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I. Determinacy in L(R)

Itay Neeman

Given a set C ⊆ ωω define Gω(C), the length ω game with payoff set
C, to be played as follows: Players I and II collaborate to produce an
infinite sequence x = 〈x(i) | i < ω〉 of natural numbers. They take turns
as in Diagram 1, I picking x(i) for even i and II picking x(i) for odd i. If
at the end the sequence x they produce belongs to C then player I wins;
and otherwise player II wins. Gω(C), or any other game for that matter,
is determined if one of the two players has a winning strategy, namely a
strategy for the game that wins against all possible plays by the opponent.
The set C is said to be determined if the corresponding game Gω(C) is
determined. Determinacy is said to hold for a pointclass Γ if all sets of reals
in Γ are determined. (Following standard abuse of notation we identify R

with ωω.)

I x(0) x(2) . . . . . .
II x(1) x(3) . . . . . .

Diagram 1: The game Gω(C).

Perhaps surprisingly, determinacy has turned out to have a crucial and
central role in the study of definable sets of reals. This role resulted from
two lines of discoveries. On the one hand it was seen that determinacy
for definable sets of reals, taken as an axiom, can be used to prove many
desirable results about these sets, and indeed to obtain a rich and powerful
structure theory. On the other hand it was seen that determinacy can be
proved for definable sets of reals, from large cardinal axioms.

The earliest work on consequences of determinacy, by Banach, Mazur,
and Ulam [23] at the famous Scottish Café in the 1930’s, Oxtoby [35], Davis
[3], and Mycielski–Swierczkowski [27], established that determinacy for a
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6 I. Determinacy in L(R)

pointclass Γ implies that all sets of reals in Γ have the Baire property, have
the perfect set property, and are Lebesgue measurable. Later on Blackwell
[2] used the determinacy of open sets to prove Kuratowski’s reduction theo-
rem. (In modern terminology this theorem states that for any Π1

1 sets A,B,
there are A∗ ⊆ A and B∗ ⊆ B so that A∗ ∪B∗ = A ∪B and A∗ ∩B∗ = ∅.)
Inspired by his methods, Martin [15] and Addison–Moschovakis [1] used de-
terminacy for projective sets to prove reduction for each of the pointclasses
Π1

n, n > 1 odd, and indeed prove for these pointclasses some of the struc-
tural properties that hold for Π1

1. Their results initiated a wider study of
consequences of the axiom of determinacy (AD), that is the assertion that all
sets of reals are determined, proposed initially by Mycielski–Steinhaus [26].
Over time this line of research, which the reader may find in Moschovakis
[25], Jackson [7], and of course the Cabal volumes [12, 9, 10, 11], established
determinacy axioms as natural assumptions in the study of definable sets
of reals.

It should be emphasized that AD was not studied as an assumption about
V . (It contradicts the axiom of choice.) Rather, it was studied as an
assumption about more restrictive models, models which contain all the
reals but have only definable sets of reals. A prime example was the model
L(R), consisting of all sets which are constructible from {R} ∪ R. It was
known by work of Solovay [37] that this model need not satisfy the axiom
of choice, and that in fact it is consistent that all sets of reals in this model
are Lebesgue measurable. The extra assumption of AD allowed for a very
careful analysis of L(R), in terms that combined descriptive set theory, fine
structure, and infinitary combinatorics. It seemed plausible that if there
were a model of AD, L(R) would be it.

Research into the consequences of determinacy was to some extent done
on faith. The established hierarchy of strength in set theory involved large
cardinals axioms, that is axioms asserting the existence of elementary em-
beddings from the universe of sets into transitive subclasses, not determi-
nacy axioms. A great deal of work has been done in set theory on large
cardinal axioms, Kanamori [8] is a good reference, and large cardinals have
come to be regarded as the backbone of the universe of sets, providing a
hierarchy of consistency strengths against which all other statements are
measured. From AD

L(R) one could obtain objects in L(R) which are very
strongly reminiscent of large cardinal axioms in V , suggesting a connection
between the two. Perhaps the most well known of the early results in this
direction is Solovay’s proof that ω1 is measurable under AD. Further jus-
tification for the use of AD

L(R) was provided by proofs of determinacy for
simply definable sets: for open sets in Gale–Stewart [6], for Borel sets in
Martin [18, 17], and for Π1

1 sets from a measurable cardinal in Martin [16],
to name the most well known. Additional results, inspired by Solovay’s
proof that ω1 is measurable under AD and Martin’s proof of Π1

1 determi-
nacy from a measurable, identified detailed and systematic correspondences
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of strength, relating models for many measurable cardinals to determinacy
for pointclasses just above Π1

