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Abstract. We define a class of finite state automata acting on transfinite sequences,

and use these automata to prove that no singular cardinal can be defined by a monadic

second order formula over the ordinals.

A formula ϕ is monadic second order (monadic for short) if each of its
variables is assigned a type, either the type “first order” or the type “second
order.” When interpreting the formula over a structure with universe A, the
first order variables are taken to range over elements of A, and the second order
variables are taken to range over subsets (or subclasses) of A. For more on
monadic theories we refer the reader to Gurevich [4]. Let us here note that
monadic formulae do not allow, at least not directly, talking about sets of pairs
of elements of A. In particular they need not introduce Gödel sentences, and
they need not allow the defining of cardinality.

Let ON be the class of all ordinals. The following are examples of statements
about ordinals and sets of ordinals that can be expressed in the monadic language
over (ON;<). We indicate how to express statements (4)–(6). The other three
are obvious.

1. “α is a limit ordinal.”
2. “C is unbounded in α.”
3. “C is closed and unbounded in α.”
4. “cof(α) ≥ ω” is expressed simply by the statement that α is a limit ordinal.
5. “cof(α) ≥ ωn+1,” expressed, by induction on n, using the formula for-

malizing the statement (∀C)[(C is closed unbounded in α) → (∃β)(β ∈
C ∧ cof(β) ≥ ωn)].

6. “α = ωn,” expressed by (cof(α) ≥ ωn) ∧ (∀β < α)(cof(β) 6≥ ωn).

Thus, for each n < ω, ωn is definable over (ON;<) through a monadic formula.
It is natural to ask whether other cardinals may also be definable, and if so

which ones. Magidor [6] constructs, from ω supercompact cardinals, a model in
which (∀A ⊂ ωω+1)(A is stationary in ωω+1 → (∃γ < ωω+1)(A ∩ γ is stationary
in γ)). This statement can be expressed in the monadic language, and it does
not hold for any ordinal, of uncountable cofinality, below ωω+1. Magidor thus
obtains a model in which ωω+1 is definable over (ON;<) through a monadic
formula.

This material is based upon work supported by the National Science Foundation under
Grant No. DMS-0094174.
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In this paper we tackle the definability of ωω. We show in ZFC that it is
not definable. In fact, no singular cardinal is definable over (ON;<) through a
monadic formula.

Our proof uses certain finite state automata, introduced and defined precisely
in Section 2, to uniformly reduce monadic statements about α to statements
in a language that allows second order quantifiers and quantifiers of the kind
“for almost all ξ < α,” but does not allow standard first order quantifiers.
This language is defined precisely in Section 1. The truth value of sentences
in this “almost-all” language is invariant under restrictions to a club subset of
the underlying domain. It follows that if a sentence of the language holds in
a structure with domain τ , it holds also in a structure with domain cof(τ).
Hence an almost-all sentence cannot become true for the first time at a singular
cardinal.

The main result connecting monadic statements and our finite state automata
is Theorem 5.1, where we show that for every monadic formula ϕ there is an
automaton 〈A, I, F 〉 so that (θ;<) |= ϕ[a1, . . . , ak] iff 〈A, I, F 〉 accepts the char-
acteristic function of 〈a1, . . . , ak〉. Results of these kind were used by Büchi
and others in proofs of decidability of the monadic theory of (θ;<), first for
θ = ω, then for all countable θ in Büchi [1], for θ = ω1 in Büchi [2], and finally
for all ordinals θ < ω2 in Büchi–Zaiontz [3]. What is new here is the scope
and uniformity of the theorem—there is no limitation on θ, and the automaton
〈A, I, F 〉 depends on ϕ but not on θ—and the fact that our automata may con-
sult the truth value of sentences in the almost-all language during their runs. It
is through this latter feature that Theorem 5.1 reduces monadic truth to truth
in the almost-all language. It should be noted that there have been earlier gen-
eralizations of the theory of automata to ordinals at ω2 and above, specifically
in Wojciechowski [9, 10]. But these generalizations, lacking the reference to the
almost-all language, could not capture monadic truth.

With Theorem 5.1 at hand, a simple analysis of runs of our finite state au-
tomata, carried out in Section 6 using the fact that almost-all sentences cannot
become true for the first time at a singular cardinal, shows that no singular
cardinal is definable over (ON;<) through a monadic formula.

A similar analysis cannot be performed on regular cardinals, since they may
be definable through a formula in the almost-all language (as indeed is the case
for each ωn, and for ωω+1 in Magidor’s model). Let us also note that, though
the conversion from ϕ to 〈A, I, F 〉 in Theorem 5.1 is effective, it does not by
itself establish the decidability of the monadic theory of θ, since the almost-all
theory of θ need not be decidable for θ ≥ ω2. For more on decidability, and
undecidability, at the level of ω2, see Shelah [8] and Gurevich–Magidor–Shelah
[5].

§1. The “almost-all” language. Fix, for the entire section, a non-empty
finite set S. We describe a language L∗

S suitable for talking about structures of
the form (γ; s, r) where γ is an ordinal, s : γ → S, and r : γ → S ∪ {↑}. (The
symbol ↑ stands for “undefined.” We sometimes write r : γ ⇀ S, using the
partial function symbol ⇀, as a shorthand for r : γ → S ∪ {↑}.) The language
allows second order quantifiers, and a certain cross between second and first order
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quantifiers stating that a property holds for a club (namely closed unbounded
set) of ordinals.

Definition 1.1. For a function t : δ → S, where δ is an ordinal, define cf(t) =
{b ∈ S | the set {ξ | t(ξ) = b} is cofinal in δ}.

Definition 1.2. The formulae of L∗
S are the ones generated through the fol-

lowing conditions:

1. α ∈ A, s(α) = b, r(α) = b, b ∈ cf(s), and b ∈ cf(s↾α), where α is a first
order variable, A a second order variable, and b an element of S, are atomic
formulae in L∗

S .
2. If ϕ and ψ are formulae in L∗

S then so are ¬ϕ and (ϕ ∧ ψ).
3. If ϕ is a formula in L∗

S then so is (∃A)ϕ, where A is a second order variable.
4. If ϕ is a formula in L∗ then so are (∀∗α < β)ϕ and (∀∗α)ϕ, where α and β

are first order variables.

When a formula ϕ in the language L∗
S is interpreted over the structure (γ; s, r),

its first order variables range over elements of γ, and its second order variable
range over subsets of γ.

Definition 1.3. The truth value of formulae in L∗
S is defined subject to the

conditions below. In conditions (3) and (4) we suppress the variables of ϕ which
remain free after the quantification, for notational convenience.

1. (γ; s, r) |= α ∈ A just in case that α ∈ A, and similarly with the other
atomic formulae. (If r(α) =↑ then for all b ∈ S, (γ; s, r) 6|= r(α) = b.)

2. The truth value for conjunctions and negations is defined in the obvious
way.

3. (γ; s, r) |= (∃A)ϕ just in case that (γ; s, r) |= ϕ[A] for some A ⊂ γ.
4. (γ; s, r) |= (∀∗α < β)ϕ just in case that:

(a) β is a limit ordinal of cofinality greater than ω, and
(b) there exists a club C ⊂ β so that (γ; s, r) |= ϕ[α] for all α ∈ C.
(γ; s, r) |= (∀∗α)ϕ just in case that the same conditions hold, but with β

replaced by γ.

We use “ϕ is true of x1, . . . , xk in (γ; s, r)” and “ϕ[x1, . . . , xk] is true in (γ; s, r)”
as synonyms for (γ; s, r) |= ϕ[x1, . . . , xk].

Claim 1.4. There are sentences ϕctbl−cof and ϕcof≥ω1
in L∗

S so that (γ; s, r) |=
ϕctbl−cof iff cof(γ) ≤ ω, and (γ; s, r) |= ϕcof≥ω1

iff cof(γ) ≥ ω1.

Proof. Fix b ∈ S. Let ψ be the sentence (∀∗α)(s(α) = b ∨ ¬s(α) = b).
Condition (4) in Definition 1.3 is such that (γ; s, r) |= ψ iff cof(γ) ≥ ω1. Let
ϕcof≥ω1

= ψ and let ϕctbl−cof = ¬ψ. ⊣

Claim 1.5. Let b ∈ S. There is a formula ϕstat−b(x) in L∗
S so that (γ; s, r) |=

ϕstat−b[A] iff cof(γ) ≥ ω1 and {ξ < γ | ξ ∈ A ∧ s(ξ) = b} is stationary in γ.

Proof. Let ϕstat−b be the sentence ϕcof≥ω1
∧¬(∀∗α)¬(α ∈ A∧s(α) = b). ⊣

Notice that L∗
S does not allow quantification over individual ordinals. In par-

ticular a sentence ϕ which is true in (γ; s, r) is also true in (γ; s∗, r∗) whenever
s∗ and r∗ agree with s and r on all but finitely many ordinals. In fact this can
be strengthened:
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Claim 1.6. Let ϕ be a sentence in L∗
S. Then the truth value of ϕ in a structure

(γ; s, r) with γ of cofinality ω (or a successor) depends only on cf(s).

Proof. The following stronger statement holds:

(∗) Let ϕ(x1, . . . , xk) be a formula with free variables of only the second order.
Then the truth value of ϕ[A1, . . . , Ak] in a structure (γ; s, r) with γ of
cofinality ω (or a successor) depends only on cf(s).

The proof of (∗) is by induction on the complexity of ϕ. The base case consists
of (1) formulae of the form b ∈ cf(s), for which (∗) obviously holds; and (2)
formulae of the form (∀∗α)ψ(α, . . . ), which are always false in structures (γ; s, r)
with γ a successor or a limit of cofinality ω, by condition (4) in Definition 1.3,
so that again (∗) holds. The inductive case, handling logical connectives and
second order quantifiers, is straightforward. There is no need to handle formulae
of the form (∀∗α < β)ϕ, since (∗) is restricted to formulae with no free first order
variables, and (∀∗α < β)ϕ has β free. ⊣

Definition 1.7. Let D ⊂ S, and let ϕ be a sentence in L∗
S . We write that

D |= ϕ to mean that (γ; s, r) |= ϕ for some/all structures (γ; s, r) with cf(s) = D

and γ of cofinality ω. The terminology makes sense by the previous claim.

Definition 1.8. Two structures (γ; s, r) and (γ∗; s∗, r∗) are similar, denoted
(γ; s, r) ∼ (γ∗; s∗, r∗), if:

1. cf(s) = cf(s∗).
2. There are clubs C in γ and C∗ in γ∗, and an order preserving bijection
f : C → C∗, so that s∗(f(ξ)) = s(ξ) and r∗(f(ξ)) = r(ξ) for all ξ ∈ C.

Claim 1.9. Let ϕ be a sentence in L∗
S. Let (γ; s, r) and (γ∗; s∗, r∗) be similar.

Then (γ; s, r) |= ϕ iff (γ∗; s∗, r∗) |= ϕ.

Proof. The cases of successor γ and γ of cofinality ω follow from Claim
1.6, since cf(s) = cf(s∗). So suppose that cof(γ) ≥ ω1. Shrinking C and C∗

if necessary we may then assume that cf(s↾ ξ) = cf(s) for each ξ ∈ C, and
cf(s∗↾ ξ) = cf(s∗) for each ξ ∈ C∗. Since cf(s) = cf(s∗) it follows that:

(i) cf(s↾ ξ) = cf(s∗↾ f(ξ)) for each ξ ∈ C.

The claim follows from the following, more general statement:

(∗) Let ϕ(x1, . . . , xk) be a formula with k free variables. Then

(γ; s, r) |= ϕ[a1, . . . , ak] ⇐⇒ (γ∗; s∗, r∗) |= ϕ[a∗1, . . . , a
∗
k]

whenever a1, . . . , ak and a∗1, . . . , a
∗
n are such that:

1. ai ∈ C and a∗i ∈ C∗ for i so that xi is first order.
2. a∗i = f(ai) for i so that xi is first order.
3. a∗i ∩ C

∗ = f ′′(ai ∩ C) for i so that xi is second order.

The proof of (∗) is an induction on the complexity of ϕ. The base case consists
of atomic ϕ, for which (∗) follows from the conditions of Definition 1.8 and
condition (i) above. The inductive cases are straightforward. Let us just note
that for ϕ of the form (∀∗α)ψ or (∀∗α < β)ψ, the clubs witnessing truth in
(γ; s, r) can be taken to be subsets of C, and similarly with (γ∗; s∗, r∗) and
C∗. ⊣
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Definition 1.10. r, r∗ : γ ⇀ S are almost equal, denoted r ≈ r∗, if r(α) =
r∗(α) for all but finitely many α ∈ γ.

