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Abstract. The principle of determinacy has been crucial to the study of definable sets
of real numbers. This paper surveys some of the uses of determinacy, concentrating
specifically on the connection between determinacy and large cardinals, and takes this
connection further, to the level of games of length ω1.
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1. Determinacy

Let ωω denote the set of infinite sequences of natural numbers. For A ⊂ ωω let
Gω(A) denote the length ω game with payoff A. The format of Gω(A) is displayed
in Diagram 1. Two players, denoted I and II, alternate playing natural numbers
forming together a sequence x = 〈x(n) | n < ω〉 in ωω called a run of the game.
The run is won by player I if x ∈ A, and otherwise the run is won by player II.

I x(0) x(2) . . . . . .
II x(1) x(3) . . . . . .

Diagram 1. The game Gω(A).

A game is determined if one of the players has a winning strategy. The set A is
determined if Gω(A) is determined. For Γ ⊂ P(ωω), det(Γ) denotes the statement
that all sets in Γ are determined.

Using the axiom of choice, or more specifically using a wellordering of the reals,
it is easy to construct a non-determined set A. det(P(ωω)) is therefore false. On
the other hand it has become clear through research over the years that det(Γ) is
true if all the sets in Γ are definable by some concrete means. Moreover det(Γ),
taken as an axiom, gives rise to a rich structure theory that establishes a hierarchy
of complexity on the sets in Γ, and completely answers all natural questions about
the sets in each level of the hierarchy. Determinacy is therefore accepted as the
natural hypothesis in the study of definable subsets of ωω.

∗This material is based upon work supported by the National Science Foundation under Grant

No. DMS-0094174.
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Definability takes increasingly liberal meanings as one progresses higher in the
hierarchy of complexity. At the lower levels it is very concrete. Let ω<ω denote
the set of finite sequences of natural numbers. For s ∈ ω<ω let Ns = {x ∈ ωω |
x extends s}. The sets Ns (s ∈ ω<ω) are the basic open neighborhoods in ωω.
A ⊂ ωω is open if it is a union of basic open neighborhoods.

ωω with the topology defined above is isomorphic to the irrational numbers.
Following standard abuse of notation in descriptive set theory we use R to denote
ωω, and refer to its elements as reals.

A set is Borel if it can be obtained from open sets using repeated applications
of complementations and countable unions. The projection of a set B ⊂ R × R is
the set {x ∈ R | (∃y)〈x, y〉 ∈ B}. A set is analytic if it is the projection of the
complement of an open set. A set is projective if it can be obtained from open
sets using repeated applications of complementations and projections. Analyzing
the logical complexity of these definitions and using diagonal arguments one can
establish that {Borel sets} ( {analytic sets} ( {projective sets}, so that these
classes form a proper hierarchy.

Theorem 1.1 (Gale–Stewart [4], 1953). All open sets are determined.

Theorem 1.2 (Martin [20], 1975). All Borel sets are determined.

Theorem 1.3 (Martin [19], 1970). All analytic sets are determined.

Theorem 1.4 (Martin–Steel [22], 1985). All projective sets are determined.

Theorems 1.1 and 1.2 are theorems of ZFC, the basic system of axioms for
set theory and mathematics. Theorems 1.3, 1.4, and 1.5 (below) have additional
stronger assumptions known as large cardinal axioms, which are not listed here
but will be discussed in Section 2.1

Recall that L(R) is the smallest model of set theory which contains all the reals
and all the ordinals. It is obtained as the union

⋃
α∈ON Lα(R) of the hierarchy

defined by the conditions: L0(R) = R; for limit ordinals λ, Lλ(R) =
⋃

α<λ Lα(R);
and for each ordinal α, Lα+1(R) consists of the sets in Lα(R), and of all subsets
of Lα(R) which are definable over Lα(R) by first order formulae with parameters.
The third condition is the crucial one, placing a definability requirement on the
sets that make it into L(R). L(R) is constructed through a transfinite sequence
of applications of this condition. Notice that the projective sets are subsumed
already into L1(R), the first stage of this transfinite sequence.

Theorem 1.5 (Woodin [40], 1985). All sets of reals in L(R) are determined.

Theorems 1.1 through 1.5 establish determinacy for sets of varying levels of
definability, starting from open sets which are very directly definable from real
numbers, continuing with the projective sets, which are definable from open sets
using existential quantifications and negations, and ending with all sets in L(R).

1The determinacy of Borel sets of course follows from the determinacy of analytic sets. The

new element in Theorem 1.2 is a proof of Borel determinacy from the axioms of ZFC, without

using large cardinals.
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More is possible, as we shall see in Section 3. The remainder of this section is
devoted to consequences of determinacy.

Let Γ be an adequate pointclass (that is a collection of subsets of ωω, closed
under some basic operations, see Moschovakis [27]). The first results derived from
determinacy concerned regularity properties, such as Lebesgue measurability, the
Baire property, and the perfect set property. All these properties fail outside
the realm of determinacy; counterexamples to each of them can be constructed
easily using a wellordering of the reals. Determinacy serves as an intermediary in
establishing these properties for definable sets.

Theorem 1.6 (Banach, Oxtoby [37], 1957). Assume det(Γ). Let A ∈ Γ. Then
A has the property of Baire (meaning that A is either meager, or comeager on a
basic open neighborhood).

Theorem 1.7 (Mycielski–Swierczkowski [29], 1964). Assume det(Γ). Then all
sets in Γ are Lebesgue measurable.

Theorem 1.8 (Davis [3], 1964). Assume det(Γ). Let A ∈ Γ. Then either A is
countable, or else A contains a perfect set.