1. These levels are well below the pointclass
of all sets in L(R), but still the accumulated evidence of the results sug-

gested that there should be a proof of AD
L(R) from large cardinals, and

conversely a construction of inner models with these large cardinals from
AD

L(R). In 1985 the faith in this connection was fully justified. A sequence
of results of Foreman, Magidor, Martin, Shelah, Steel, and Woodin, see
[5, 36, 21, 22, 43] for the papers involved and the introduction in [31] for an
overview, brought the identification of a new class of large cardinals, known
now as Woodin cardinals, new structures of iterated ultrapowers, known
now as iteration trees, and new proofs of determinacy, including a proof
of AD

L(R). Additional results later on obtained Woodin cardinals from de-
terminacy axioms, and indeed established a deep and intricate connection
between the descriptive set theory of L(R) under AD, and inner models for
Woodin cardinals.

In this chapter we prove AD
L(R) from Woodin cardinals. Our exposition

is complete and self contained: the necessary large cardinals are introduced
in Section 1, and every result about them which is needed in the course of
proving AD

L(R) is included in the chapter, mostly in Sections 2 and 3. The
climb to AD

L(R) is carried out progressively in the remaining sections. In
Section 4 we introduce homogeneously Suslin sets and present a proof of
determinacy for Π1

1 sets from a measurable cardinal. In Section 5 we move
up and present a proof of projective determinacy from Woodin cardinals.
The proof in essence converts the quantifiers over reals appearing in the
definition of a projective set to quantifiers over iteration trees and branches
through the trees, and these quantifiers in turn are tamed by the iterability
results in Section 2. In Section 6 we improve on the results in Section
5 by reducing the large cardinal assumption needed for the determinacy of
universally Baire sets. The section also lays the grounds for Section 7, where
we show that models with Woodin cardinals can be iterated to absorb an
arbitrary given real into a generic extension. Finally, in Section 8 we derive
AD

L(R).

There is much more to be said about proofs of determinacy that cannot
be fitted within the scope of this chapter. Martin [18, 19] and Neeman
[33] for example prove weaker forms of determinacy (from weaker assump-
tions) using completely different methods, which handle increments of payoff
complexity corresponding to countable unions, rather than real quantifiers.
Perhaps more importantly there are strengthenings of AD

L(R) in two di-
rections, one involving stronger payoff sets, and the other involving longer
games. In the former direction the reader should consult Steel [40], which
contains a proof of Woodin’s derived model theorem, a fundamental theo-
rem connecting models of AD to symmetric extensions of models of choice
with Woodin cardinals, and uses this theorem to establish AD in models
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substantially stronger than L(R). In the latter direction the reader should
consult Neeman [31, 28], which contain proofs of determinacy for games of
fixed countable lengths, variable countable lengths, and length ω1.

Historical Remarks. With some exceptions, noted individually inside the
various sections, the following remarks summarize credits for the material
in the chapter. Extenders were introduced by Mitchell [24], then simplified
to their present forms by Jensen. The related material on ultrapowers in
Section 1 is by now folklore within set theory. Its history can be found
in Kanamori [8]. The material on iteration trees in Section 1 is due to
Martin–Steel [22] and so is all the material in Section 2. The material in
Section 3 is due to Martin–Steel [21], and follows the exposition of Neeman
[31]. The material in Section 4 is due to Martin. The material in Section
5 is due to Martin–Steel [21]. (The exposition here is specifically geared
to easing the transition to the next section.) The material in Sections 6

and 7 is due to Neeman. AD
L(R) from infinitely many Woodin cardinals

and a measurable cardinal above them is due to Woodin, proved using the
methods of stationary tower forcing (see Larson [14]) and an appeal to the
main theorem, Theorem 5.11, in Martin–Steel [21]. A proof using Woodin’s
genericity iterations [39, 4.3] and fine structure instead of stationary tower
forcing is due to Steel, and the proof reached in this chapter (using a second
form of genericity iterations and no fine structure) is due to Neeman.

1. Extenders and Iteration Trees

Throughout this chapter we shall deal with elementary embeddings of the
universe into transitive classes. Here we develop tools for the study of such
embeddings. Most basic among them is the ultrapower construction, which
allows the creation of an embedding π : V →M from the restriction of such
an embedding to a set. We begin by characterizing the restrictions.

1.1 Remark. By embedding we always mean elementary embedding, even
when this is not said explicitly. As a matter of convention when we say a
wellfounded model of set theory we mean a transitive model equipped with
the standard membership relation ∈. More generally we always take the
wellfounded parts of our models to be transitive.