Corollary 1.11. Suppose that r ≈ r∗. Then for every sentence ϕ in L∗
S,

(γ; s, r) |= ϕ iff (γ; s, r∗) |= ϕ.

Proof. Immediate from Claim 1.9. ⊣

Remark 1.12. Let ϕ(x1, . . . , xk) be a formula in L∗
S with free variables of only

the second order. The proof of Claim 1.9 shows that (γ; s, r) |= ϕ[A1, . . . , Ak] iff
(γ; s, r) |= ϕ[A′

1, . . . , A
′
k] whenever cof(γ) ≥ ω1 and there is a club subset C of γ

so that Ai ∩ C = A′
i ∩ C for all i.

Definition 1.13. Let τ be some sentence in L∗
S , let False be the sentence

(τ ∧ ¬τ), and let True be the sentence ¬False. For a formula ϕ and a set D ⊂ S

let ϕD be the formula obtained from ϕ by replacing each occurrence of b ∈ cf(s)
or b ∈ cf(s↾α) in ϕ by True if b ∈ D and by False if b ∈ S −D.

Claim 1.14. Suppose that cof(γ) ≥ ω1. Then for every sentence ϕ in L∗
S,

(γ; s, r) |= ϕ iff (γ; s, r) |= ϕD where D = cf(s).

Proof. Fix (γ; s, r) with cof(γ) ≥ ω1. Let D = cf(s). Let C ⊂ γ be a club
so that cf(s↾α) = D for all α ∈ C. An induction on complexity, similar to the
one used in the proof of Claim 1.9, establishes the following statement:

(∗) Let ϕ(x1, . . . , xk) be a formula with k free variables. Then

(γ; s, r) |= ϕ[a1, . . . , ak] ⇐⇒ (γ; s, r) |= ϕD[a1, . . . , ak]

whenever a1, . . . , ak are such that ai ∈ C for i so that xi is first order.

The current claim is the special case of (∗) with k = 0. ⊣

Definition 1.15. Given a formula ϕ(x1, . . . , xk) in L∗
S , let ϕrel(x1, . . . , xk, δ)

be obtained from ϕ be replacing each first order quantification of the form (∀∗α)
in ϕ by (∀∗α < δ), and replacing each occurrence of cf(s) in ϕ by cf(s↾ δ).

Claim 1.16. Let δ < γ. Then

(δ; s↾ δ, r↾ δ) |= ϕ[x1, . . . , xk] ⇐⇒ (γ; s, r) |= ϕrel[x1, . . . , xk, δ].

Proof. Immediate by induction on the complexity of ϕ. ⊣

Definition 1.17. Let Ŝ be a non-empty finite set. For functions s : γ → S and

ŝ : γ → Ŝ define the function s×ŝ : γ → S×Ŝ by (s×ŝ)(α) = 〈s(α), ŝ(α)〉. Define

r × r̂ for partial functions r : γ ⇀ S and r̂ : γ ⇀ Ŝ similarly, with (r × r̂)(α) =↑
if either r(α) =↑ or r̂(α) =↑.

Lemma 1.18. Let ϕ be a sentence in the language L∗
S×bS. Then there is a

sentence ϕexist in the language L∗
S so that, for limit ordinals γ,

(γ; s, r) |= ϕexist ⇐⇒ (∃ŝ : γ → Ŝ)(∃r̂ : γ ⇀ Ŝ) (γ; s× ŝ, r × r̂) |= ϕ.

Proof. We handle the cases cof(γ) ≥ ω1 and cof(γ) = ω separately, and will
compose them later. The case of cof(γ) = ω is easily handled using Claim 1.6.

The case of cof(ω) ≥ ω1 is handled by converting the quantifiers (∃ŝ : γ → Ŝ)

and (∃r̂ : γ ⇀ Ŝ) into second order quantifiers over γ.
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Consider first the case that cof(γ) = ω. Let Q = {E ⊂ S × Ŝ | E |= ϕ}.
(We are using here the notation of Definition 1.7.) Then, for γ of cofinality ω,
(γ; s× ŝ, r × r̂) |= ϕ iff cf(s× ŝ) ∈ Q.

For each E ⊂ S × Ŝ let proj(E) be the projection of E to S, that is the set

{b | (∃b̂)〈b, b̂〉 ∈ E}. Using the fact that Ŝ is finite, it is easy to check that
(∃ŝ) cf(s × ŝ) = E is true iff proj(E) = cf(s). So (∃ŝ) cf(s × ŝ) ∈ Q iff there is
E ∈ Q with proj(E) = cf(s).

For D ⊂ S let ψ1,D be the sentence ((
∧

b∈D b ∈ cf(s)) ∧ (
∧

b∈S−D ¬b ∈ cf(s)))
in the language L∗

S , so that (γ; s, r) |= ψ1,D iff cf(s) = D. Let ψ1 be the sentence∨
E∈Q ψ1,proj(E). Then:

(i) For γ of cofinality ω, (γ; s, r) |= ψ1 if and only if (∃ŝ : γ → Ŝ)(∃r̂ : γ ⇀

Ŝ) (γ; s× ŝ, r × r̂) |= ϕ.

This takes care of the case of γ of cofinality ω in the proof of Lemma 1.18.

Consider next the case that cof(γ) ≥ ω1. For each E ⊂ S × Ŝ let ϕE be the
formula given by Definition 1.13, so that:

(ii) For γ of cofinality ≥ ω1, (γ; s× ŝ, r× r̂) |= ϕ iff (γ; s× ŝ, r× r̂) |= ϕE where
E = cf(s× ŝ).

Notice that the only references to s× ŝ and r× r̂ in ϕE come through atomic

formulae of the form (s × ŝ)(α) = 〈b, b̂〉 and (r × r̂)(α) = 〈b, b̂〉. Let b̂1, . . . , b̂n
enumerate Ŝ. Let x1, . . . , xn and y1, . . . , yn be distinct second order variables
which do not appear in ϕ. Let ψ2,E(x1, . . . , xn, y1, . . . , yn) be the formula ob-

tained from ϕE by replacing every occurrence of (s × ŝ)(α) = 〈b, b̂i〉 in ϕE by

(s(α) = b∧α ∈ xi), and similarly replacing every occurrence of (r×r̂)(α) = 〈b, b̂i〉
in ϕE by (r(α) = b ∧ α ∈ yi〉. ψ2,E is then a formula in L∗

S , and:

(iii) For γ of cofinality ≥ ω1,

(γ; s× ŝ, r × r̂) |= ϕ ⇐⇒ (γ; s, r) |= ψ2,E [A1, . . . , An, B1, . . . , Bn]

where E = cf(s× ŝ), Ai = {ξ | ŝ(ξ) = b̂i}, and Bi = {ξ | r̂(ξ) = b̂i}.

Call a tuple 〈E,A1, . . . , An, B1, . . . , Bn〉, where E ⊂ S×Ŝ and A1, . . . , Bn ⊂ γ,
suitable for s : γ → S if:

(a) proj(E) = cf(s).
(b) For each b ∈ S and i ≤ n, if {ξ | s(ξ) = b ∧ ξ ∈ Ai} is stationary in γ then

〈b, b̂i〉 ∈ E.
(c) For almost all α < γ (meaning for all α in a club subset of γ), α belongs

to exactly one of A1, . . . , An, and to at most one of B1, . . . , Bn.

Note that there is a formula ψsuit−E(x1, . . . , xn, y1, . . . , yn) in L∗
S so that (γ; s, r) |=

ψsuit−E [A1, . . . , An, B1, . . . , Bn] iff 〈E,A1, . . . , An, B1, . . . , Bn〉 is suitable for s.

Claim 1.19. Let γ have cofinality ≥ ω1, let s : γ → S, and let r : γ ⇀ S. Then

(∃ŝ : γ → Ŝ)(∃r̂ : γ ⇀ Ŝ) (γ; s × ŝ, r × r̂) |= ϕ iff there is E ⊂ S × Ŝ, and there
exist A1, . . . , An, B1, . . . , Bn ⊂ γ, so that:

1. 〈E,A1, . . . , An, B1, . . . , Bn〉 is suitable for s.
2. (γ; s, r) |= ψ2,E [A1, . . . , An, B1, . . . , Bn].
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Proof. The direction left-to-right is clear: simply take E = cf(s × ŝ), Ai =

{ξ | ŝ(ξ) = b̂i}, and Bi = {ξ | r̂(ξ) = b̂i}.
Suppose conversely that E, A1, . . . , An, and B1, . . . , Bn satisfy conditions (1)

and (2). Using conditions (a)–(c) it is possible to find ŝ : γ → Ŝ, r̂ : γ ⇀ Ŝ,

and a club C ⊂ γ so that cf(s × ŝ) = E, {ξ | ŝ(ξ) = b̂i} ∩ C = Ai ∩ C, and

{ξ | r̂(ξ) = b̂i} ∩ C = Bi ∩ C for each i. By condition (2), condition (iii) above,
and Remark 1.12, (γ; s× ŝ, r × r̂) |= ϕ. ⊣

For each E ⊂ S × Ŝ let ψ3,E be the sentence (∃x1) · · · (∃xn)(∃y1) · · · (∃yn)
(ψsuit−E(x1, . . . , xn, y1, . . . , yn)∧ψ2,E(x1, . . . , xn, yn, . . . , yn)) in the language L∗

S .
Let ψ3 be the sentence

∨
E⊂S×bS ψ3,E . By the last claim,

(iv) For γ of cofinality ≥ ω1, (γ; s, r) |= ψ3 iff (∃ŝ : γ → Ŝ)(∃r̂ : γ ⇀ Ŝ) (γ; s ×
ŝ, r × r̂) |= ϕ.

Now let ϕexist be the sentence ((ϕctbl−cof ∧ ψ1) ∨ (ϕcof≥ω1
∧ ψ3)), where ψ1 is

taken from condition (i) above, and ϕctbl−cof and ϕcof≥ω1
are taken from Claim

1.4. Then ϕexist satisfies the requirements of Lemma 1.18. 2 (Lemma 1.18)

Claim 1.20. Let Ŝ be finite non-empty. Let π1 : Ŝ → S and π2 : Ŝ × Ŝ → S.
(We refer to π1 and π2 as projections.) Let ϕ be a sentence in L∗

S. Then
there is a sentence ϕ̂ in L∗bS so that, for limit γ, (γ; ŝ, r̂) |= ϕ̂ if and only if

(γ;π1 ◦ ŝ, π2 ◦ (ŝ× r̂)) |= ϕ.

Proof. For each b ∈ S let P1(b) = π1
−1′′{b} and let P2(b) = π2

−1′′{b}.
Let ϕ̂ be obtained from ϕ by replacing every occurrence of s(α) = b in ϕ by∨

b̂∈P1(b)
ŝ(α) = b̂, making similar replacements to occurrences of b ∈ cf(s) and

b ∈ cf(s↾α), and replacing each occurrence of r(α) = b by
∨

〈b̂,ĉ〉∈P2(b)
(ŝ(α) = b̂∧

r̂(α) = ĉ). (Empty disjunctions, if they occur, are taken to be the sentence False.)
ϕ̂ is then a sentence in L∗bS , and it is easy to check that it satisfies the demands of

the claim. Let us just note that the verification uses the equivalence b ∈ cf(π1◦ ŝ)

iff (∃b̂)(π1(b̂) = b ∧ b̂ ∈ cf(ŝ)). The right-to-left direction of this equivalence is

immediate, and the left-to-right direction uses the fact that Ŝ is finite. ⊣

§2. Automata. Let Σ be a finite non-empty set. By a Σ-automaton we
mean a tuple A = 〈S, P, T, ~ϕ,Ψ, h, u〉 where:

1. S and P are finite non-empty sets.
2. T ⊂ S × Σ × S.
3. ~ϕ = 〈ϕ1, . . . , ϕk〉 is a finite tuple of sentences in L∗

S .
4. Ψ is a function from 2k into S, where k = lh(~ϕ).
5. u is a function from S into {U | U ( P}.
6. h is a function from S into P with the property that h(b) ∈ P − u(b) for

each b ∈ S.

A is called deterministic if T is a function from S × Σ into S, meaning that
for each pair 〈b, σ〉 ∈ S × Σ there is precisely one b∗ ∈ S so that 〈b, σ, b∗〉 ∈ T .

We refer to Σ as the alphabet, to S as the set of states of A, and to P as the
set of pebbles. T is the successor transition table. ~ϕ and Ψ determine limit
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transitions in a way that we explain below. h and u determine the placement
and maintenance of pebbles.