More importantly, determinacy was seen to imply various structural properties
of classes of sets within its realm. For a pointclass Γ let ¬Γ denote the pointclass
consisting of complements of sets in Γ, and let ∃Γ denote the pointclass consisting
of projections of sets in Γ. Recall that Σ

1
1 is the pointclass of analytic sets, Π

1
n =

¬Σ
1
n, and Σ

1
n+1 = ∃Π

1
n. ∆

1
n is the pointclass consisting of sets which are both Σ

1
n

and Π
1
n. Each Σ

1
n set A (similarly Π

1
n) is definable through a string of quantifiers

from an open set. The open set itself, call it D, is definable from a real number,
coding the set {s ∈ ω<ω | Ns ⊂ D}. A is lightface Σ1

n (similarly Π1
n) if the

underlying real that defines it is recursive, that is computable by a Turing machine.
The boldface pointclasses were studied by analysts in the early 20th century.

Recall for example the following theorem of Kuratowski [16]: the intersection of
any two Σ

1
1 (analytic) sets A,B ⊂ R can be presented as the intersection of two

Σ
1
1 sets A′ ⊃ A and B′ ⊃ B, such that A′ ∪ B′ = R. This is today recast as

a theorem about the pointclass Π
1
1. A pointclass Γ is said to have the reduction

property if for any two sets A,B ⊂ R in Γ there are sets A′ ⊂ A and B′ ⊂ B,
both in Γ, so that A′ ∪ B′ = A ∪ B and A′ ∩ B′ = ∅. Kuratowski’s theorem
establishes that Π

1
1 has the reduction property. Kuratowski also showed that Σ

1
2

has the reduction property. This was as far up along the projective hierarchy as
one could get in those days. The basic axioms of set theory, without the addition
of determinacy or large cardinals, do not decide questions such as the reduction
property for projective pointclasses above Σ

1
2.

In 1967 Blackwell [2] used the determinacy of open games, Theorem 1.1 that is,
to give a new proof of Kuratowski’s reduction theorem. Inspired by his proof, Mar-
tin [18] and Addison–Moschovakis [1] proved that Π

1
3 has the reduction property,

assuming det(∆1
2).

The reduction property is a consequence of a stronger property known as the
prewellordering property. Martin and Addison–Moschovakis obtained this stronger
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property, and in fact propagated it along the odd levels of the projective hierarchy,
using determinacy.

A prewellorder on A ⊂ R is a relation � on A which is transitive, reflexive, and
wellfounded. The prewellorder � induces an equivalence relation ∼ on A (x ∼ y
iff x � y ∧ y � x), and gives rise to a wellorder of A/∼. � is said to belongs to a
pointclass Γ if there are two relations Y and N , in Γ and ¬Γ respectively, so that
for every y ∈ A, {x | x � y} = {x | 〈x, y〉 ∈ Y } = {x | 〈x, y〉 ∈ N}. Γ has the
prewellordering property just in case that every set A ∈ Γ admits a prewellorder in
Γ.

Theorem 1.9 (Martin [18], Addison–Moschovakis [1], 1968). Assume projective
determinacy. Then the projective pointclasses with the prewellordering (similarly
reduction) property are Π

1
1,Σ

1
2,Π

1
3,Σ

1
4,Π

1
5, . . . .

Remark 1.10. For B ⊂ R × R and x ∈ R let Bx denote {y | 〈x, y〉 ∈ B}.
Recall that aB is the set {x ∈ R | player I has a winning strategy in Gω(Bx)}.
It is common to write (ay)B(x, y), or (ay)〈x, y〉 ∈ B, for the statement x ∈
aB. This notation is similar to the notation used for the quantifiers (∀y) and
(∃y), and (ay) too is viewed as a quantifier, giving precise meaning to the chain
(∃y(0))(∀y(1))(∃(y(2)) · · · · · · of quantifiers over ω. For a pointclass Γ let aΓ =
{aB | B ∈ Γ}. It is easy to check that aΠ

1
n = Σ

1
n+1 and (using determinacy)

aΣ
1
n = Π

1
n+1. Theorem 1.9 therefore states that the pointclasses a(n)

Π
1
1, n < ω,

all have the reduction and prewellordering properties.

Theorem 1.9 helped establish the use of determinacy as a hypothesis in the
study of definable sets of reals. In particular it became standard to study L(R)
using the relativization to L(R) of the assumption that all sets of reals are de-
termined, known as the axiom of determinacy (AD) and initially advanced by
Mycielski–Steinhaus [28]. The use of this assumption in L(R) is justified in retro-
spect by Theorem 1.5.

There has been a wealth of results on sets of reals, on structural properties of
pointclasses, and on L(R), assuming determinacy. Only a couple of results, the
ones which are directly relevant to this paper, are listed below. A more complete
account can be found in Moschovakis [27] and in the Cabal volumes [13, 10, 11, 12].

Recall that the symbol δ is used to denote the supremum of the ordertypes of
∆ prewellorders on ∆ sets.

Theorem 1.11. Assume AD. Then δ
1
1 is equal to ω1, δ

1
2 is equal to ω2 (Martin),

and δ
1
3 is equal to ωω+1 (Martin). Much more is known, see Kechris [9] and

Jackson [7].

The values of the ordinals δ
1
1, δ

1
2, etc. are absolute between L(R) and the true

universe V. Theorem 1.11 therefore implies that δ
1
1 = (ω1)

L(R), δ
1
2 = (ω2)

L(R),
and δ

1
3 = (ωω+1)

L(R). ω1 is absolute between L(R) and V, so δ
1
1 = ω1. But other

cardinals need not be absolute. Theorem 1.11 by itself therefore does not provide
information on the cardinalities of δ

1
2 and δ

1
3.
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Theorem 1.12 (Steel-Van Wesep [38], Woodin [39]). Assume AD
L(R). Then it is

consistent (with AD
L(R) and the axiom of choice) that (ω2)

L(R) = ω2, and hence
that δ

1
2 = ω2.