Let (∗, ∗) denote the Gödel pairing operation on ordinals. Given sets of
ordinals A and B define A × B to be {(α, β) | α ∈ A ∧ β ∈ B}. Note
that A × B is then a set of ordinals too. We refer to it as the product
of A and B. In general define finite products of sets of ordinals as fol-
lows: For n = 0 set Πi≤nAi equal to A0; for n > 0 set Πi≤nAi equal to
(Πi≤n−1Ai)×An. Define finite sequences of ordinals similarly by setting the
empty sequence equal to 0, setting (α) equal to α, and setting (α0, . . . , αn)
equal to ((α0, . . . , αn−1), αn) for n > 0.
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If A is a set of ordinal sequences of length n, and σ : n → n is a
permutation of n, then define σA by setting (α0, . . . , αn−1) ∈ σA ⇐⇒
(ασ−1(0), . . . , ασ−1(n−1)) ∈ A.

If A is a set of ordinal sequences of length n + 1, then define bp(A) to
be the set {(α0, . . . , αn−1) | (∃ξ ∈ α0)(α0, . . . , αn−1, ξ) ∈ A}. bp(A) is the
bounded projection of A.

By a fiber through a sequence of sets 〈Ai | i < ω〉 we mean a sequence
〈αi | i < ω〉 so that (α0, . . . , αi−1) ∈ Ai for every i < ω.

1.2 Definition. A (short) extender is a function E that satisfies the follow-
ing conditions:

1. The domain of E is equal to P(κ) for an ordinal κ closed under Gödel
pairing.

2. E sends ordinals to ordinals and sets of ordinals to sets of ordinals.

3. E(α) = α for α < κ, and E(κ) 6= κ.

4. E respects products, intersections, set differences, membership, the
predicates of equality and membership, permutations, and bounded
projections. More precisely this means that for all A,B ∈ dom(E),
all ordinals α ∈ dom(E), and all permutations σ of the appropriate
format:

(a) E(A × B) = E(A) × E(B), E(A ∩ B) = E(A) ∩ E(B), and
E(A−B) = E(A) − E(B).

(b) α ∈ A =⇒ E(α) ∈ E(A).

(c) E({(α, β) ∈ A×A | α = β}) is equal to {(α, β) ∈ E(A)×E(A) |
α = β}, and similarly with α ∈ β replacing α = β.

(d) E(σA) = σE(A).

(e) E(bp(A)) = bp(E(A)).

5. E is countably complete. Precisely, this means that for any sequence
〈Ai | i < ω〉 of sets which are each in the domain of E, if there exists
a fiber through 〈E(Ai) | i < ω〉 then there exists also a fiber through
〈Ai | i < ω〉.

The first ordinal moved by E is called the critical point of E, denoted
crit(E). By condition (3), this critical point is precisely equal to the ordinal
κ of condition (1). The set

⋃
A∈dom(E)E(A) is called the support of E,

denoted spt(E). Using condition (2) it is easy to see that the support of E
is an ordinal.
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1.3 Remark. Condition (3) limits our definition to extenders with domains
consisting of just the subsets of the extenders’ critical points. It is this
condition that makes our extenders “short.” We shall see later that it has
the effect of limiting the strength of embeddings generated by our (short)
extenders to a level known as superstrong. This level is more than adequate
for our needs. We shall therefore deal exclusively with short extenders in
this chapter, and refer to them simply as extenders. For a more general
definition see Neeman [32].

1.4 Definition. A (two-valued) measure over a set U is a function µ from
P(U) into {0, 1} with the properties that µ(∅) = 0, µ(U) = 1, and µ(X ∪
Y ) = µ(X) + µ(Y ) for any disjoint X,Y ⊆ U .

1.5 Remark. Given a ∈ spt(E) define Ea : P(κ) → {0, 1} to be the function
given by Ea(X) = 1 if a ∈ E(X), and 0 otherwise. Ea is then a measure
over κ. It has been customary to define extenders by specifying properties
of the sequence 〈Ea | a ∈ spt(E)〉 equivalent to the properties of E specified
in Definition 1.2. For a definition of extender through properties of 〈Ea |
a ∈ spt(E)〉 see Martin–Steel [21, §1A] (short extenders) and Kanamori [8,
§26] (the general case).