Definition 2.1. Let ~ϕ and Ψ be as in conditions (3) and (4) above. Given

a domain (γ; s, r) with γ ∈ ON, s : γ → S, and r : γ ⇀ S, define t~ϕ(γ;s,r) : k → 2

by setting t
~ϕ

(γ;s,r)(i) = 1 if (γ; s, r) |= ϕi and t
~ϕ

(γ;s,r)(i) = 0 otherwise for each

i ≤ k. Define a function Ψ ⊕ ~ϕ, acting on domains (γ; s, r) as above, by setting

(Ψ ⊕ ~ϕ)(γ; s, r) = Ψ(t~ϕ(γ;s,r)).

Remark 2.2. For D ⊂ S, set, using the terminology of Definition 1.7, t~ϕD(i) =

1 if D |= ϕi and t~ϕD(i) = 0 otherwise. Set (Ψ⊕ ~ϕ)(D) = Ψ(t~ϕD). For γ of cofinality
ω then, (Ψ ⊕ ~ϕ)(γ; s, r) = (Ψ ⊕ ~ϕ)(cf(s)).

Let α be an ordinal and let X : α→ Σ. A pair 〈s, r〉 where s : α+ 1 → S and
r : α ⇀ S is called a run of A on X just in case that it satisfies the following
conditions:

(S) 〈s(ξ),X(ξ), s(ξ + 1)〉 ∈ T for each ξ < α.
(L) s(λ) = (Ψ ⊕ ~ϕ)(λ; s↾λ, r↾λ) for each limit λ ≤ α.
(R) If there exists some γ > ξ so that h(s(ξ)) 6∈ u(s(γ)) then r(ξ) = s(γ) for

the least such γ, and otherwise r(ξ) is undefined.

We think of A is running over the input X : α → Σ and producing a run
〈s, r〉 through a transfinite sequence of stages. In each stage β the automaton
determines s(β) through either condition (S) or condition (L), depending on
whether β is a successor or a limit. In the case of a successor ξ+1, the automaton
determines the state s(ξ+1) based on the previous state s(ξ) and the input X(ξ),
in line with the transition table T . Condition (S) expresses this precisely. In the
case of limit λ, the automaton determines s(λ) based on a bounded fragment
of the almost-all theory of the run (λ; s↾λ, r↾λ) produced so far. Condition (L)
expresses this precisely. The fragment of the theory being consulted is the truth
values of sentences in ~ϕ. The function Ψ tells the automaton how to determine
s(λ) based on the fragment.

Having determined s(β), the automaton places the pebble p = h(s(β)) on the
ordinal β. The pebble p remains placed on β until a later stage β∗ is reached
with p 6∈ u(s(β∗)). At the first such stage β∗ the automaton removes the pebble
from β, and sets r(β) = s(β∗). This is expressed precisely in condition (R).
r(β) remains undefined until the pebble placed on β is removed, and may indeed
remain undefined throughout, if the pebble is not removed at all during the run.
The use of pebbles therefore introduces a delay into part of the construction of
a run. Our need for this delay will be explained later, in Remarks 4.1 and 4.14.

Notice that no pebble is ever in the uncomfortable position of having to be
on two or more ordinals at the same time: when p = h(s(β)) is placed on β,
condition (6) in the definition of automaton above guarantees that p 6∈ u(s(β)),
and this results in the removal of p from any ordinal β̄ < β on which it might
have been placed before.

When reaching a limit stage λ, the automaton is commanded by condition
(L) to look at the structure (λ; s↾λ, r↾λ), check which of the sentences ϕi hold
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in this structure, and determine s(λ) on the basis of this information through a
finite table given by the function Ψ.

There are, conceivably, two ways to interpret this command. One would have
the automaton look at the values of r↾λ that are known by stage λ. The other
would have the automaton look at the values reached by the end of the run. Let
(r↾λ)local consist of the values known by stage λ, and let (r↾λ)global consist of
the values known at the end of the run. The two functions need not be the same.
There may well be ordinals ξ < λ which still have their pebbles at stage λ, and
have the pebbles removed later on. (r↾λ)local is not defined on these ordinals,
and r(↾λ)global is. But there can only be finitely many such ordinals ξ, since
each of these ordinals requires a separate pebble, and the set P of pebbles is
finite. Thus (r↾λ)local ≈ (r↾λ)global. By Corollary 1.11 then, a sentence ϕ of L∗

S

is true in (λ; s↾λ, (r↾λ)local) iff it is true in (λ; s↾λ, (r↾λ)global). So it does not
matter whether condition (L) is interpreted using (r↾λ)local or (r↾λ)global. The
end result of both interpretations is the same.

We generally use (r↾λ)local when determining s(λ). This after all is the only
practical approach, since (r↾λ)global is not yet known at stage λ. Condition (L)
is written using what is really (r↾λ)global only because writing it using (r↾λ)local

would make the notation of the definition of a run much more complicated.
At a successor stage ξ + 1 the automaton determines s(ξ + 1) on the basis of

the state s(ξ) and input X(ξ) at stage ξ, using a finite table T . This approach,
formulated by condition (S) above, is standard for automata. If the automaton
is deterministic, meaning that T is a function, then there is precisely one state
b so that 〈s(ξ),X(ξ), b〉 ∈ T , and in this case the automaton is forced to set
s(ξ + 1) equal to this b. But in general there may be many (or no) states b so
that 〈s(ξ),X(ξ), b〉 ∈ T , and the automaton may choose between them. Thus,
in general, there may be many different runs of A on the same input X.

An accepting condition for an automaton A is a pair 〈I, F 〉 where I ∈ S

and F ⊂ S. 〈A, I, F 〉 is said to accept X : α → Σ just in case that there exists
a run 〈s, r〉 of A on X so that s(0) = I and s(α) ∈ F . L(A, I, F ), the language

recognized by 〈A, I, F 〉, is the class {X | X : α → Σ for some ordinal α, and
〈A, I, F 〉 accepts X}.

We will show that the collection of languages recognized by automata is closed
under complements, intersections, and projections.

Claim 2.3 (Closure under projections). Let Σ̂ be a finite non-empty set. Let

A be a Σ × Σ̂–automaton, and let 〈I, F 〉 be an accepting condition for A. Then
there is a Σ–automaton A∗, and an accepting condition 〈I∗, F ∗〉 for A∗, so that

〈A∗, I∗, F ∗〉 accepts X : α→ Σ iff there exists X̂ : α→ Σ̂ so that 〈A, I, F 〉 accepts

X × X̂.

Proof. This is a standard claim, using non-determinism to have A∗ pick X̂

as part of its run, thereby absorbing the quantifier (∃X̂) in the claim into the
quantifier “there exists a run” in the definition of acceptance. To be slightly more

precise, it is easy to design a Σ–automaton A∗, with a set of states S∗ = S × Σ̂,
so that:
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1. If 〈s × ŝ, r × r̂〉 is a run of A∗ on X, then 〈s, r〉 is a run of A on X × X̂

where X̂ is given by the condition X̂(ξ) = ŝ(ξ + 1) for ξ < α.

2. If 〈s, r〉 is a run of A on X × X̂, then there are ŝ and r̂ so that:

• ŝ(ξ+1) = X̂(ξ) for each ξ < α, ŝ(0) = σ̂0, and ŝ(λ) = σ̂0 for each limit

λ ≤ α, where σ̂0 is some fixed element of Σ̂.
• 〈s× ŝ, r × r̂〉 is a run of A∗ on X.

〈A∗, 〈I, σ̂0〉, F × Σ̂〉 then accepts X iff there is X̂ so that 〈A, I, F 〉 accepts

X × X̂. ⊣

Lemma 2.4 (Closure under intersections). Let AL and AR be two Σ–automata
with accepting conditions 〈IL, FL〉 and 〈IR, FR〉. Then there is a Σ–automaton
AC, with accepting condition 〈IC, FC〉, so that 〈AC, IC, FC〉 accepts X iff both
〈AL, IL, FL〉 and 〈AR, IR, FR〉 accept X. (If AL and AR are both deterministic,
then so is AC.)

Proof. We intend to have AC produce runs that combine both the action of
AL and the action of AR. The only difficulty is with the pebbles, as AL and AR

may wish to release the pebble placed on an ordinal ξ at different times. AC

needs a memory cell that will hold the state causing the first release, until the
time of the second release.

Let 〈SL, PL, TL, ~ϕL,ΨL, hL, uL〉 be the automaton AL and let 〈SR, PR, TR, ~ϕR,

ΨR, hR, uR〉 be the automaton AR. Without loss of generality SL and SR are
disjoint.

Let A be the set of partial functions from PL × PR into SL ∪ SR. Let SC =
SL × SR × A. Let PC = P1 × P2. This defines the set of states of AC, and the
set of pebbles. A state of AC is a triple 〈bL, bR, f〉 where bL is a state of AL, bR
is a state of AR, and f is a memory function with cells f(pL, pR), for pebbles pL

and pR of AL and AR respectively. Each cell may be empty, or it may contain a
state either in SL or in SR.

Set hC : SC → PC to be the function defined by the condition

1. hC(bL, bR, f) = 〈hL(bL), hR(bR)〉.

Thus the pebble placed by AC at a state 〈bL, bR, f〉 is simply the pair made of
the pebble placed by AL at state bL and the pebble placed by AR at state bR.

Set 〈〈bL, bR, f〉, σ, 〈b
∗
L
, b∗

R
, f∗〉〉 ∈ TC just in case that:

2. 〈bL, σ, b
∗
L
〉 ∈ TL and 〈bR, σ, b

∗
R
〉 ∈ TR.

3. f, f∗ ∈ A, and f∗ is defined by the conditions:
(a) f∗(hL(bL), hR(bR)) =↑.
(b) If f(pL, pR) =↑, pL ∈ uL(bL), and pR 6∈ uR(bR), then f∗(pL, pR) =

bR. Similarly, it f(pL, pR) =↑, pL 6∈ uL(bL), and pR ∈ uR(bR), then
f∗(pL, pR) = bL.

(c) For 〈pL, pR〉 ∈ PL×PR not covered by conditions (3a) and (3b), f∗(pL, pR) =
f(pL, pR).

Condition (2) simply formalizes the fact that AC follows AL on the left coordinate
and AR on the right coordinate. Condition (3) governs the transition of the
memory function. The cell f∗(hL(bL), hR(bR)) corresponding to the pebble being
placed at the current state is initialized to be undefined. Currently undefined
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cells f(pL, pR) so that exactly one of pL, pR is released (by bL or bR) are updated
to store the state causing the release (this is formalized in condition (3b)). In
all other cases f∗ continues to store the state stored by f .

Define uC through the condition:

4. 〈pL, pR〉 6∈ uC(〈bL, bR, f〉), meaning that 〈pL, pR〉 is released by the state
〈bL, bR, f〉, just in case that (at least) one of the following conditions holds:
(a) pL 6∈ uL(bL) and pR 6∈ uR(bR).
(b) f(pL, pR) is defined and belongs to SL, and pR 6∈ uR(bR).
(c) f(pL, pR) is defined and belongs to SR, and pL 6∈ uL(bL).

Let π1,L : SC → SL be defined by π1,L(bL, bR, f) = bL and let π1,R be defined by
π1,R(bL, bR, f) = bR.

Define π2,L : SC × SC → SL by

π2,L(bC, 〈bL, bR, f〉) =

{
bL if f(hC(bC)) =↑ or f(hC(bC)) ∈ SR,

f(hC(bC)) if f(hC(bC)) ∈ SL.

In the context of our use of π2,L below, bC ∈ SC is a current state, causing the
placement of a pebble hC(bC), and 〈bL, bR, f〉 is a later state causing the release
of this pebble. π2,L(bC, 〈bL, bR, f〉) gives the state in SL responsible for the release
of the left coordinate of bC. This is either the left coordinate of 〈bL, bR, f〉, or
else it is the state stored by f .

Define π2,R : SC × SC → SR by

π2,R(bC, 〈bL, bR, f〉) =

{
bR if f(hC(bC)) =↑ or f(hC(bC)) ∈ SL,

f(hC(bC)) if f(hC(bC)) ∈ SR.

For a sequence 〈fα | α < γ〉 of functions in A define limα−→ γ fα to be the
function f ∈ A given by the condition: f(pL, pR) is equal to the eventual value of
fα(pL, pR) as α−→ γ if fα(pL, pR) is eventually constant as α−→ γ, and f(pL, pR)
is undefined otherwise.

