ga].
Set aq = )1, 00" Ta, aNd a(M) = (aa | a < 7).

Then each aq belongs to Py, (Ry), and a(M)
belongs to [P, (Ry,)]<¥1.
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Set Cp; = {a(P) | P is an iterate of M}.

Our earlier proofs all carry over to the current
settings.

The sets (Cj; d9generate an ultrafilter on
[Py (Ry)]<¥1, call it F.

T he ultrafilter concentrates on long sequences.

The projection of F to [P,,(Ru)]! is precisely
our earlier filter, namely the supercompactness
measure, on Py (Ny)

The projection of F to [Pu;(Ry,)]* is the a-

length iteration of the supercompactness mea-
sure.
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The proof of boundedness for the filter on
[w1]<¥1 also carries over to current settings.

Recall that in that proof we defined E to be
the set of reals  so that:

(3 an iterate P of M) (¢[a(P),x,u] holds in a
symmetric collapse of P).

E was Z%, and this allowed proving bounded-
ness for functions into wp = 85.

In the current settings being a (correct) iterate
is TI3. E is therefore ¥3, and the proof of
boundedness works for §3 =X, 1. We get:

Claim: Let g: [Pu;(Ru)]<¥1 — R 41. Then
there is a set X € F so that g] X is bounded
below N4 1.

For the s.c. measure on Py,;(Xy) (as opposed
to the iterated measure on [Py, (X1)]<¥1) bound-
edness is due to Becker (1979) by classical
methods.
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An application to forcing over L(R):

Recall: can use F to define a forcing notion.

Conditions are pairs (t,Y) where: t belongs to
[P, (R,)]<¥1; Y is a set of extensions of ¢; and
{s|tT"s €Y} is nice.

(X C [Pu;(Rp)]<*1 is nice if: X € F; X is ctbly
closed; and {r |s—r e X} € F for each s € X.)

T he order on conditions is defined in the natu-
ral way: (¢, Y") < (t,Y) if t/ extends ¢, Y/ CY,
andt' €Y.

Let A be this poset. Let H be A—generic over
L(R).

A is countably closed. So it does not add reals.
It follows w1y is not collapsed by A, and that 6%
IS not changed.
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H introduces a sequence (a¢ | £ < wq), with
each ag countable subset of N,.

The genericity of H implies that [ J ag = Ry
Thus, H collapses N, to w1. §<wy

Boundedness implies that N, 1 is not collapsed.

So N, becomes wy in the generic extension.

Nyt1 + 63 w2 + 63
Ry + :
w3 -+ H
wp + §3 + 63
w1l + L W1 +
L(R) L(R)[H]

Since 6% does not change, we have:
L(R)[H] = “63 = wp.”
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Steel-VanWesep—Woodin (~1980) show how
to force over L(R) and introduce the axiom of
choice without collapsing wo. Their methods
adapt to forcing over L(R)[H], giving:

Theorem (N., Woodin independently): It is
consistent with ZFC (and AD-®))  that

5% = wo.

Same argument works for higher levels.

Can get the s.c. measure on Py, (A) for any
A < 67

Can collapse a < §; to w; without collapsing
61, Get the consistency of ZFC + AD-(R)

6,}& — W9.
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With a modification, can recover results by
Becker—Jackson on the supercompactness of
the d1s.

For example, to get the supercompactness mea-
sure on Pu,(Ryw):

Let M be a model with a cardinal = so that
L(M]|| ) ="7 is Woodin.” Define

a(M) = U WQ’OO//T('M7Q(T).

@ an iterate of M via a
tree in L(M| 1) (except
for final branch).

Then define Cy; as before.

a(M) here has size N;. Get an ultrafilter on
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