Note that the statement that δ
1
2 = ω2 implies a strong failure of the continuum

hypothesis: not only must the continuum have size at least ω2, but this must be
witnessed by ∆

1
2 prewellorders.

2. Large cardinals

An embedding π : P → M is elementary just in case that it preserves truth, mean-
ing that ϕ[x1, . . . , xk] holds in P iff ϕ[π(x1), . . . , π(xk)] holds in M , for all formulae
ϕ and all x1, . . . , xk ∈ P . Large cardinal axioms state the existence of elementary
embeddings of the universe. For example, a cardinal κ is measurable if it is the
critical point of an elementary embedding π : V → M ⊂ V. The axiom “there
exists a measurable cardinal” thus asserts the existence of a non-trivial elementary
embedding acting on the entire universe.

An elementary embedding π : V → M is λ–strong if M and V agree to λ, that
is if M and V have the same bounded subsets of λ, and superstrong if M and V
agree to π(crit(π)). π : V → M is λ–strong with respect to H if it is λ–strong and
π(H)∩λ = H ∩λ. κ is λ–strong if it is the critical point of a λ–strong embedding,
and similarly for superstrength and strength with respect to H. κ is <δ–strong
with respect to H if it is λ–strong with respect to H for each λ < δ. Finally, and
most importantly, δ is a Woodin cardinal if for every H ⊂ δ there is κ < δ which
is <δ–strong with respect to H. In the hierarchy of large cardinal axioms, the
existence of Woodin cardinals lies above the existence of measurable cardinals, but
well below the existence of superstrong cardinals.

Let π : V → M be elementary. Let κ = crit(π) and let λ < π(κ). The (κ, λ)–
extender induced by π is the function E : P([κ]<ω) → P([λ]<ω) defined by E(A) =
π(A) ∩ [λ]<ω. The extender E codes enough of the embedding π to reconstruct
an embedding σ : V → N with the property that σ(A) ∩ [λ]<ω = π(A) ∩ [λ]<ω for
all A ⊂ [κ]<ω. For sufficiently closed λ this is enough that the λ–strength of π
implies the λ–strength of σ, and similarly for strength with respect to H. Thus, the
existence of strong embeddings is equivalent to the existence of strong extenders,
and the property of being a Woodin cardinal can be recast as a statement about
the existence of certain extenders. (The point here is that extenders are sets, while
embeddings are classes.)

The embedding σ : V → N is obtained from the extender E using an ultrapower
construction. Very briefly, N is the model (H/∼;R) where H = {〈f, a〉 | a ∈
[λ]<ω and f : [κ]lh(a) → V}, 〈f, a〉 ∼ 〈g, b〉 iff a⌢b ∈ E({x⌢y | f(x) = g(y)}), and
[f, a]R [g, b] iff a⌢b ∈ E({x⌢y | f(x) ∈ g(y)}). The embedding σ is defined by the
conditions σ(x) = [cx, ∅] where cx : [κ]0 → V is the function taking constant value
x. The model N is called the ultrapower of V by E, denoted Ult(V, E), and σ is
the ultrapower embedding.
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An extender E can also be derived from an embedding π : Q → M for Q 6= V.
The result is an extender over Q. In the other direction, the ultrapower of a model
Q by an extender E with critical point κ can be defined so long as (P([κ]<ω))Q =
dom(E), simply by adding the restriction f ∈ Q to the definition of H above. The
resulting ultrapower is denoted Ult(Q,E).

The process of taking ultrapowers can be iterated, and such iterations are
crucial to the study of large cardinals. Their first use appeared in Kunen [15].
Kunen worked with measurable cardinals. The associated extenders can only give
rise to linear iteration, and this has become the norm until the work of Martin–Steel
[23], who introduced the general format of an iteration tree. This general format,
which allows non-linearity, is both necessary to the study of Woodin cardinals, and
non-trivial in their presence.

A tree order on an ordinal α is an order T so that: T is a suborder of < ↾ α;
for each η < α, the set {ξ | ξ T η} is linearly ordered by T ; for each ξ so that
ξ + 1 < α, the ordinal ξ + 1 is a successor in T ; and for each limit ordinal γ < α,
the set {ξ | ξ T γ} is cofinal in γ. An iteration tree T of length α on a model
M consists of a tree order T on α, and sequences 〈Mξ, jζ,ξ | ζ T ξ < α〉 and
〈Eξ | ξ + 1 < α〉 satisfying the following conditions:

1. M0 = M .

2. For each ξ so that ξ + 1 < α, Eξ is an extender of Mξ.

3. Mξ+1 = Ult(Mζ , Eξ) and jζ,ξ+1 : Mζ → Mξ+1 is the ultrapower embedding,
where ζ is the T–predecessor of ξ + 1. It is implicit in this condition that
P([crit(Eξ)]

<ω) must be the same in Mζ and Mξ, so that the ultrapower
makes sense.

4. For limit λ < α, Mλ is the direct limit of the system 〈Mζ , jζ,ξ | ζ T ξ T λ〉,
and jζ,λ : Mζ → Mλ for ζ T λ are the direct limit embeddings.

5. The remaining embeddings jζ,ξ for ζ T ξ < α are obtained through compo-
sition.

An iteration tree is linear if for every ξ, the T–predecessor of ξ + 1 is ξ.

A branch through an iteration tree T is a set b which is linearly ordered by
T . The branch is cofinal if sup(b) = lh(T ). The branch is maximal if either
sup(b) = lh(T ) or else b 6= {ξ | ξ T sup(b)}. The direct limit along b, denoted MT

b

or simply Mb, is the direct limit of the system 〈Mξ, jζ,ξ | ζ T ξ ∈ b〉. iTb : M → Mb

is the direct limit embedding of this system. The branch b is called wellfounded
just in case that the model Mb is wellfounded.