Finally, define ~ϕC and ΨC so that:

5. (ΨC ⊕ ~ϕC)(γ; sC, rC) = 〈bL, bR, f〉 just in case that:
(a) (ΨL ⊕ ~ϕL)(γ;π1,L ◦ sC, π2,L ◦ (sC × rC)) = bL.
(b) (ΨR ⊕ ~ϕR)(γ;π1,R ◦ sC, π2,R ◦ (sC × rC)) = bR.
(c) f = limα−→ γ fα where fα denotes the third coordinate in sC(α) (so

that sC(α) = 〈bα,L, bα,R, fα〉 for some states bα,L ∈ SL and bα,R ∈ SR).

Conditions (5a) and (5b) can be arranged using Claim 1.20. Condition (5c) can
be arranged using references to cf(sC).

Condition (5) completes the definition of AC. It is not hard, using most
importantly the interaction between the transition from f to f∗ in condition (3)
and the definitions of π2,L and π2,R, to prove the following claims:

Claim 2.5. Let 〈sC, rC〉 be a run of AC on X : α → Σ, with sC = sL × sR × χ

say. Then there are rL, rR so that:

1. 〈sL, rL〉 is a run of AL on X, and rL ≈ π2,L ◦ (sC × rC).
2. 〈sR, rR〉 is a run of AR on X, and rR ≈ π2,R ◦ (sC × rC).
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Claim 2.6. Let 〈sL, rL〉 and 〈sR, rR〉 be runs of AL and AR respectively on a
sequence X : α → Σ. Then there exists χ : α + 1 → A and rC : α ⇀ SC so that,
setting sC = sL × rL × χ:

1. 〈sC, rC〉 is a run of AC on X.
2. π2,L(sC × rC) ≈ rL.
3. π2,R(sC × rC) ≈ rR.

Let f↑ ∈ A be the function which is undefined everywhere on PL × PR. Let
IC = 〈IL, IR, f↑〉. Let FC = {〈bL, bR, f〉 | bL ∈ FL ∧ bR ∈ FR}. Then 〈AC, IC, FC〉
accepts X iff both 〈AL, IL, FL〉 and 〈AR, IR, FR〉 accept X. 2 (Lemma 2.4)

Claim 2.7. Let A be a deterministic automaton. Let 〈I, F 〉 be an accepting
condition for A. Then there is an accepting condition 〈I∗, F ∗〉 for A so that
〈A, I, F 〉 accepts X iff 〈A, I∗, F ∗〉 does not.

Proof. Set I∗ = I and F ∗ = S − F . For X : α → Σ, notice that A, being
deterministic, has a unique run 〈s, r〉 on X with s(0) = I. 〈A, I, F 〉 accept X iff
this run ends with a state s(α) in F , and 〈A, I, F ∗〉 accepts X iff the run ends
with a state s(α) in S − F . ⊣

To obtain closure under negations from the last claim, we have to show that
every automaton is equivalent to a deterministic automaton. We do this in
Section 4, after establishing some auxiliary results in Section 3.

§3. Characters. Fix, for the entire section, a finite alphabet Σ, and a Σ–
automaton A = 〈S, P, T, ~ϕ,Ψ, h, u〉. All the definitions and results in this section
are stated relative to these objects, though we suppress their mention in the
notation.

Fix further an ordinal θ and an input string X : θ → Σ.

Definition 3.1. CX(α, β), the character of A on X↾ [α, β), is the set of
quadruples 〈b,D, a, b∗〉 so that b, b∗ ∈ S, D ⊂ S, a ∈ S ∪ {↑}, and there is a run
〈s, r〉 of A on X↾ [α, β) with:

• s(α) = b.
• s(β) = b∗.
• r(α) = a (with a =↑ if r(α) is undefined).
• {s(ξ) | α ≤ ξ ≤ β} = D.

[α, β) here is the interval of ordinals {ξ | α ≤ ξ < β}. By a run 〈s, r〉 of A on
X↾ [α, β) we mean a pair 〈s, r〉 so that s : [α, β] → S, r : [α, β) ⇀ S, and the pair
〈s, r〉 satisfies conditions (S), (L), and (R) in Section 2 for ξ ∈ [α, β) and limit
λ ∈ (α, β].

Remark 3.2. The application of condition (L) here involves references to
truth value in structures (λ, s↾λ, r↾λ) in cases where (λ > α and) s and r

are not defined on ordinals below α. There are several ways to make sense of
such references but they are all equivalent since the truth value of sentences in
(λ; s↾λ, r↾λ) only depends on the restriction of s and r to tail-ends of λ, by
Claim 1.9.

We read the equation 〈b,D, a, b∗〉 ∈ CX [α, β] as “A on X↾ [α, β) can reach b∗

from b, accumulating D and depebbling at a.”
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Remark 3.3. Notice that 〈A, I, F 〉 accepts X : θ → Σ just in case that the
character CX(0, θ) has a quadruple 〈b,D, b∗, a〉 in it with b = I and b∗ ∈ F . Thus
if we can compute the character of A on an input X we can tell whether X is
accepted. Our plan is to construct, in the next section, a deterministic automaton
that can compute the character of a given non-deterministic automaton.

Claim 3.4. Suppose that CX(α1, β) = CX(α2, β). Then for every β∗ > β,
CX(α1, β

∗) = CX(α2, β
∗).

Proof. Suppose that 〈b,D, a, b∗〉 ∈ CX(α1, β
∗). We show that 〈b,D, a, b∗〉 ∈

CX(α2, β
∗). A similar argument establishes the converse.

Let 〈s, r〉 witness that 〈b,D, a, b∗〉 ∈ CX(α1, β
∗). Let D0 = {s(ξ) | α1 ≤ ξ ≤

β}, let b0 = s(β), and let a0 = s(γ) for γ > α1 least so that h(s(α1)) 6∈ u(s(γ)) if
such a γ exists and is ≤ β, leaving a0 undefined otherwise. Then 〈b,D0, a0, b0〉 ∈
CX(α1, β). Since CX(α1, β) = CX(α2, β), 〈b,D0, a0, b0〉 belongs to CX(α2, β).
A run witnessing this can be composed with 〈s↾ [β, β∗], r↾ [β, β∗)〉 to witness that
〈b,D, a, b∗〉 ∈ CX(α2, β

∗). ⊣

By a character in general we mean a set of quadruples 〈b,D, a, b∗〉 with
b, b∗ ∈ S, D ⊂ S, and a ∈ S ∪ {↑}. We use C to denote the set of all possible
characters. Notice that C is finite, since S is finite.

Definition 3.5. For a character C and σ ∈ Σ define C ∗ σ to be the set of
quadruples 〈b,D, a, b∗〉 so that there exists b′ ∈ S, a′ ∈ S ∪ {↑}, and D′ ⊂ S

with:

1. 〈b,D′, a′, b′〉 ∈ C.
2. 〈b′, σ, b∗〉 ∈ T .
3. D = D′ ∪ {b∗}.
4. If a′ ∈ S then a = a′. If a′ =↑ and h(b) ∈ u(b∗) then a =↑. If a′ =↑ and
h(b) 6∈ u(b∗) then a = b∗.

Claim 3.6. Suppose that C = CX(α, β) and that X(β) = σ. Then CX(α, β +
1) is precisely equal to C ∗ σ.

Proof. Immediate from the definitions. ⊣

Definition 3.7. Let C and E be characters. Define C ∗ Eω to be the set of
quadruples 〈b,D, a, b∗〉 so that there exists D0,D1 ⊂ S, a0, a1 ∈ S ∪ {↑}, and
b1 ∈ S, with:

1. 〈b,D0, a0, b1〉 ∈ C.
2. 〈b1,D1, a1, b1〉 ∈ E.
3. D = D0 ∪D1 ∪ {b∗}.
4. b∗ = (Ψ ⊕ ~ϕ)(D1).
5. One of the following conditions holds:

(a) a0 ∈ S and a = a0.
(b) a0 =↑, h(b) ∈ u(q) for all q ∈ D1, h(b) ∈ u(b∗), and a =↑.
(c) a0 =↑, h(b) ∈ u(q) for all q ∈ D1, h(b) 6∈ u(b∗), and a = b∗.

In condition (4) we are using the notation of Remark 2.2.

Lemma 3.8. Suppose that C, E, α, βn (n < ω), and β are such that:

1. α < β0 < β1 < · · · and β = supn<ω βn.
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2. For every n, CX(α, βn) is equal to C.
3. For every n and every m > n, CX(βn, βm) = E.

Then CX(α, β) is equal to C ∗ Eω.

Proof. Suppose first that 〈b,D, a, b∗〉 ∈ C ∗ Eω. We aim to show that
〈b,D, a, b∗〉 ∈ CX(α, β).

Let D0, D1, a0, a1, and b1 witness that 〈b,D, a, b∗〉 ∈ C ∗Eω. Using the facts
that 〈b,D0, a0, b1〉 ∈ C = CX(α, β0) and 〈b1,D1, a1, b1〉 ∈ E = CX(βn, βn+1) we
can create functions s : [α, β) → S and r : [α, β) ⇀ S so that:

(i) 〈s↾ [α, β0], r↾ [α, β0)〉 is a run of A on X↾ [α, β), with s(α) = b, s(β0) = b1,
{s(ξ) | α ≤ ξ ≤ β0} = D0, and r(α) = a0.

(ii) For each n, 〈s↾ [βn, βn+1], r↾ [βn, βn+1)〉 is a run of A on X↾ [βn, βn+1) with
s(βn) = s(βn+1) = b1, and {s(ξ) | βn ≤ ξ ≤ βn+1} = D1.

Extend s to a function from [α, β] into S by setting s(β) = b∗.
For each ξ ∈ [α, β) define

(iii) r̃(ξ) = s(γ) for the first γ ∈ (ξ, β] so that h(s(ξ)) 6∈ u(s(γ)) if there is such
an ordinal γ, and r̃(ξ) =↑ otherwise.

r̃ and r need not be the same, as there may be ξ, for example in the interval
[α, β0), so that the pebble placed on ξ is removed at an ordinal γ > β0. In this
case r̃(ξ) is defined, but r(ξ) is not. The same is true in each of the intervals
[βn, βn+1). But notice that there can be only finitely many such ordinals ξ within
each interval, as there are only finitely many pebbles. Thus:

(iv) r̃↾βn ≈ r↾βn for each n < ω.

Note that cf(s↾β) = D1. Using this and conditions (4) in Definition 3.7 it
follows that:

(v) (Ψ ⊕ ~ϕ)(β, s↾β, r̃) = b∗.

Conditions (i)–(v) taken together imply that 〈s, r̃〉 is a run of A on X↾ [α, β).
Using condition (5) in Definition 3.7 and conditions (i)–(iii) above it is easy
to check that a = r̃(α). Since s(α) = b, s(β) = b∗, and {s(ξ) | α ≤ ξ ≤ β} =
D0∪D1∪{b

∗} = D, the run 〈s, r̃〉 witnesses that 〈b,D, a, b∗〉 belongs to CX(α, β).

Suppose next that 〈b,D, a, b∗〉 belongs to CX(α, β). Let 〈s, r〉, with s : [α, β] →
S and r : [α, β) ⇀ S, be a run witnessing this. We aim to show that 〈b,D, a, b∗〉 ∈
C ∗ Eω.

For δ < η in the interval [α, β) let sδ,η = s↾ [δ, η] and define rδ,η : [δ, η) ⇀ S by
rδ,η(ξ) = s(γ) where γ ∈ (ξ, η] is least so that h(s(ξ)) 6∈ u(s(γ)) if there is such
an ordinal γ, and rδ,η(ξ) =↑ otherwise. As usual rδ,η need not equal r↾ [δ, η), as
there may be pebbles placed on ordinals in [δ, η) which are removed at a stage
later than η. But rδ,η ≈ r↾ [δ, η). From this, the definition of rδ,η, and the fact
that 〈s, r〉 is a run of A on X↾ [α, β), it follows that:

(vi) 〈sδ,η, rδ,η〉 is a run of A on X↾ [δ, η).

Since the set of states S is finite, there must be a specific state b1 ∈ S, a
specific a1 ∈ S ∪ {↑}, and an infinite set Q ⊂ {βn | n < ω}, so that:

(vii) s(δ) = b1 and r(δ) = a1 for each δ ∈ Q.
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Let D1 = cf(s↾β). By throwing away an initial segment of Q if needed we
may assume that {s(ξ) | δ ≤ ξ < β} = D1 for each δ ∈ Q. Since D1 is finite we
may, by passing to a subset of Q that is still infinite, assume that in fact:

(viii) {s(ξ) | δ ≤ ξ ≤ η} = D1 for all δ < η both in Q.

