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Part 1:

1. Preliminaries.

2. The club filter on ω1.

3. An ultrafilter on [ω1]
<ω1.

4. Forcing over L(R) to add

a cub subset of ω1.
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Let M have ω Woodin cardinals. Let δ be their

supremum. Let P ∈M be the poset col(ω,<δ).

Let G = 〈Gξ | ξ < δ〉 be P–generic/M .

Define: R∗ = R∗[G] =
⋃

β<δ

R
M [G�β].

R∗ is called a symmetric collapse of M .

A set of reals B is realized as a symmetric

collapse of M if there is a generic G so that

R∗[G] = B.

Note: Let ϕ be a formula and let a1, . . . , ak be

reals or ordinals in M . Let R1 and R2 be two

symmetric collapses of M . Then

L(R1) |= ϕ[a1, . . . , ak] ⇐⇒

L(R2) |= ϕ[a1, . . . , ak].

(This follows from the homogeneity of P.)
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Cor: ϕ[a1, . . . , ak] is true in L(R∗[G]) iff this is

forced by the empty condition.

We informally refer to L(R∗[G]) (rather than

R∗[G] itself) as a symmetric collapse of M .

We say that ϕ[a1, . . . , ak] is forced to hold in

the symmetric collapse of M if it is forced (by

the empty condition) to hold in L(R∗[G]).
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Suppose now that M is iterable (more on this

later) and that P(δ)M is countable in V. Let

g : ω → R be a generic surjection.

Fact: In V[g] there is an M∗ and an elementary

π : M → M∗ so that R (the true R of V) is

realized as a symmetric collapse of M∗.

Any statement forced to hold in the symmetric

collapse of M is also forced to hold in the sym-

metric collapse of M∗, since π is elementary.

It follows that any statement forced to hold in

the symmetric collapse of M , holds in the true

L(R).

This works for statements with real parame-

ters and parameters bounded in δ. (One can

arrange that π does not move such parame-

ters.)
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The Fact is used to prove AD
L(R) from the

following large cardinal assumption:

For each u ∈ R there is a class model M s.th.

(1) u ∈M ;

(2) M has ω Woodin cardinals, say with sup δ;

(3) P(δ)M is countable in V; and

(4) M is iterable.

We will use the fact and the large cardinal as-

sumption directly, to obtain ultrafilters in L(R).
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An ultrafilter on ω1:

Let M be a countable model of ZFC with (at

least) a measurable cardinal. Let a(M) be the

first measurable cardinal of M .

The measures in M can be used to form ultra-

powers, and the process can be iterated.

M // Ult(M,µ) // Ult(M1, µ1) //_________

M1

‖

µ1∈M1 M2

‖

By a (linear) iterate of M we mean any model

P obtained through a countable iteration of

this kind.

M is (linearly) iterable if all its iterates are

wellfounded.

For an iterable M define

CM = {a(P ) | P is an iterate of M}.

Note then CM ⊂ ω1
V.
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Let M1 and M2 be countable, iterable models

with (at least) a measurable cardinal.

Let M∗ be a countable, iterable model with a

measurable cardinal, and such that both M1

and M2 belong to M∗. (Such M∗ exists by our

large cardinal assumption. Note both M1 and

M2 are coded by reals.)

It’s easy to see then that both CM∗ ⊂ CM1
and

CM∗ ⊂ CM2
.

It follows that the collection

{CM | M ctbl, iterable, with a measurable}

has the finite intersection property.

Let F be the filter generated by this collection.

An argument similar to the above shows that

in fact the collection has the countable inter-

section property. So F is countably complete.

6



Claim: F is an ultrafilter in L(R).

Proof: Let X ∈ L(R) be a subset of ω1. For

simplicity suppose X is definable in L(R) from

a real parameter u. Fix a formula ψ so that

α ∈ X iff L(R) |= ψ[α, u].

Using the large cardinal assumption fix a model

M , with ω Woodin cardinals etc., and with

u ∈M .

Ask: Is ψ[a(M), u] forced to hold in the sym-

metric collapse of M?

Suppose yes (∗).

Let P be an iterate of M . Have then an el-

ementary embedding j : M → P (the itera-

tion embedding generated by the various ul-

trapowers taken).

By (∗) and since j is elementary, ψ[a(P ), u] is

forced to hold in the symmetric collapse of P .
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By preliminaries’ Fact, it follows that ψ[a(P ), u]

really holds in L(R).

So a(P ) ∈ X.

This is true for each iterate P of M .

So CM = {a(P ) | P an iterate of M} is

contained in X.

Showed: If ψ[a(M), u] is forced to hold in the

symmetric collapse of M then CM ⊂ X.

A similar argument shows that if ψ[a(M), u] is

forced to fail then CM ⊂ ω1 −X.

So F is an ultrafilter. �
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An ultrafilter on [ω1]
<ω1:

Let M be a countable model with (at least) a

measurable limit of measurable cardinals. Let

κ = κ(M) be the first such cardinal in M .

Let 〈τξ | ξ < γ〉 list the measurable cardinals of

M below κ, in increasing order.

Define a(M) = 〈τξ | ξ < γ〉.

Note a(M) then belongs to [ω1]
<ω1.

For an iterable M define:

CM = {a(P ) | P is an iterate of M}.

Note then CM ⊂ [ω1]
<ω1.

The sets CM generate an ultrafilter: simply

carry the earlier proof (for ω1), with the current

definitions. Call this ultrafilter F.
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Let γ(M) = o.t.{τ < κ | τ is measurable in M}.