Theorem 2.1 (Martin–Steel [23]). Let M be a countable elementary substructure
of a rank initial segment V, and let π : M → Vν be elementary. Let T be a
countable iteration tree on M . Then there is a maximal branch b through T , and
an embedding σ : Mb → Vν , so that π = σ ◦ iTb . (A branch b whose direct limit can
be embedded into Vν in this way is called realizable.)
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Let M be a model of ZFC. In the (full, length ω1 + 1) iteration game on M
players “good” and “bad” collaborate to construct an iteration tree T of length
ωV

1 + 1 on M . “bad” plays all the extenders, and determines the T–predecessor
of ξ + 1 for each ξ. “good” plays the branches {ζ | ζ T λ} for limit λ, thereby
determining the direct limit model Mλ. Note that “good” is also responsible for
the final move, which determines MωV

1
.

If ever a model along the tree is reached which is illfounded then “bad” wins.
Otherwise “good” wins. M is (fully) iterable if “good” has a winning strategy in
this game. An iteration strategy for M is a winning strategy for the good player
in the iteration game on M .

Notice that if Theorem 2.1 could be strengthened to state that the realizable
branch is unique, then repeated applications of the theorem (including a final
application over Vcol(ω,ω1) to obtain a branch through a tree of length ωV

1 ) would
demonstrate that countable elementary substructures of rank initial segments of V
are iterable. This observation is the key to many of the known iterability proofs,
but unfortunately uniqueness fails beyond certain large cardinals. A general proof
of iterability would be a great step forward in the study of large cardinals.

A (fine structural) inner model is a model of the form M = Lα( ~E), that is
the smallest model of set theory containing the ordinals below α and closed un-
der comprehension relative to ~E, where ~E is a sequence of extenders, over M or
over initial segments of M , satisfying certain coherence requirements. (There are
various ways to structure the sequences. For precise definitions see Mitchell–Steel
[26] or Zeman [42].) M = Lα( ~E) is an initial segment of N = Lβ(~F ) just in case

that α ≤ β and ~E is an initial segment of ~F . Since the extenders in ~E may be
extenders not over M but over strict initial segments of M , an iteration tree on
M may involve dropping to initial segments, that is applying an extender in Mξ

to an initial segment of Mζ . In such cases the embedding jζ,ξ+1 acts on an initial
segment of Mζ .

The following fact is the key to the use of iteration trees in the study of inner
models:

Fact 2.2 (Comparison). Let M and N be countable inner models. Suppose that
M and N are both iterable. Then there are iteration trees T and U of countable
lengths on M and N respectively, leading to final models M∗ and N∗, so that at
least one of the following conditions holds:

1. M∗ is an initial segment of N∗ and there are no drops on the branch of T
leading from M to M∗.

2. N∗ is an initial segment of M∗ and there are no drops on the branch of U
leading from N to N∗.

The iteration trees T and U witnessing Fact 2.2 are constructed inductively.
Suppose the construction reached models Mξ on T and Nξ on U . If the extender
sequences of Mξ and Nξ agree, meaning that they are equal or that one is a strict
initial segment of the other, then the construction is over and one of conditions
(1) and (2) in Fact 2.2 holds. If the sequences do not agree, let ρ be least so that
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the extender sequences of Mξ and Nξ disagree on the ρth extender. Set Eξ to be
the ρth extender on the sequence of Mξ, and use this assignment to continue the
construction of T , applying Eξ to Mζ for the smallest possible ζ, to give rise to
Mξ+1. Continue U similarly using the ρth extender on the sequence of Nξ. These
assignments determine the parts of T and U corresponding to the bad player’s
moves in the iteration game. Using the assumption that M and N are iterable, fix
iteration strategies Σ and Λ for the two models, and let these strategies determine
the remaining elements of T and U , namely the branches to be used at limit stages.

It is one of the great discoveries of inner model theory that the process de-
scribed above, of repeatedly forming ultrapowers by disagreeing extenders, termi-
nates, leading therefore to models which are lined-up with their extender sequences
in complete agreement. The discovery was first made by Kunen [15] in the context
of a single measurable cardinal, where linear iterations suffice. Mitchell [24, 25]
developed the framework for models with many measurable cardinals, still using
linear iterations. Martin–Steel [22, 23] discovered that in the context of Woodin
cardinals the more general (non-linear) iteration trees are both needed and suffi-
cient. Mitchell–Steel [26] used iteration trees, fine structure (see Jensen [8]), and
several additional ideas to develop inner models for Woodin cardinal, and reach
Fact 2.2 as stated above.

The following folklore claim illustrates a simple application of the comparison
process. An inner model M is called a minimal model for a sentence θ if M satisfies
θ and no strict initial segment of M satisfies θ.

Claim 2.3. Let M and N be minimal countable inner models for the same sentence
θ. Suppose that both M and N are iterable. Then M and N have the same theory.

Proof sketch. Compare M and N , that is form T and U leading to models M∗ and
N∗ which are in complete agreement, using Fact 2.2. Neither one of M∗ and N∗

can be a strict initial segment of the other, since otherwise the longer of the two
will have a strict initial segment satisfying θ. M∗ and N∗ must therefore be equal.
Similar reasoning shows that there can be drops on either side of the comparison.
Using the elementarity of the iteration embeddings (from M to M∗ along T , and
from N to N∗ along U) it follows that M has the same theory as M∗ and N has
the same theory as N∗. Since M∗ = N∗, M and N have the same theory.