For each ordinal ξ < β let γ(ξ) ∈ (ξ, β] be the smallest ordinal so that h(s(ξ)) 6∈
u(s(γ(ξ))) if there is such an ordinal. This is the ordinal where the pebble placed
on ξ is removed in the run 〈s, r〉. Note that γ(δ) is defined and strictly smaller
than β for all but finitely many δ ∈ Q. Throwing away an initial segment of Q
if necessary we may therefore assume that γ(δ) < β for all δ ∈ Q. Shrinking Q
further, but still keeping it cofinal in β, we may assume that γ(δ) is smaller than
the next element of Q above δ, and from this it follows that:

(ix) rδ,η(δ) = r(δ) for δ < η both in Q.

From conditions (vi)–(ix) it follows that 〈b1,D1, a1, b1〉 ∈ CX(δ, η) for all δ < η

both in Q. Since Q ⊂ {βn | n < ω}, and CX(βn, βm) = E for all n < m < ω, it
certainly follows that 〈b1,D1, a1, b1〉 ∈ E.

Let ν ∈ Q be large enough that γ(α), if defined, is either smaller than ν or
equal to β. Let a0 = rα,ν(α) and let D0 = {s(ξ) | α ≤ ξ ≤ ν}. Then 〈sα,ν , rα,ν〉
witnesses that 〈b,D0, a0, b1〉 ∈ CX(α, ν). Since ν ∈ Q = {βn | n < ω}, and since
CX(α, βn) = C for all n, it follows that 〈b,D0, a0, b1〉 ∈ C.

It is now easy to check that D0, D1, a0, a1, and b1 witness that 〈b,D, a, b∗〉
belongs to C ∗ Eω. ⊣

§4. Determinism. Fix throughout the section a finite alphabet Σ and a
Σ–automaton A = 〈S, P, T, ~ϕ,Ψ, h, u〉.

Fix an ordinal θ and an input string X : θ → Σ. We describe a process that
computes CX(0, θ). We will later check that this process can be carried out by
a deterministic automaton, thereby showing that any language that is recogniz-
able by a non-deterministic automaton is also recognizable by a deterministic
automaton.

Let C be the set of characters corresponding to the automaton A. Let #C
denote the number of elements of C. Let H = {0, . . . ,#C}.

Call an ordinal α essential at β if α < β, so that CX(α, β) makes sense, and
there is no ᾱ < α so that CX(ᾱ, β) = CX(α, β). Notice that there are at most
#C ordinals which are essential at any given β.

By induction we define a sequence of sets Kγ ⊂ H for γ ≤ θ, and ordinals αγ
i

for i ∈ Kγ (and also for some i 6∈ Kγ), so that {αγ
i | i ∈ Kγ} is precisely the

set of all ordinals which are essential at γ. Notice that Kγ then has at most #C
elements, and is therefore a proper subset of H. Set hγ to be the least element of
H −Kγ , and set αγ

hγ
= γ. These assignments will be used during the induction.

Set K0 = ∅ to begin with.

Assuming that Kβ and 〈αβ
i | i ∈ Kβ〉 are known for all β < γ, define K<γ =

{i | i ∈ Kβ ∪ {hβ} for a tail-end of β < γ, and α
β
i is eventually constant as

β−→ γ}. For i ∈ K<γ set αγ
i equal to the eventual value of αβ

i as β−→ γ. (If γ

is a successor then K<γ = Kγ−1 ∪ {hγ−1} and αγ
i = α

γ−1
i .)

Let Kγ = {i ∈ K<γ | αγ
i is essential at γ}.
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It is easy to verify by induction on γ that {αγ
i | i ∈ Kγ} is precisely the set

of all ordinals which are essential at γ. The proof uses Claim 3.4, which implies
that ordinals which are not essential at some β < γ are also not essential at γ.

We refer to ordinals which belong to {αγ
i | i ∈ K<γ} but not to {αγ

i | i ∈ Kγ}
as discarded at stage γ. Numbers i which belong to K<γ but not to Kγ are
released at stage γ. Thus an ordinal α = α

γ
i is discarded at stage γ if in stage

γ the character from α “merges” with the character from a smaller ordinal,
precisely, if there is ᾱ < α so that CX(α, γ) = CX(ᾱ, γ). All but finitely many
ordinals must be discarded eventually, since the set of possible characters is finite.

Remark 4.1. We do not know at stage α whether α will be discarded, and if
so, with which of the characters from smaller ordinals will the character from α

merge. But using pebbles we will be able to design an automaton Â with run

〈ŝ, r̂〉 so that r̂(α) has this information. The use of pebbles in Â lets us delay
the definition of r̂(α) until (if ever) reaching a stage where α is discarded.

Let Rγ be the order on K<γ defined by i Rγ j iff α
γ
i < α

γ
j . For i Rγ j define

C
γ
i,j to be CX(αγ

i , α
γ
j ). For i ∈ K<γ Let Cγ

i denote CX(αγ
i , γ). Notice that with

these definitions, j is released at γ iff there exists i Rγ j so that Cγ
i = C

γ
j . Let

fγ(j) = 〈i, Cγ
i,j〉 for the Rγ least such i. fγ is then a function from the set of

released j ∈ H into H × C.

Definition 4.2. b̂γ is the tuple

〈K<γ , Rγ , (i 7→ C
γ
i ), (i, j 7→ C

γ
i,j), fγ ,Kγ〉,

where i 7→ C
γ
i and i, j 7→ C

γ
i,j denote the obvious functions, the former defined

on all i ∈ K<γ and the latter on all pairs i, j ∈ K<γ with i Rγ j.

Definition 4.3. Define Ŝ to be the set

P(H) × P(H ×H) × (H ⇀ C) × ((H ×H) ⇀ C) × (H ⇀ (H × C)) × P(H),

where P(A) denotes the powerset of A and (A ⇀ B) denotes the set of partial
functions from A to B.

The tuple b̂γ belongs to Ŝ for each γ. Notice that Ŝ is finite, as both H and
C are finite.

Definition 4.4. Let Î denote the tuple 〈∅, ∅, ∅, ∅, ∅, ∅〉 in Ŝ. Define a function

z : Ŝ ⇀ C by setting z(b̂) = C0 for each tuple b̂ = 〈K<, R, (i 7→ Ci), (i, j 7→ Ci,j),

f,K〉 in Ŝ with 0 ∈ K<γ , and leaving z(b̂) undefined on the other tuples.

Notice that b̂0 is precisely equal to Î, and that for each γ > 0, z(b̂γ) is defined
and equal to CX(0, γ), as 0 ∈ K<γ and αγ

0 = 0 for all γ > 0.

Remark 4.5. fγ and Kγ can be determined from knowledge of K<γ , Rγ , Cγ
i

for each i ∈ K<γ , and C
γ
i,j for each pair i Rγ j. Thus the entire state b̂γ can

be determined (independently of X and γ) from knowledge of K<γ , Rγ , Cγ
i for

each i ∈ K<γ , and Cγ
i,j for each pair i Rγ j.

Claim 4.6. b̂γ+1 can be determined (independently of X and γ) from knowl-

edge of b̂γ and X(γ).
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Proof. Using the last remark it is enough to determine K<γ+1, Rγ+1, C
γ+1
i

for each i ∈ K<γ+1, and Cγ+1
i,j for i Rγ+1 j.

K<γ+1 is equal to Kγ ∪ {hγ} where hγ = min(H −Kγ). Rγ+1 = (Rγ↾Kγ) ∪

{〈i, hγ〉 | i ∈ Kγ}. C
γ+1
i for i ∈ Kγ is equal to Cγ

i ∗X(γ) by Claim 3.6, and Cγ+1
hγ

is equal to C∅ ∗X(γ) where C∅ = {〈b, {b}, ↑, b〉 | b ∈ S} is the character CX(γ, γ)

(this character is the same regardless of γ and X). Finally, Cγ+1
i,j = C

γ
i,j for

i, j ∈ Kγ , and Cγ+1
i,hγ

= C
γ
i for i ∈ Kγ . ⊣

Let ŝ : θ+1 → Ŝ be the function (γ 7→ b̂γ). By the last claim, there is a function

T̂ : Ŝ×Σ → Ŝ, independent ofX, so that b̂(γ+1) = T̂ (b̂(γ),X(γ)). Our intention
is to show that ŝ is produced as a run of a deterministic automaton on X (and

that the automaton of course is defined independently of X). This function T̂

provides the successor transition table for the automaton. We continue now to
work on the limits.

Claim 4.7. For limit γ, each of K<γ , Rγ , and Cγ
i,j for i Rγ j, can be deter-

mined (independently of X and γ) from knowledge of cf(ŝ↾ γ).

Proof. It is easy to check that i ∈ K<γ iff i ∈ Kβ for a tail-end of β < γ, and
since Kβ is coded as part of ŝ(β) the truth value of the right-hand-side condition
can be determined from knowledge of cf(ŝ↾ γ). Similarly, i Rγ j iff i Rβ j for a

tail-end of β < γ, and Cγ
i,j is equal to the eventual value of Cβ

i,j as β−→ γ. ⊣

Claim 4.8. Let γ be a limit of cofinality ω and let k ∈ K<γ . Then there exists
i ∈ H, j ∈ H, and C,E ∈ C so that:

1. i belongs to K<γ .

2. The set {β < γ | j is released at β, fβ(j) = 〈i, E〉, and Cβ
k,j is defined and

equal to C} is cofinal in γ.

Proof. Let γ̄ = max{αγ
l | l ∈ K<γ}. γ̄ is smaller than γ since γ is a

limit. Notice that the set Q = {β ∈ (γ̄, γ) | min{αβ
l | l ∈ K<β ∧ α

β
l > γ̄} is

discarded at β} is cofinal in γ, since otherwise the eventual value of min{αβ
l |

l ∈ K<β ∧ αβ
l > γ̄} as β−→ γ would belong to {αγ

l | l ∈ K<γ}. For each β ∈ Q

let j(β) be such that αβ

j(β) = min{αβ
l | l ∈ K<β∧α

β
l > γ̄}. Notice that k Rβ j(β)

since αβ

j(β) > γ̄ and αβ
k = α

γ
k ≤ γ̄. Thus Cβ

k,j(β) is defined.

For each β ∈ Q let g(β) = 〈i, j, C,E〉 where j = j(β), 〈i, E〉 = fβ(j), and

C = C
β
k,j . g takes values in the finite set H ×H × C × C. Thus there is a fixed

tuple 〈i, j, C,E〉 so that g(β) = 〈i, j, C,E〉 for cofinally many β ∈ Q. Every such
β belongs to the set in condition (2) of the claim, so this set is cofinal in γ. As

for condition (1): αβ
i < α

β
j by the definition of fβ , and from the definition of

j(β) it follows that αβ
i ≤ γ̄. Applying this with β < γ large enough that all

ordinals ≤ γ̄ which do not belong to {αγ
l | l ∈ K<γ} have been discarded by

stage β, it follows that i ∈ K<γ . ⊣

Lemma 4.9. Let γ be a limit of cofinality ω and let k ∈ K<γ . Let i, j, C, and
E satisfy the conditions of the previous claim. Then C

γ
k = C ∗ Eω.
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Proof. Using condition (2) of the previous claim and the fact that cof(γ) = ω,
we may fix an increasing sequence of ordinals βn (n < ω), cofinal in γ, so that

for each n, j is released at βn, fβn
(j) = 〈i, E〉, and C

βn

k,j is defined and equal to
C.

Let αn = α
βn

j , so that αn is discarded at stage βn. The set {αn | n < ω}
cannot be bounded in γ; if it were then its ordinals would all be discarded by
some stage strictly below γ, contradicting the fact that {βn | n < ω} is cofinal
in γ.

By thinning the set {βn | n < ω} if needed we may therefore assume that:

(i) 〈αn | n < ω〉 is increasing, and αn+1 > βn for each n.

Let α denote αγ
i . The assignment makes sense as i ∈ K<γ by condition (1)

of Claim 4.8. α
γ
i is equal to α

β
i for all sufficiently large β < γ, and without

loss of generality we may assume that this is the case for all β ∈ {βn | n < ω}.

So α
βn

i = α for each n. Recall that αn = α
βn

j is discarded at stage βn and

fβn
(j) = 〈i, E〉. Using the definition of fβn

it follows that:

(ii) CX(α, αn) = E.
(iii) CX(α, βn) = CX(αn, βn).

By condition (iii) and Claim 3.4, CX(α, β∗) = CX(αn, β
∗) for every β∗ > βn.

By condition (i) then:

(iv) CX(α, αm) = CX(αn, αm) for all m > n.

Note that CX(α, αm) = E by condition (ii). Thus from condition (iv) it follows
that in fact:

(v) CX(αn, αm) = E for all n and all m > n.