The length of the seq. a(M) is precisely γ(M).

Note: If P is an ultrapower of M by a measure

on κ, then γ(P ) > γ(M).

It follows that CM = {a(P ) | P is an iterate of

M} has sequences of arbitrarily large countable

length.

So F does not concentrate on any particular

countable length. (We say that F “concen-

trates on long sequences.”)

The projection of F to [ω1]
1 is simply our pre-

vious ultrafilter on ω1. (This is because the

first coordinate in a(M) = 〈τξ | ξ < γ〉 is the

first measurable of M .)

Similarly the projection of F to [ω1]
α for each

countable α is the α-length iteration of our

previous ultrafilter on ω1.
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Say that X ⊂ [ω1]
<ω1 is nice if:

(1) X belongs to F;

(2) X is countably closed (r0
_r1

_ . . . rn ∈ X

for each n, then r0
_r1

_ · · · ∈ X); and

(3) For each s ∈ X, {r | s_r ∈ X} belongs to F.

Each CM is nice:

CM ∈ F by definition, and by composing itera-

tions one can check CM is countably closed.

As for (3): For s ∈ CM have some iterate P

of M so that s = a(P ). Let Q be the ul-

trapower of P by a measure on κ(P ). No-

tice then s = a(P ) is a strict initial segment

of a(Q). Let Q∗ be a generic extension of Q

collapsing the ordinals of a(P ) to ω. Then

a(Q) = a(P )_a(Q∗), and {r | a(P )_r ∈ CM}

contains CQ∗.
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Note: If X is nice and s ∈ X, then X∗ = {s∗ |

s_s∗ ∈ X} is also nice.

There is a natural forcing notion suggested by

F. Conditions are pairs (t, Y ) where:

t ∈ [ω1]
<ω1; Y is a set of extensions of t; and

{s | t_s ∈ Y } is nice.

More on this forcing later.
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Claim: Let g : [ω1]
<ω1 → ω2. Then there is a

set X ∈ F so that g�X is bounded below ω2.

Proof: Recall that ω2 is equal to δ
1
2, the sup

of ∆1
2 prewellorderings.

Have a norm ρ : R → ω2 (partial, surjective) so

that if E ⊂ dom(ρ) is Σ1
2 then ρ′′E is bounded

below ω2.

Define g∗(a) = {x | x ∈ dom(ρ) ∧ ρ(x) = g(a)}.

This is g “in the codes.”

g∗ belongs to L(R). For simplicity suppose it

is definable in L(R) from a real parameter, u.

Fix ψ so that x ∈ g∗(a) iff L(R) |= ψ[a, x, u].
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Suppose P satisfies our large cardinal assump-

tion (ω Woodin cardinals, etc.) with u ∈ P .

Then inside every symmetric collapse of P ,

there is a real x so that ψ[a(P ), x, u] holds in

the symmetric collapse.

This follows from the preliminaries’ Fact:

L(R) satisfies (∃x)ψ[a(P ), x, u], just take any x

in g∗(a(P )).

So the symmetric collapse of P must also sat-

isfy (∃x)ψ[a(P ), x, u].

If ψ[a(P ), x, u] holds in a symmetric collapse of

P , then (again by the preliminaries’ Fact) it

holds in L(R), meaning that x ∈ g∗(a(P )).

We showed: { x | ψ[a(P ), x, u] holds in a sym-

metric collapse of P } is non-empty and con-

tained in g∗(a(P )).
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Now let M satisfy our large cardinal assump-
tion with u ∈M .

Let E be the set of reals x so that:

(∃ an iterate P of M)(ψ[a(P ), x, u] holds in a

symmetric collapse of P ).

By the previous slide

E ⊂
⋃

{ g∗(a(P )) | P an iterate of M },

and E meets each g∗(a(P )).

It follows that E ⊂ dom(ρ) and ρ′′E is precisely
equal to {g(a(P )) | P an iterate of M}.

Recall CM = {a(P ) | P is an iterate of M}.

We showed: range(g�CM) = ρ′′E.

Now E is Σ1
2: “There exists a (linear) iterate

P of M” amounts to saying that there is a lin-
ear iteration, of wellfounded countable length,
leading from M to P .

It follows that ρ′′E is bounded below ω2. �
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Return now to the forcing.

Conditions are pairs (t, Y ) so that t ∈ [ω1]
<ω1;

Y is a set of extensions of t; and {s | t_s ∈ Y }

is nice.

(t∗, Y ∗) extends (t, Y ) if t∗ extends t and Y ∗ ⊂

Y .

Let P denote this forcing. A generic object

adds a cub subset of ω1.

P is countably closed. So ω1 is not collapsed.

Remark: In general forcing with countable con-

ditions over L(R) may collapse R to ω1 (in par-

ticular collapse ω2 and all cardinals up to Θ).

16



Claim: P does not collapse ω2.

Proof: Let ḟ name a function from ω1 into

ω2. For a stem t let A(t) = {β | for some α

and some Y , (t, Y ) 
 ḟ(α̌) = β̌}.

Note: for each α, the set {β | for some Y ,

(t, Y ) 
 ḟ(α̌) = β̌} has at most one element.

So A(t) has size at most ω1.

Let g(t) = supA(t). Then g : [ω1]
<ω → ω2.

Using last claim can find a nice Y so that g�Y

is bounded.

(∅, Y ) then forces ḟ to be bounded in ω2. �
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