An inner model M is a sharp if its extender sequence has a final element, EM
top,

and EM
top is an extender over M . For a sharp M let M∗ be the result of iterating

EM
top through the countable ordinals, that is set M ′ equal to the final model of the

iteration tree T defined by the condition Eξ = j0,ξ(E
M
top) and the T–predecessor of

ξ + 1 is ξ for all ξ < ω1, and let M∗ = M ′‖ω1. The set I = {j0,ξ(crit(E
M
top)) | ξ <

ω1} is club in ω1. The ordinals in I are indiscernibles for M∗, in the sense that
for any formula ϕ, and any increasing sequences {α1, . . . , αk} and {β1, . . . , βk} in
[I]k, M∗ |= ϕ[α1, . . . , αk] iff M∗ |= ϕ[β1, . . . , βk]. The theory of k indiscernibles
for M , denoted Thk(M), is the set of formulae ϕ so that M∗ |= ϕ[α1, . . . , αk] for
some (equivalently all) {α1, . . . , αk} ∈ [I]k.

An argument similar to that of Claim 2.3 shows that if M and N are both
minimal iterable sharps for the same sentence θ, then Thk(M) = Thk(N). The
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join ⊕k<ω Thk(M) is called the sharp for θ. The sharp for the sentence “there are
n Woodin cardinals” is called the sharp for n Woodin cardinals. The sharp for a
tautology is denoted 0♯. It codes a club of indiscernibles for L.

The existence of 0♯ follows from the existence of a measurable cardinal. But in
general the existence of the sharp for θ does not follow directly from the existence
of large cardinals in V. The sharp also require iterability, which is used in an
essential way through the appeal to the comparison process in the proof of Claim
2.3. At the level of finitely many Woodin cardinals iterability can be obtained using
Theorem 2.1 and additional arguments on the uniqueness of realizable branches, so
that the existence of the sharp for n Woodin cardinals follows from the existence
in V of n Woodin cardinals and a measurable cardinal above them.

It was noted in Section 1 that proofs of determinacy for pointclasses from Π
1
1

onward require large cardinal axioms. To be specific, a proof of determinacy for
the pointclass Π

1
1 (Theorem 1.3) requires roughly the existence of a measurable

cardinal, a proof of determinacy for the pointclass Π
1
n+1 (Theorem 1.4) requires

roughly the existence of n Woodin cardinals and a measurable cardinal above
them, and a proof of determinacy for the pointclass of all sets in L(R) (Theorem
1.5) requires roughly the existence of ω Woodin cardinals and a measurable car-
dinal above them. But this is only the beginning of the connection between these
pointclasses and Woodin cardinals.

Recall that a set A is α–Π1
1 if there is a sequence 〈Aξ | ξ < α〉 of Π

1
1 sets so

that x ∈ A iff the least ξ so that x 6∈ Aξ ∨ ξ = α is odd. (The hierarchy generated
by this definition is the difference hierarchy on Π

1
1 sets. Note for example that for

α = 2 the condition states simply that A = A0−A1.) The set A is (lightface) α–Π1
1

if the underlying code for the sequence 〈Aξ | ξ < α〉 is recursive. A is <ω2–Π1
1 if

it is α–Π1
1 for some α < ω2.

Theorem 2.4 (Martin [21]). Let Bi (i < ω) be a recursive enumeration of the
<ω2–Π1

1 sets. Then each of 0♯ and {i | player I has a winning strategy in Gω(Bi)}
is recursive in the other.

Theorem 2.4 provides a very tight connection between a large cardinal object,
0♯, and infinite games. For every formula ϕ there is a <ω2–Π1

1 set B so that ϕ
belongs to 0♯ iff I wins Gω(B), and conversely (for every B there is ϕ).

Theorem 2.5. Let Bi (i < ω) be a recursive enumeration of the a(n)(<ω2–Π1
1)

sets. Then the sharp for n Woodin cardinals and {i | player I has a winning strategy
in Gω(Bi)} are each recursive in the other.

Theorem 2.5 generalizes Theorem 2.4 to n > 0. It has two directions. The
first states that membership in the sharp for n Woodin cardinals is equivalent
to winning a a(n)(<ω2–Π1

1) game. This follows from the results of Martin–Steel
[23]. Essentially they show that iterability (or more precisely the ability to survive
through the comparison process) for minimal sharps for n Woodin cardinals, can be
expressed as a a(n)(<ω2–Π1

1) statement. The other direction of Theorem 2.5 states
that sharps for n Woodin cardinals can discern which player wins a a(n)(<ω2–Π1

1)
game. This direction follows from the determinacy proof in Neeman [30, 32]. The
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proof reduces the quantifiers involved in the a(n)(<ω2–Π1
1) set to an iteration game

on any model which has a sharp for n Woodin cardinals. The reduction takes place
inside the model, and the model can tell which player in the a(n)(<ω2–Π1

1) game
is matched to the good player in the iteration game. Since the sharp is iterable,
this player wins the a(n)(<ω2–Π1

1) game.

Theorem 2.5 is an indication of the close connections between the study of
inner models for Woodin cardinals and the study of projective pointclasses. The
connections are tight enough that inner models can be used directly in the study
of projective pointclasses, and further up in the study of L(R) under determinacy.

Theorem 2.6 (Neeman–Woodin, see [30]). Determinacy for all Π1
n+1 sets implies

determinacy for all sets in the larger pointclass a(n)(<ω2–Π1
1).

Theorem 2.7 (Hjorth [6]). Work in L(R) assuming AD. Let � be a a(α–Π1
1)

prewellorder with α < ω · k. Then the ordertype of � is smaller than ωk+1.

Theorem 2.8 (Neeman, Woodin, see [36]). Assume AD
L(R). Then it is consistent

(with AD
L(R) and the axiom of choice) that δ

1
3 = ω2.