α
β
k is equal to αγ

k for all sufficiently large β < γ, and without loss of generality

we may assume that this is the case for all β ∈ {βn | n < ω}. We have Cβn

k,j = C

for each n. Since αβn

k = α
γ
k and αβn

j = αn this means that:

(vi) CX(αγ
k , αn) = C for each n.

With conditions (v) and (vi) we may apply Lemma 3.8 and conclude finally
that CX(αγ

k , γ) = C ∗ Eω. ⊣

Corollary 4.10. Let γ be a limit of cofinality ω. Then for each k ∈ K
<γ
k ,

C
γ
k can be determined (independently of X and γ) from knowledge of cf(ŝ↾ γ).

Proof. Looking at cf(ŝ↾ γ) one can tell which tuples 〈i, j, C,E〉 satisfy the
conditions of Claim 4.8, and then use Lemma 4.9 to determine Cγ

k . ⊣

Corollary 4.11. Let γ be a limit of cofinality ω. Then b̂γ can be determined
(independently of X and γ) from knowledge of cf(ŝ↾ γ).

Proof. Immediate putting Remark 4.5, Claim 4.7 and Corollary 4.10 to-
gether. ⊣

Remark 4.12. Our handling of limits of cofinality ω here is very similar to
the handling of countable limits in Büchi [2]. Both our handling of this issue and
Büchi’s use ideas which trace back to the subset construction of McNaughton
[7].
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We pass now to limits of cofinality greater than ω.

Definition 4.13. Set P̂ = H. For a state b̂ = 〈K<, R, (i 7→ Ci), (i, j 7→ Ci,j),

f,K〉 set ĥ(b̂) = min(H −K) and û(b̂) = K. ĥ is then a function from Ŝ into P̂ ,

û is a function from Ŝ into {U | U ( P̂}, and ĥ(b̂) 6∈ û(b̂) for each state b̂.

For each ξ < θ let ρ̂(ξ) > ξ be the ordinal at which ξ is discarded, if there

is such an ordinal, and let r̂(ξ) = b̂ρ̂(ξ). If ξ is not discarded then leave r̂(ξ)
undefined.

We intend to show that ŝ = 〈b̂γ | γ ≤ θ〉 and r̂ form a run of a deterministic

automaton Â on X. Definition 4.13 determines the handling of pebbles in runs

of Â. The definition is such that the pebble placed on ξ during the run 〈ŝ, r̂〉 is
precisely equal to hξ, and the pebble is released precisely when ξ is discarded.
From this and the definition of r̂ it follows that condition (R) in Section 2 holds
for 〈ŝ, r̂〉.

Remark 4.14. We are using the availability of pebbles in automata to delay

the definition of r̂(ξ) in runs of Â, so that it is made not at stage ξ but later
on at the stage ρ̂(ξ) in which ξ is discarded. The run is constructed so that
r̂(ξ) = s(ρ̂(ξ)), and this is essential to the proof of Claim 4.15 below.

We continue now to define the deterministic Σ–automaton Â. We already

defined the set of states Ŝ, the successor transition function T̂ , the set of pebbles

P̂ , and the functions ĥ and û. We also saw that ŝ(γ) can be determined from
knowledge of cf(ŝ↾ γ) for limit γ of cofinality ω. It remains to see that for limit γ
of cofinality greater than ω, ŝ(γ) can be determined from knowledge of the truth
value of finitely many fixed sentences in (γ; ŝ↾ γ, r̂↾ γ).

Claim 4.15. Let γ be a limit of cofinality greater than ω1. Then there exists
a club Z ⊂ γ so that for every ξ < β both in Z with cof(β) = ω, CX(ξ, β) can be
determined (independently of X, ξ, β, Z, and γ) from knowledge of ŝ(ξ), r̂(ξ),
and cf(ŝ↾ γ).

Proof. Let Z ⊂ γ be a club so that for each ξ ∈ Z:

(i) cf(s↾ ξ) = cf(s↾ γ).
(ii) (∀ζ < ξ)(ρ̂(ζ) < γ → ρ̂(ζ) < ξ).
(iii) ρ̂(ξ) is defined and smaller than the next element of Z above ξ.

Conditions (i) and (ii) can be obtained through a closure argument using the
fact that cof(γ) ≥ ω1. Condition (iii) is obtained by a closure argument using
the fact that ρ̂(ξ) is defined and smaller than γ for all but finitely many ξ < γ.

Fix ξ < β both in Z with cof(β) = ω. We describe how to determine CX(ξ, β),
using only knowledge of ŝ(ξ), r̂(ξ), and cf(ŝ↾ γ).

By condition (iii), ξ is discarded at stage ρ̂(ξ) < β. Let 〈k,D〉 be such that
fρ̂(ξ)(hξ) = 〈k,D〉. hξ can be determined from knowledge of ŝ(ξ), and fρ̂(ξ) can
be determined from knowledge of ŝ(ρ̂(ξ)) = r̂(ξ). Hence k can be determined
from knowledge of ŝ(ξ) and r̂(ξ).

The definition of fρ̂(ξ) is such that CX(α
ρ̂(ξ)
k , ρ̂(ξ)) = CX(ξ, ρ̂(ξ)). (We are

using here the fact that α
ρ̂(ξ)
hξ

= ξ.) Since β > ρ̂(ξ) it follows by Claim 3.4 that

CX(α
ρ̂(ξ)
k , β) = CX(ξ, β).
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Now α
ρ̂(ξ)
k is an ordinal below ξ which had not been discarded by stage ρ̂(ξ).

From condition (ii) it follows that the ordinal is not discarded by stage β (in fact

not even by stage γ), and therefore α
ρ̂(ξ)
k = α

β
k .

Thus CX(ξ, β) = CX(αβ
k , β) = C

β
k . C

β
k can be determined from knowledge

of cf(ŝ↾β) by Corollary 4.10, and cf(ŝ↾β) can be determined from cf(ŝ↾ γ) by
condition (i). ⊣

Using the last claim, fix a function Λ: Ŝ × Ŝ × P(Ŝ) → C (independently of
X), so that for every γ of cofinality greater than ω:

(∗) there is a club Z ⊂ γ, so that CX(ξ, β) = Λ(ŝ(ξ), r̂(ξ), cf(ŝ↾ γ)) for all ξ < β

both in Z with cof(β) = ω.

Lemma 4.16. Let γ be a limit of cofinality greater than ω, and let k ∈ K<γ .
Then 〈b,D, a, b∗〉 belongs to CX(αγ

k , γ) iff there is a0 ∈ S∪{↑}, D0 ⊂ S, D∗ ⊂ S,
s : γ → S, and r : γ ⇀ S so that:

1. (∀∗β < γ)〈b,D0, a0, s(β)〉 ∈ C
β
k .

2. (∀∗ξ < γ)(∀∗β < γ) r(ξ) and r̂(ξ) are both defined, and if cof(β) = ω then
〈s(ξ),D∗, r(ξ), s(β)〉 belongs to Λ(ŝ(ξ), r̂(ξ), cf(ŝ↾ γ)).

3. (∀∗β < γ) if cof(β) = ω then s(β) = (Ψ ⊕ ~ϕ)(D∗).
4. (∀∗β < γ) if cof(β) > ω then s(β) = (Ψ ⊕ ~ϕ)(β; s↾β, r↾β).
5. (a) b∗ = (Ψ ⊕ ~ϕ)(γ; s, r).

(b) D = D0 ∪D
∗ ∪ {b∗}.

(c) One of the following conditions holds:
• a0 ∈ S and a = a0.
• a0 =↑, h(b) ∈ u(q) for every q ∈ D∗, h(b) ∈ u(b∗), and a =↑.
• a0 =↑, h(b) ∈ u(q) for every q ∈ D∗, h(b) 6∈ u(b∗), and a = b∗.

(In conditions (3), (4), and (5a) we are using the terminology of Definition 2.1
and Remark 2.2.)

Remark 4.17. One should think of a pair 〈s, r〉 witnessing the conditions of
Lemma 4.16 as a skeleton for a run of A on X↾ [ακ

k , γ) witnessing that 〈b,D, a, b∗〉
belongs to CX(αγ

k , γ). For example conditions (3) and (4) say that, on a club,
the skeleton behaves like a run of A. In the proof of the lemma we shall see that
if there is a run witnessing 〈b,D, a, b∗〉 ∈ CX(αγ

k , γ), then this run satisfies con-
ditions (1)–(5), and in the other direction, any skeleton satisfying the conditions
can be completed to a run witnessing 〈b,D, a, b∗〉 ∈ CX(αγ

k , γ).

Proof of Lemma 4.16. Suppose first that 〈b,D, a, b∗〉 belongs to CX(αγ
k , γ),

and let 〈s, r〉 be a run of A on X↾ [αγ
k , γ) witnessing this. Let D∗ = cf(s), let

D0 = {s(ξ) | αγ
k ≤ ξ < γ}, let a0 = r(αγ

k) if the pebble h(s(αγ
k)) placed on α

γ
k

is released before stage γ, and let a0 =↑ if the pebble is released at γ or not
released at all. It is easy to check that conditions (1)–(5) hold for a0, D0, D

∗, s,
and r. The runs witnessing condition (1) are 〈s↾ [αγ

k , β], r↾ [αγ
k , β)〉 for sufficiently

large β. Using (∗) above we may assume that Λ(ŝ(ξ), r̂(ξ), cf(ŝ↾ γ)) in condition
(2) is equal to CX(ξ, β), and for almost all ξ and β, the run 〈s↾ [ξ, β], r↾ [ξ, β)〉
witnesses that 〈s(ξ),D∗, r(ξ), s(β)〉 belongs to this character. Conditions (3) and
(4) hold because 〈s, r〉 is a run of A. Condition (5) holds because 〈s, r〉 witnesses
that 〈b,D, a, b∗〉 ∈ CX(αγ

k , γ).
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Suppose next that 〈b,D, a, b∗〉, a0, D0, D
∗, s, and r satisfy conditions (1)–(5).

We work to show that 〈b,D, a, b∗〉 belongs to CX(αγ
k , γ).

Let Z1 ⊂ γ be a club witnessing (∗). Let Z2 be the intersection of the clubs
witnessing the truth of the “for almost all” statements in conditions (1)–(4). Let
Z ⊂ Z1 ∩ Z2 be a club so that every ξ ∈ Z which is not a limit point of Z has
cofinality ω.

Let ξ0 be the first element of Z, and for each ξ ∈ Z let β(ξ) be the first
element of Z above ξ. (Notice that β(ξ) has cofinality ω.) Fix a run 〈s0, r0〉 of
A on X↾ [αγ

k , ξ0) witnessing that 〈b, a0,D0, s(ξ0)〉 belongs to CX(αγ
k , ξ0). This is

possible using condition (1). For each ξ ∈ Z fix a run 〈sξ, rξ〉 of A on X↾ [ξ, β(ξ))
witnessing that 〈s(ξ),D∗, r(ξ), s(β(ξ))〉 belongs to CX(ξ, β(ξ)). This is possible
using condition (2) and (∗) above.

Define s∗ : [αγ
k , γ] → S through the conditions: s∗↾ [αγ

k , ξ0] = s0, s
∗↾ [ξ, β(ξ)] =

sξ for each ξ ∈ Z, and s∗(γ) = b∗. Notice then that:

(i) s∗(αγ
k) = b.

(ii) s∗(ξ) = s(ξ) for each ξ ∈ Z.
(iii) {s∗(ζ) | αγ

k ≤ ζ ≤ ξ0} = D0.
(iv) {s∗(ζ) | ξ ≤ ζ ≤ β(ξ)} = D∗ for each ξ ∈ Z.
(v) If there is an ordinal ρ ∈ (αγ

k , ξ0] so that h(s∗(αγ
k)) 6∈ u(s∗(ρ)) then a0 =

s∗(ρ) for the least such ρ, and otherwise a0 =↑.
(vi) There is an ordinal ρ ∈ (ξ, β(ξ)] so that h(s∗(ξ)) 6∈ u(s∗(ρ)), and s∗(ρ) for

the least such ρ is equal to r(ξ).

These conditions follow from the facts that 〈s0, r0〉 witnesses the membership of
〈b,D0, a0, s(ξ0)〉 in CX(αγ

k , ξ0), r(ξ) 6=↑, and 〈sξ, rξ〉 witnesses the membership
of 〈s(ξ),D∗, r(ξ), s(β(ξ))〉 in CX(ξ, β(ξ)).

For ξ ∈ [αγ
k , γ) let ρ∗(ξ) be the first ordinal ρ∗ > ξ so that h(s∗(ξ)) 6∈ u(s∗(ρ∗))

if there is such an ordinal, and undefined otherwise. Let r∗(ξ) = s∗(ρ∗(ξ)).
Notice then that:

(vii) r∗(αγ
k) = a.

This follows from conditions (iv) and (v) above, the fact that s∗(γ) = b∗, and
condition (5c) in Lemma 4.16. Notice further that for ξ ∈ Z:

(viii) r∗(ξ) = r(ξ).

This follows from condition (vi) above.

Claim 4.18. For every β ∈ Z ∪ {γ} which is a limit point of Z, s∗(β) =
(Ψ ⊕ ~ϕ)(β; s∗↾β, r∗↾β).

Proof. Suppose first that β has cofinality ω. By condition (iv) and since
β is a limit point of Z, cf(s∗↾β) is equal to D∗. So (Ψ ⊕ ~ϕ)(β; s∗↾β, r∗↾β) =
(Ψ ⊕ ~ϕ)(D∗) = s∗(β) where the last equality uses condition (3) in Lemma 4.16
and condition (ii) above.

Suppose next that β has cofinality ω1 or greater. Notice that by conditions (ii)
and (viii), s∗ and r∗ agree with s and r on the set Z∩β, which is closed unbounded
in β. By Claim 1.9 it follows that a sentence of L∗

S is true in (β; s∗↾β, r∗↾β) iff it
is true in (β; s↾β, r↾β). From this in turn it follows that (Ψ⊕ ~ϕ)(β; s∗↾β, r∗↾β)
is equal to (Ψ ⊕ ~ϕ)(β; s↾β, r↾β). Finally (Ψ ⊕ ~ϕ)(β; s↾β, r↾β) is equal to s∗(β)
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using condition (4) in Lemma 4.16 and condition (ii) above if β ∈ Z, and using
condition (5a) if β = γ. ⊣

Claim 4.19. For every ζ in the interval [αγ
k , ξ0), 〈s

∗(ζ),X(ζ), s∗(ζ + 1)〉 ∈ T .
If ζ is a limit ordinal in the interval (αγ

k , ξ0] then s∗(ζ) = (Ψ⊕ ~ϕ)(ζ; s∗↾ ζ, r∗↾ ζ).

Proof. Both statements follow from the fact that s∗↾ [αγ
k , ξ0] = s0, the defi-

nition of r∗, and the fact that 〈s0, r0〉 is a run of A on X↾ [αγ
k , ξ0). ⊣

Claim 4.20. Let ξ belong to Z. Then for every ζ in the interval [ξ, β(ξ)),
〈s∗(ζ),X(ζ), s∗(ζ + 1)〉 ∈ T . If ζ is a limit ordinal in the interval (ξ, β(ξ)] then
s∗(ζ) = (Ψ ⊕ ~ϕ)(ζ; s∗↾ ζ, r∗↾ ζ).

Proof. Both statements follow from the fact that s∗↾ [ξ, β(ξ)) = sξ, the def-
inition of r∗, and the fact that 〈sξ, rξ〉 is a run of A on X↾ [ξ, β(ξ)). ⊣

The last three claims combine to show that 〈s∗, r∗〉 is a run of A on X↾ [αγ
k , γ).

By conditions (i) and (vii) above, s∗(αγ
k) = b and r∗(αγ

k) = a. s∗(γ) = b∗

by definition. By conditions (iii), (iv), and (5b), {s∗(ζ) | αγ
k ≤ ζ ≤ γ} =

D. The run 〈s∗, r∗〉 therefore witnesses that 〈b,D, a, b∗〉 belongs to CX(αγ
k , γ).

2 (Lemma 4.16)

Corollary 4.21. There is a sentence ϕ̂b,D,a,b∗ in the language L∗bS so that

for every limit γ of cofinality greater than ω, and every k ∈ K<γ , 〈b,D, a, b∗〉
belongs to CX(αγ

k , γ) iff (γ; ŝ↾ γ, r̂↾ γ) |= ϕ̂b,D,a,b∗ .

Proof. Each of the five conditions in Lemma 4.16 can be written as a sentence
in the langauge L∗bS×S

over the structure (γ; ŝ × s, r̂ × r). The statement that

there are s : γ → S and r : γ ⇀ S so that the conditions hold can be written as a
sentence in the language L∗bS over the structure (γ; ŝ, r̂), using Lemma 1.18. ⊣

Let Φ̂ be the collection of the following sentences in L∗bS :

• The sentences ϕ̂b,D,a,b∗ of the previous corollary, for all b, b∗ ∈ S, a ∈
S ∪ {↑}, and D ⊂ S.

• The sentence ϕ̂ctbl−cof which is true in a structure (γ; ŝ, r̂) iff γ has countable
cofinality.

• The sentences b̂ ∈ cf(ŝ), for all b̂ ∈ Ŝ.

Corollary 4.22. For each limit ordinal γ, ŝ(γ) can be determined (indepen-

dently of X and γ) from knowledge of the truth value of the sentences of Φ̂ in
(γ; ŝ↾ γ, r̂↾ γ).

Proof. Knowledge of the truth values of the sentences of Φ̂ in (γ; ŝ↾ γ, r̂↾ γ)
allows determining:

(i) cf(ŝ↾ γ).
(ii) Whether cof(γ) = ω.
(iii) The truth value of each of the sentences ϕ̂b,D,a,b∗ in (γ; ŝ↾ γ, r̂↾ γ).

From the knowledge of cf(ŝ↾ γ) one can determine K<γ , Rγ , and Cγ
i,j for i Rγ j,

see Claim 4.7. If cof(γ) = ω then one can also determine Cγ
k for each k ∈ K<γ

from the knowledge of cf(ŝ↾ γ), see Corollary 4.10. If cof(γ) > ω then one can
determine Cγ

k , namely CX(αγ
k , γ), from the truth value of the sentences ϕ̂b,D,a,b∗ ,

using Corollary 4.21.
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Altogether then one can determine each of K<γ , Rγ , Cγ
k for k ∈ K<γ , and

C
γ
i,j for all pairs i Rγ j. By Remark 4.5 one can therefore determine ŝ(γ). ⊣

Let ~φ list all the sentences in the set Φ̂. Recall that t
~φ

(γ;ŝ,r̂) is the function,

from lh(~φ) into 2, defined by the condition t
~φ

(γ;ŝ;r̂)(i) = 1 if (γ; ŝ, r̂) |= φi and

t
~φ

(γ;ŝ;r̂)(i) = 0 otherwise. Thus t
~φ

(γ;ŝ;r̂) codes the truth value of each of the sen-

tences of Φ̂ in (γ; ŝ, r̂). By the last corollary there is a function Ψ̂ : 2lh(~φ) → Ŝ

(independent of X) so that ŝ(γ) = Ψ̂(t
~φ

(γ;ŝ,r̂)) for every limit γ.

We have now completed the definition of a deterministic Σ–automaton Â =

〈Ŝ, P̂ , T̂ , Ψ̂, ~φ, ĥ, û〉 so that 〈ŝ, r̂〉 as defined above is a run of A on X.

We also defined, in Definition 4.4, a state Î ∈ Ŝ and a function z : Ŝ ⇀ C so

that ŝ(0) = Î and z(ŝ(γ)) = CX(0, γ) for each γ > 0.

Our definitions of Â, Î, and z were independent of the input string X. We
have therefore proved the following theorem:

Theorem 4.23. Let Σ be a finite alphabet and let A be a Σ–automaton. Then

there is a deterministic Σ–automaton Â, with a set of states Ŝ say, a particular

state Î ∈ Ŝ, and a function z : Ŝ ⇀ C (where C is the set of characters for
the original automaton A), so that: for every ordinal θ and every input string

X : θ → Σ, if 〈ŝ, r̂〉 is the unique run of Â on X with ŝ(0) = Î, then z(ŝ(γ)) =
CX(0, γ) for each γ ∈ (0, θ]. ⊣

Corollary 4.24. Let Σ be a finite alphabet and let A be a Σ–automaton.
Let 〈I, F 〉 be an accepting condition for A. Then there is a deterministic Σ–

automaton Â, with an accepting condition 〈Î , F̂ 〉, so that for every ordinal θ and

every input string X : θ → Σ, 〈Â, Î, F̂ 〉 accepts X iff 〈A, I, F 〉 accepts X.

Proof. Let Q be the set of characters C so that

(∃D)(∃a)(∃b∗)(〈I,D, a, b∗〉 ∈ C ∧ b∗ ∈ F ).

Then 〈A, I, F 〉 accepts an input string X of length θ iff CX(0, θ) belongs to Q.

Let Â, Î, and z be as in the previous theorem.

If 〈A, I, F 〉 accepts the unique input string of length 0 then let F̂ = z−1′′Q ∪

{Î}, and otherwise let F̂ = z−1′′Q.

Then 〈Â, Î , F̂ 〉 accepts X : θ → Σ ⇐⇒ θ = 0 and 〈A, I, F 〉 accepts X, or
θ > 0 and CX(0, θ) ∈ Q ⇐⇒ 〈A, I, F 〉 accepts X. ⊣

§5. Formulae to Automata. For a ∈ ON define χf(a) : ON → 2 through
the condition χf(γ) = 1 if γ = a and χf(γ) = 0 otherwise. For a ⊂ ON define
χs(a) : ON → 2 through the condition χs(γ) = 1 if γ ∈ a and χs(γ) = 0 otherwise.
(f and s here stand for “first order” and “second order.”)

Given a monadic second order formula ϕ with free variables x1, . . . , xk let
sig(ϕ) : k → {s, f} be the function defined by the condition sig(ϕ)(i) = s if xi is
a second order variable, and sig(ϕ)(i) = f if xi is a first order variable.

A sequence 〈a1, . . . , ak〉 is said to fit the signature of ϕ if ai is an ordinal for i
such that sig(ϕ)(i) = f, and a set of ordinals for i such that sig(ϕ)(i) = s. Given a
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sequence 〈a1, . . . , ak〉 which fits the signature of ϕ define χ(a1, . . . , ak) : ON → 2k

to be the function χsig(ϕ)(1)(a1) × · · · × χsig(ϕ)(k)(ak).
The work in the previous sections leads to the following theorem, which pro-

vides the crucial link between monadic second order formulae over the ordinals
and our finite state automata. The theorem relies heavily on the determinism
proved in Section 4.

Theorem 5.1. Let ϕ be a monadic second order formula in the language of
order, with k free variables say. Then there is a deterministic finite state au-
tomaton A, with accepting condition 〈I, F 〉, so that: for every ordinal θ, and for
every sequence a1, . . . , ak of elements and subsets of θ which fits the signature of
ϕ, (θ;<) |= ϕ[a1, . . . , ak] iff 〈A, I, F 〉 accepts χ(a1, . . . , ak)↾ θ.

Proof. The proof is by induction on the complexity of ϕ. The case that
ϕ is atomic is a simple exercise. The inductive case of conjunction is a direct
application of Lemma 2.4. The inductive case of negation is a direct application
of Claim 2.7. Finally the inductive case of existential quantification (either
first or second order) is an application of Claim 2.3 followed by an application
of Corollary 4.24 to obtain a deterministic automaton equivalent to the non-
deterministic automaton produced by Claim 2.3. ⊣

Remark 5.2. Theorem 5.1 holds also in the case that θ is the class of all
ordinals, with both the quantifiers of ϕ and the quantifiers appearing in the
“almost-all” sentences used in A interpreted as ranging over classes.

Remark 5.3. The construction of A from ϕ is effective. Thus, there is in
fact a recursive function which assigns to each formula ϕ an automaton A and
accepting condition 〈I, F 〉 witnessing Theorem 5.1.

Theorem 5.1 has a converse:

Claim 5.4. Given an automaton A on a finite alphabet Σ = {σ1, . . . , σn} and
an accepting condition 〈I, F 〉, there is a monadic second order formula ϕ so that
〈A, I, F 〉 accepts X : θ → Σ iff (θ;<) |= ϕ[a1, . . . , an] where ai = {ξ | X(ξ) = σi}.