Theorem 2.6 for n = 0 is a combination of the work of Harrington [5], who ob-
tained 0♯ and its relativized versions for all reals from Π

1
1 determinacy, and Martin,

who obtained <ω2–Π1
1 determinacy from the sharps. At higher levels Woodin ob-

tained sharps for n Woodin cardinals from Π
1
n+1 determinacy and Neeman [30]

obtained a(n)(<ω2–Π1
1) determinacy from these sharps. Theorem 2.6 had already

been proved for odd n by Kechris–Woodin [14], using methods which are purely
descriptive set theoretic. For even n the only known proofs involve large cardinals.

Hjorth [6] proved Theorem 2.7 by embedding a given a(<ω ·k–Π1
1) prewellorder

into a directed system of iterates of a sharp for one Woodin cardinal, and proving
that the rank of the directed system is smaller than ωk+1. Again, the proof is
closely tied up with large cardinals and iteration trees, even though the result is
purely descriptive set theoretic.

Theorem 2.8 is proved by collapsing ωω to ω1 over L(R), so that (ωω+1)
L(R),

which is equal to δ
1
3 by Theorem 1.11, becomes ω2 of the generic extension. The

forcing to collapse ωω involves an ultrafilter on [Pω1
(ωω)]<ω1 , and the construction

of this ultrafilter uses a directed system of iterates of fine structural inner models
with Woodin cardinals.

3. Larger cardinals, longer games

For α < ω1 and B ⊂ Rα let Gω·α(B) denote the length ω · α game with payoff
B. Players I and II alternate playing natural numbers in the format of Diagram 2,
taking ω · α moves to produce together a sequence r = 〈r(ξ) | ξ < ω · α〉 in ωω·α.
The sequence r may be viewed as an element of (ωω)α = Rα. If r belongs to B
then player I wins, and otherwise player II wins.
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I r(0) r(2) . . . r(2ξ) . . . . . .
II r(1) . . . r(2ξ + 1) . . . . . .

Diagram 2. General format of a transfinite game.

Determinacy for all length ω games with payoff in a(n)(<ω2–Π1
1) is easily seen

to be the same as determinacy for all games of length ω ·(n+1) with payoff in <ω2–
Π1

1. Theorem 2.5 and the part of Theorem 2.6 dealing with a proof of determinacy
from sharps can therefore be rephrased as follows:

Theorem 3.1. Let Bi (i < ω) be a recursive enumeration of all the <ω2–Π1
1 sets.

Suppose that there is an iterable sharp for n Woodin cardinals. Then all length
ω · (n + 1) games with payoff in <ω2–Π1

1 are determined. Moreover, the sharp for
n Woodin cardinals and {i | player I wins Gω·(n+1)(Bi)} are each recursive in the
other.

The same precise connection between large cardinals and determinacy can be
obtained higher up. Theorems 3.2, 3.3, and 3.4 below give several markers along
the hierarchies of large cardinals and determinacy, progressively moving upward
on both.

Theorem 3.2 (Neeman, Woodin, see [33, Chapter 2]). Let α be a countable ordi-
nal. Let Bi (i < ω) be a recursive2 enumeration of all the <ω2–Π1

1 subsets of R1+α.
Suppose that there is an iterable sharp for α Woodin cardinals. Then all length
ω · (1 + α) games with payoff in <ω2–Π1

1 are determined. Moreover, the sharp for
α Woodin cardinals and {i | player I wins Gω·(1+α)(Bi)} are each recursive in the
other.

For B ⊂ ω<ω1 let Gadm(B) be the following game: Players I and II alternate
natural numbers as in Diagram 2, continuing until they reach the first ordinal α
so that Lα[r(ξ) | ξ < α] is admissible. At that point the game ends. Player I wins
if 〈r(ξ) | ξ < α〉 ∈ B, and otherwise player II wins.

The run 〈r(ξ) | ξ < α〉 has the property that for every β < α, Lβ [r(ξ) | ξ < β] is
not admissible. Using this property the run can be coded by a real in a canonical,
uniform manner. The payoff set B is said to be Γ in the codes just in case that
the set of real codes for sequences in B belongs to Γ.

Gadm(B) is a game of variable countable length. Its runs are countable, but the
length of a particular run depends on the moves made during the run. Each of the
players can force the length of the run to be greater than any fixed countable ordinal
α, and the determinacy of Gadm(B) for all B in <ω2–Π1

1 implies the determinacy
of Gα(B) for all B in <ω2–Π1

1, for each countable α.
The Mitchell order on extenders is the order E ⊳ F iff E ∈ Ult(V, F ). The

Mitchell order of a cardinal κ is the ordertype of the restriction of ⊳ to extenders
with critical point κ.

2Recursiveness here is relative to a code for α.
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Theorem 3.3 (Neeman [34]). Let Bi (i < ω) be a recursive enumeration of the
subsets of ω<ω1 which are <ω2–Π1

1 in the codes. Suppose that there is an iterable
sharp for the statement “there is a cardinal κ which is a limit of Woodin cardinals
and has Mitchell order κ++”. Then the games Gadm(B) are determined for all B
which are <ω2–Π1

1 in the codes. Moreover the sharp and the real {i | player I wins
Gadm(Bi)} are each recursive in the other.

For B ⊂ ω<ω1 let Glocal(L, B) be the following game: Players I and II alternate
natural numbers as in Diagram 2, continuing until they reach the first α > ω so
that α is a cardinal in L[r(ξ) | ξ < α]. At that point the game ends. Player I wins
if 〈r(ξ) | ξ < α〉 ∈ B. Otherwise player II wins. Glocal(L, B) is a game ending at
ω1 in L of the play. It too is a game of variable countable length.

A code for a run 〈r(ξ) | ξ < α〉 of Glocal(L, B) is simply a pair 〈w, x〉 where w
is a wellorder of ω of ordertype α, x ∈ ωω, and for each n, x(n) is equal to r(ξ)
where ξ is the ordertype of n in w. These codes belong to P(ω × ω) × ωω, which
is isomorphic to ωω. As before, B is said to be Γ in the codes just in case that the
set of codes for sequences in B belongs to Γ.

Theorem 3.4 (Neeman [33, Chapter 7]). Let Bi (i < ω) be a recursive enumera-
tion of the subsets of ω<ω1 which are a(<ω2–Π1

1) in the codes. Suppose that there
is an iterable sharp for the statement “there is a Woodin cardinal which is also a
limit of Woodin cardinals”. Then the games Glocal(L, B) are determined for all B
which are a(<ω2–Π1

1) in the codes. Moreover the sharp and the real {i | player I
wins Glocal(L, Bi)} are each recursive in the other.

Remark 3.5. Theorem 3.4 has an interesting corollary, due to Woodin: Suppose
that there is an iterable sharp for a Woodin limit of Woodin cardinals. Then it
is consistent that all ordinal definable games of length ω1 are determined. The
model witnessing this is of the form M = L[x(ξ) | ξ < γ] where γ = ωM

1 , and
the strategies witnessing determinacy in this model are obtained through uses of
Theorem 3.4 on games ending at ω1 in L of the play. For a complete proof of the
corollary see Neeman [33, 7F.13–15].

Remark 3.6. There is another interesting game that comes up in the proof of
Theorem 3.4. For a partial function f : R → ω and a set B ⊂ ω<ω1 let Gcont(f,B)
be the following game: Players I and II alternate natural numbers as in Diagram
2. In addition, after each block of ω moves they write a natural numbers on a “side
board”. Let xα = 〈r(ω · α + i) | i < ω〉 be the αth block of moves. The natural
number they write following this block is nα = f(xα). They continue playing
until reaching the first α so that xα 6∈ dom(f) or nα ∈ {nβ | β < α} (meaning
that the natural number written after block α is a repetition of a number written
previously). At that point the game ends, player I wins if 〈r(ξ) | ξ < ω ·α+ω〉 ∈ B,
and player II wins otherwise. The large cardinal strength of determinacy for these
games is roughly a cardinal κ which is δ + 1–strong for some Woodin cardinal
δ > κ (see Neeman [33, Chapter 3]), and the determinacy proof for these games is
a precursor to the use of extenders overlapping Woodin cardinals in the proof of
Theorem 3.4.
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Determinacy in Theorems 3.2, 3.3, and 3.4 is proved by reducing the long
game to an iteration game on the given model. The reduction, which uses the
large cardinals of the model, matches one of the players in the long game to the
good player in the iteration game. In effect it converts the iteration strategy for
the model into a winning strategy for this player in the long game. Determinacy
therefore rests on the existence of iterable models; the existence of large cardinals
by itself is not directly sufficient.

In the case of Theorems 3.2 and 3.3, the long game is reduced to an iteration
game of a specific format, involving only linear compositions of iteration trees of
length ω. The fact that the good player can win games of this format, on countable
model which embed into rank initial segments of V, follows directly from Theorem
2.1. The determinacy proved in Theorems 3.2 and 3.3 therefore follows from just
the assumptions of large cardinals in V: α Woodin cardinals and a measurable
cardinal above them in the case of Theorem 3.2, and a measurable cardinal above
a cardinal κ so that o(κ) = κ++ and κ is a limit of Woodin cardinals in the case of
Theorem 3.3.

The iteration game generated by the proof of Theorem 3.4 is as complicated
as the full iteration game, and Theorem 2.1 by itself is not enough to produce
a winning strategy for the good player in this game. Still, by Neeman [31], the
existence of an iterable model satisfying the large cardinal assumptions of Theorem
3.4 follows from the existence of the large cardinals, a Woodin limit of Woodin
cardinals and a measurable cardinal above it, in V.

Theorems 3.2, 3.3, and 3.4 extend the precise connection between determinacy
and inner models to levels of games of variable countable lengths, and Woodin lim-
its of Woodin cardinals. It is generally believed that the large cardinal hierarchy
is rich enough to calibrate the strength of all natural statements. Could determi-
nacy provide a rich enough hierarchy to match the full extent of the large cardinal
hierarchy? If not, how far does determinacy reach? How far does the hierarchy of
long games reach? We are very far from answers to these questions.

Let θ be a large cardinal assumption at or below the existence of a superstrong
cardinal. (Beyond the level of superstrong cardinals there are problems with the
comparison process and Claim 2.3.) The comparison process provides the best clues
in the search for long games strong enough to match θ in the sense of Theorems 3.2,
3.3, and 3.4: If a particular format of long games subsumes the iteration games
appearing in the comparison of minimal models of θ, then the associated game
quantifier is strong enough to define the sharp for θ.

The following format is strong enough to subsume the full iteration game, and
therefore all iteration games appearing in all comparisons of all inner models up
to superstrong cardinals. Let L+ denote the language of set theory with an added
unary relation symbol ṙ, and let ϕ(α, β) be a formula in L+. Define Gclub,2(ϕ) to
be the following game: Players I and II alternate playing ω1 natural numbers in
the manner of Diagram 2, producing together a sequence 〈r(ξ) | ξ < ω1〉 in ωω1 .
If there is a club C ⊂ ω1 so that 〈Lω1

[r], r〉 |= ϕ[α, β] for all α < β both in C then
player I wins, and otherwise player II wins. (A quick word on notation: r formally
is a set of pairs in ω1 ×ω. 〈Lω1

[r], r〉 |= ϕ iff ϕ holds in Lω1
[r] with appearances of
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the predicate ṙ in ϕ interpreted by r.)

The number 2 in Gclub,2(ϕ) refers to the number of free variables in ϕ. Games
Gclub,k(ϕ), for k 6= 2 in ω and ϕ a formula with k free variables, can defined
similarly. All the definition can be relativized to a real x by replacing Lω1

[r] with
Lω1

[r, x] and letting ϕ take x as a parameter. They can be relativized to a set
of reals A by replacing L with LA and allowing ϕ to take an additional predicate
interpreted by A ∩ LA

ω1
[r].