Proof. This can be seen through coding strings of states of A by sets of
ordinals, and having ϕ express the existence of an accepting run: Let S =
{e1, . . . , ek} be the set of states of A. For s : θ → S and r : θ ⇀ S define
bi = {ξ < θ | s(ξ) = ei} and ci = {ξ < θ | r(ξ) = ei}. It is enough to show
that there are formulae ψi so that (θ;<) |= ψi[a1, . . . , an, b1, c1, . . . , bk, ck] iff
〈s⌢ei, r〉 is a run of A on X. Using second order existential quantification one
can then obtain ϕ from the formulae ψi for i such that ei ∈ F . Now ψi must
simply express conditions (S), (L), and (R) in Section 2. It is clear that each of
the conditions can be expressed in the monadic language, and in fact only first
order quantifiers are needed for conditions (S) and (R). Let us just note that T ,
Ψ, h, and u are finite objects, and the references to these objects in conditions
(S), (L), and (R) can be removed, replacing the conditions by long, but finite,
disjunctions of cases, ranging over all possible configurations which satisfy the
requirements involving T , Ψ, h, and u. The almost-all formulae from ~ϕ appear
as subformulae in the disjunction in the case of condition (L). In the case of
conditions (S) and (R) the disjunction is first order. ⊣
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§6. Second order definability. One of the important aspects of Theorem
5.1 is the independence of the conversion from ϕ to 〈A, I, F 〉 from the length
θ of the input string. We now use this aspect to show that singular cardinals
cannot be defined by second order sentences over (ON;<).

Let Σ be the singleton alphabet {∅}. Let A be a deterministic Σ–automaton.
Let θ be closed under ordinal multiplication by ω, meaning that α < θ → α ·ω <
θ. Note that θ is then closed also under ordinal addition. Let X : θ → Σ be the
constant function X(α) = ∅ (the only possible input in the case of the singleton
alphabet {∅}). Let 〈s, r〉 be a run of A on X. The claims below are formulated
with reference to these objects.

Claim 6.1. Let α < θ and define s̄ and r̄ setting s̄(ξ) = s(α + ξ) for ξ ≤ θ

and r̄(ξ) = r(α+ ξ) for ξ < θ. Then 〈s̄, r̄〉 is a run of A on X.

Proof. This is a standard claim for automata running on a constant input
string. The proof is a simple induction showing that 〈s̄, r̄〉 satisfies conditions
(S), (L), and (R) in Section 2, using the same conditions for 〈s, r〉 and the fact
that X(α+ ξ) = X(ξ) for each ξ. Let us just comment that, for each limit γ, the
structures (α+ γ; s, r) and (γ; s̄, r̄) are similar (see Definition 1.8) and therefore
by Claim 1.9 satisfy the same L∗

S sentences. This is important for condition (L)
in Section 2. ⊣

Claim 6.2. Let α1, α2 < θ. Suppose that s(α1) = s(α2). Then for every
ξ ≤ θ, s(α1 + ξ) = s(α2 + ξ), and r(α1) = r(α2).

Proof. Define 〈s̄1, r̄1〉 through the conditions s̄1(ξ) = s(α1 + ξ) and r̄1(ξ) =
r(α1) + ξ. Define s̄2 and r̄2 similarly using α2. By the previous claim then,
both 〈s̄1, r̄1〉 and 〈s̄2, r̄2〉 are runs of A on X. Both have the same first state:
s̄1(0) = s(α1) = s(α2) = s̄2(0). Since A is deterministic, s̄1 must equal s̄2 and
r̄1 must equal r̄2. ⊣

Claim 6.3. Let D = cf(s↾ θ). Let δ < θ be large enough that {s(ξ) | δ ≤ ξ <

θ} = D. Let η ∈ (δ, θ) be large enough that {s(ξ) | δ ≤ ξ < η} = D, and picked
so that s(η) = s(δ). (This is possible since s(δ) ∈ cf(s↾ θ) and therefore there are
cofinally many ζ < θ so that s(ζ) = s(δ).) Let γ be such that η = δ + γ.

Then for every α ∈ (δ, θ] which is closed under ordinal addition of γ (meaning
that ν < α→ ν + γ < α), cf(s↾α) is precisely equal to D.

Proof. Using the previous claim and the fact that s(δ) = s(δ + γ) we see
that {s(ξ) | δ + γ ≤ ξ ≤ δ + γ · 2} is equal to {s(ξ) | δ ≤ ξ ≤ δ + γ}, which we
know is equal to D. From this and the fact that s(ξ) ∈ D for all ξ > δ it follows
that for every β ∈ [δ, η], {s(ξ) | β ≤ ξ ≤ β + γ · 2} is equal to D.

Fix now some α ∈ [δ, θ] which is closed under addition of γ. Since α > δ,
certainly cf(s↾α) ⊂ D. Thus it is enough to show that {s(ξ) | ν ≤ ξ < α} ⊃ D

for cofinally many ν < α.
Let ν < α be given. Increasing ν if needed we may assume that ν > δ, so that

s(ν) ∈ D. There is therefore some β ∈ [δ, η] with s(β) = s(ν). By the previous
claim, {s(ξ) | ν ≤ ξ ≤ ν + γ · 2} is equal to {s(ξ) | β ≤ ξ ≤ β + γ · 2}, which
we know is equal to D. Since α is closed under addition of γ, ν + γ · 2 < α. So
{s(ξ) | ν ≤ ξ < α} ⊃ {s(ξ) | ν ≤ ξ < ν + γ · 2} = D. ⊣
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Claim 6.4. Let δ and γ be as in the previous claim. Let C = {α ≤ θ | α > δ

and α is closed under addition of γ}. Then for every α, β ∈ C, if cof(α) = cof(β)
then s(α) = s(β).

Proof. Suppose for contradiction that α, β ∈ C have the same cofinality, yet
s(α) 6= s(β). Let τ = cof(α) = cof(β). Picking α and β of minimal cofinality we
may assume that:

(i) If ᾱ, β̄ ∈ C are such that cof(ᾱ) = cof(β̄) < τ , then s(ᾱ) = s(β̄).

If τ is equal to ω, then condition (L) in Section 2 is such that s(α) = (Ψ ⊕
~ϕ)(cf(s↾α)) and s(β) = (Ψ ⊕ ~ϕ)(cf(s↾β)) (see Definition 2.1 and Remark 2.2).
By the previous claim both cf(s↾α) and cf(s↾β) are equal to D. So s(α) =
(Ψ ⊕ ~ϕ)(D) = s(β).

Suppose then that cof(τ) > ω. Let Y ⊂ C be a closed unbounded subset of α
of order type τ . (Y can be picked a subset of C since C∩α is a closed unbounded
subset of α.) Similarly let Z ⊂ C be a closed unbounded subset of β of order
type τ . Let f : Y → Z be the unique order preserving bijection.

Notice that cof(f(ξ)) = cof(ξ) for each ξ which is a limit point of Y . Using
condition (i) it follows that s(f(ξ)) = s(ξ) for each ξ which is a limit point of C,
and hence by Claim 6.2, also r(f(ξ)) = r(ξ). The structures (α; s↾α, r↾α) and
(β; s↾β, r↾β) are therefore similar. By Claim 1.9 they satisfy the same sentences
of L∗

S , and therefore (Ψ⊕ ~ϕ)(α; s↾α, r↾α) is equal to (Ψ⊕ ~ϕ)(β; s↾β, r↾β). Using
condition (L) in Section 2 it follows that s(α) = s(β). ⊣

Corollary 6.5. Let Σ be the singleton alphabet {∅}, let A be a deterministic
Σ–automaton, and let X : θ → Σ be the constant input X(α) = ∅ for α < θ. Let
〈s, r〉 be a run of A on X.

Suppose that θ is a limit ordinal and that θ is closed under multiplication by
its cofinality. (In particular cof(θ) < θ.) Then there is θ̄ strictly smaller than θ

so that s(θ̄) = s(θ).

Proof. Let δ, γ, and C be as in the previous claim. Let τ = cof(θ).
Notice that C is equal to {δ + γ · ω · ξ | ξ ≥ 1 ∧ δ + γ · ω · ξ < θ} ∪ {θ}. Since

θ is closed under multiplication by τ , the ordinal θ̄ = δ + γ · τ is smaller than θ.
This ordinal belongs to C, and has cofinality τ . So both θ̄ and θ are ordinals of
cofinality τ in C. By the last claim s(θ̄) = s(θ). ⊣

A monadic sentence ϕ pinpoints an ordinal θ if θ is least so that (θ;<) |= ϕ.
θ can be pinpointed if there is a monadic sentence ϕ which pinpoints it.

Theorem 6.6. Let θ be a limit ordinal closed under multiplication by its cofi-
nality. Then θ cannot be pinpointed.

Proof. Suppose for contradiction that ϕ pinpoints θ. Using Theorem 5.1 fix
a deterministic automaton A with accepting condition 〈I, F 〉 so that (γ;<) |= ϕ

iff 〈A, I, F 〉 accepts χ()↾ γ.
ϕ has no free variables, and χ()↾ γ is simply the constant input X : γ → 20 =

{∅} defined by X(α) = ∅ for all α < γ.
Since ϕ holds in (θ;<), 〈A, I, F 〉 accepts χ()↾ θ. Let 〈s, r〉 be the accepting

run, so that s(0) = I and s(θ) ∈ F . By the last claim there is θ̄ < θ so that
s(θ̄) = s(θ), hence s(θ̄) ∈ F . Thus 〈A, I, F 〉 accepts χ()↾ θ̄ (the witnessing run is
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〈s↾ θ̄ + 1, r↾ θ〉), and therefore (θ̄, <) |= ϕ. But this contradicts the assumption
that ϕ pinpoints θ. ⊣

An ordinal θ is definable by a monadic formula over (ON;<) if there is a
monadic formula ϕ with one free variable so that (ON;<) |= ϕ[α] iff α = θ.

Lemma 6.7. Suppose that θ is definable by a monadic formula over (ON;<).
Then θ can be pinpointed.

Proof. Let ϕ be a formula defining θ. Using Theorem 5.1 fix a deterministic
automaton A with an accepting condition 〈I, F 〉 so that (ON;<) |= ϕ[α] iff
〈A, I, F 〉 accepts Xα, where Xα : ON → 2 is the function determined by the
condition Xα(ξ) = 1 if ξ = α and Xα(ξ) = 0 otherwise.

Since (ON;<) |= ϕ[θ], 〈A, I, F 〉 accepts Xθ. Let 〈s, r〉 be the accepting run,
so that s(0) = I and s(ON) ∈ F . (By s(ON) we mean the final state reached by
A running on the class-length input Xα.) Let b∗ = s(θ).

Claim 6.8. There is no θ̄ < θ so that s(θ̄) = b∗.

Proof. Suppose for contradiction θ̄ < θ and s(θ̄) = s(θ). Define s∗ : ON+1 →
S through the conditions:

• s∗(ξ) = s(ξ) for ξ ≤ θ̄.
• s∗(θ̄ + ξ) = s(θ + ξ).

(Notice that there is no conflict between the two conditions, as s(θ̄) = s(θ).)
Define r∗ : ON ⇀ S setting r∗(ξ) = s∗(ζ) for the least ζ > ξ so that h(s∗(ξ)) 6∈
u(s∗(ζ)) if there is such a ζ, and r∗(ξ) =↑ otherwise.

It is easy to check that 〈s∗, r∗〉 is a run of A on Xθ̄. Since s∗(0) = I and
s∗(ON) = s(ON) ∈ F , 〈s∗, r∗〉 witnesses that 〈A, I, F 〉 accepts Xθ̄. It follows
that (ON;<) |= ϕ[θ̄], and this is a contradiction since ϕ is only true of θ. ⊣

For each ordinal α let Yα : α → 2 be the constant function 0, that is the
function Y (ξ) = 0 for all ξ < α. Notice that Xθ↾ θ is simply Yθ.

Let F ∗ = {b∗}. Then 〈A, I, F ∗〉 accepts Yθ = Xθ↾ θ (the run witnessing this is
〈s↾ θ + 1, r↾ θ〉). By the last claim and since A is deterministic, 〈A, I, F ∗〉 does
not accept Yθ̄ for any θ̄ < θ.

Using Claim 5.4, that is using the fact that the existence of accepting runs
can be expressed in the monadic langauge, fix a sentence ψ so that (α;<) |= ψ

iff 〈A, I, F ∗〉 accepts Yα. Then (θ;<) |= ψ, and for all θ̄ < θ, (θ̄;<) 6|= ψ. Hence
ψ pinpoints θ. 2 (Lemma 6.7)

Theorem 6.9. Let θ be a limit ordinal closed under ordinal multiplication by
its cofinality. Then θ cannot be defined by a monadic formula over (ON;<).

Proof. If θ can be defined then by Lemma 6.7 it can be pinpointed, contra-
dicting Theorem 6.6. ⊣

All cardinals are closed under ordinal multiplication, so every cardinal κ with
cof(κ) < κ is closed under ordinal multiplication by its cofinality. Using Theorem
6.9 it follows finally that no singular cardinal can be defined by a monadic formula
over (ON;<).
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