The full iteration game on a countable model M can be recast as a game of
the form Gclub,2(ϕ) relativized to a real coding M . Woodin [41] connects the
determinacy of the games Gclub,k(ϕ) and their relativizations to Σ2

2 absoluteness
under the combinatorial principle generic diamond (3G). Determinacy for the
games Gclub,2(ϕ) is not provable from large cardinals, by Larson [17], but it may
be provable from large cardinals and 3G. Unfortunately the games are too strong
to be handled by current methods in proofs of determinacy, precisely because they
are strong enough to subsume the full iteration game. If there were a match for
Gclub,2 similar to the matches in Theorems 2.4, 2.5, 3.2, 3.3, and 3.4, then the
large cardinal involved would have to be stronger than a superstrong, far beyond
the level of Woodin cardinals.

The following format produces a weaker game. Let k < ω. Let ~S = 〈Sa |
a ∈ [ω1]

<k〉 be a collection of mutually disjoint stationary subsets of ω1, with

a stationary set Sa associated to each tuple a ∈ [ω1]
<k. Let [~S] denote the set

{〈α0, . . . , αk−1〉 ∈ [ω1]
k | (∀i < k) αi ∈ S〈α0,...,αi−1〉}. Let ϕ(x0, . . . , xk−1) be a

formula in L+. Define Gω1,k(~S, ϕ) to be the following game: Players I and II alter-
nate playing ω1 natural numbers in the manner of Diagram 2, producing together
a sequence r ∈ ωω1 . If there is a club C ⊂ ω1 so that 〈Lω1

[r], r〉 |= ϕ[α0, . . . , αk−1]

for all 〈α0, . . . , αk−1〉 ∈ [~S] ∩ [C]k then player I wins the run r. If there is a club

C ⊂ ω1 so that 〈Lω1
[r], r〉 |= ¬ϕ[α0, . . . , αk−1] for all 〈α0, . . . , αk−1〉 ∈ [~S] ∩ [C]k

then player II wins r. If neither condition holds then both players lose.

Note that the two winning conditions in the definition of Gω1,k(~S, ϕ) cannot
both hold. This uses the fact that each of the sets Sa is stationary in ω1, and the
demand in the conditions that C must be club in ω1. Thus at most one player
wins each run of Gω1,k(~S, ϕ). For k > 0 it may well be that neither one of the

winning conditions holds. So there may well be runs of Gω1,k(~S, ϕ) which are won

by neither player. Determinacy for Gω1,k(~S, ϕ) is defined in the stronger of the
two possible senses. The game is determined if one of the players has a winning
strategy; a strategy which merely avoids losing is not enough.

Recall that a sharp for θ is an inner model M with a final extender EM
top, so

that EM
top is an extender over M and M |= θ. Let θ be the sentence “crit(EM

top)
is a Woodin cardinal”. The minimal iterable sharp for θ, if it exists, is denoted
0W . Recall that iterating out the top extender of a sharp M produces a model M∗

and a club I ⊂ ω1 of indiscernibles for M∗, consisting of the images of crit(EM
top)

under the iteration embeddings. In the case of M = 0W , the ordinals in I are
Woodin cardinals of M∗. The existence of 0W thus implies the existence of an
iterable model with a club of indiscernible Woodin cardinals, and in fact the two
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are equivalent.

Remark 3.7. Iterability for countable elementary substructures of V is not known
at the level of 0W —the strongest results in this direction are the ones of Neeman
[31], reaching to the level of Woodin limits of Woodin cardinals—and the existence
of 0W is not known to follow from large cardinals in V.

Theorem 3.8 (Neeman [35]). Suppose that 0W exists. Then the games Gω1,k(~S, ϕ)

are determined, for all ~S, k, and ϕ.

There are two parameters determining the payoff of the game Gω1,k(~S, ϕ). One
is the formula ϕ and the number k of its free variables. The other is the sequence
~S. The formula ϕ, or the formula ϕ and the real x in the case of games relativized
to a real, is the definable part of the payoff condition, analogous to the <ω2–Π1

1

set, or more precisely to its recursive definition, in Theorems 3.2, 3.3, and 3.4.
The sequence ~S consists of disjoint stationary sets, and this makes it highly non-
definable. It has no parallel in Theorems 3.2, 3.3, and 3.4. It is necessary in
Theorem 3.8, and the winning strategy in Gω1,k(~S, ϕ) depends on ~S. But which

of the players has a winning strategy is determined independently of ~S:

Theorem 3.9 (Neeman [35]). Suppose that 0W exists. Let ~S = 〈Sa | a ∈ [ω1]
<k〉

and ~S∗ = 〈S∗
a | a ∈ [ω1]

<k〉 be two sequences of mutually disjoint stationary subsets

of ω1. Then player I (respectively II) has a winning strategy in Gω1,k(~S, ϕ) iff she

has a winning strategy in Gω1,k(~S∗, ϕ).

Define aω1
(k, ϕ) to be 1 if player I has a winning strategy in Gω1,k(~S, ϕ) for

some, and using Theorem 3.9 equivalently for all, ~S. Define aω1
(k, ϕ) to be equal

to 0 otherwise.

Theorem 3.10 (Neeman [35]). Suppose that 0W exists. Then 0W and {〈k, ϕ〉 |
aω1

(k, ϕ) = 1} are each recursive in the other.

Theorems 3.8 and 3.10 establish the same precise connection between 0W and
games of length ω1 that exists between 0♯ and <ω2–Π1

1 games of length ω. They
provide another step, the first to reach games of length ω1, in the project of match-
ing the hierarchy of large cardinals with the hierarchy of long games.
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