By a pre-extender over a model Q we mean an object E that satisfies
conditions (1)–(4) in Definition 1.2, with P(κ) in condition (1) replaced by
PQ(κ), but not necessarily condition (5). The point of this distinction is
that condition (5) involves second order quantification over E, whereas con-
ditions (1)–(4) involve only E, the powerset of κ, and bounded quantifiers
over the transitive closure of E. By removing condition (5) we obtain a
notion that is absolute in the sense given by Claim 1.7:

1.6 Definition. Two models Q andN agree to an ordinal ρ if (ρ is contained
in the wellfounded part of both models, and) PQ(ξ) = PN (ξ) for each ξ < ρ.
Q and N agree past an ordinal κ if they agree to κ+ 1.

1.7 Claim. Let Q and N be models of set theory. Suppose that E is an
extender in N , and let κ = crit(E). Suppose that Q and N agree past κ.
Then E is a pre-extender over Q.

Extenders are naturally induced by elementary embeddings. Let π : V →
M be a non-trivial elementary embedding of V into some wellfounded class
model M . Let κ be the critical point of π, namely the first ordinal moved
by π. Let λ ≤ π(κ) be an ordinal closed under Gödel pairing. Define the
λ-restriction of π to be the map E given by:

(R1) dom(E) = P(κ).

(R2) E(X) = π(X) ∩ λ for each X ∈ dom(E).
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It is then easy to check that E is an extender. The items in condition (4)
of Definition 1.2 follow directly from the elementarity of π and, in the case
of condition (4e), the absoluteness between M and V of formulae with only
bounded quantifiers. Condition (5) follows from the elementarity of π and
the wellfoundedness of M . If a fiber through 〈E(Ai) | i < ω〉 exists in V
then using the wellfoundedness of M such a fiber must also exist in M . Its
existence can then be pulled back via π to yield a fiber through 〈Ai | i < ω〉.

1.8 Remark. The λ-restriction makes sense also in the case of an embed-
ding into an illfounded model M , so long as the wellfounded part of M
contains λ. But countable completeness may fail in this case, and the λ-
restriction need only be a pre-extender.

The description above shows how extenders are induced by elementary
embeddings into wellfounded models. Extenders also give rise to such el-
ementary embeddings, through the ultrapower construction, which we de-
scribe next.

Let ZFC− consist of the standard axioms of ZFC excluding the powerset
axiom. Fix a model Q of ZFC− and a pre-extender E over Q. Let κ =
crit(E). Let F be the class of functions f ∈ Q so that dom(f) ⊆ κ. Let
D = {〈f, a〉 | f ∈ F ∧ a ∈ E(dom(f))}.

For two functions f, g ∈ F set Z =
f,g = {(α, β) | f(α) = g(β)} and Z ∈

f,g =

{(α, β) | f(α) ∈ g(β)}. Both Z =
f,g and Z ∈

f,g are then subsets of κ in Q, and
therefore elements of the domain of E.

Define a relation ∼ on D by setting 〈f, a〉 ∼ 〈g, b〉 iff (a, b) ∈ E(Z=
f,g).

One can check using condition (4) in Definition 1.2 that ∼ is an equivalence
relation. Let [f, a] denote the equivalence class of 〈f, a〉. Let D∗ denote
D/∼. Define a relation R on D∗ by setting [f, a] R [g, b] iff (a, b) ∈ E(Z∈

f,g).
Again using condition (4) in Definition 1.2 one can check that R is well
defined.

The following property, known as  Loś’s Theorem, can be proved from the
various definitions, by induction on the complexity of ϕ:

1.9 Theorem ( Loś). Let [f1, a1], . . . , [fn, an] be elements of D∗. Let ϕ =
ϕ(v1, . . . , vn) be a formula. Let Z be the set

{(α1, . . . , αn) | Q |= ϕ[f1(α1), . . . , fn(αn)]}.

Then (D∗, R) |= ϕ[[f1, a1], . . . , [fn, an]] iff (a1, . . . , an) belongs to E(Z).

For each set x let cx be the function with domain {0} and value cx(0) = x.
From  Loś’s Theorem it follows that the map x 7→ [cx, 0] is elementary, from
Q into (D∗, R). (In particular then (D∗, R) satisfies ZFC−.)

1.10 Definition. The ultrapower of Q by E, denoted Ult(Q,E), is the
structure (D∗;R). The ultrapower embedding is the map j : Q→ Ult(Q,E)
defined by j(x) = [cx, 0].
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M

V
j

//

π

??
~~~~~~~~

N= Ult(V,E)

k

OO

Diagram 2: The original map π and the ultrapower map j.

In general Ult(Q,E) need not be wellfounded. (If it is then we of course
identify it with its transitive collapse, and identify R with ∈.) But notice
that wellfoundedness is a consequence of countable completeness: if 〈[fi, ai] |
i < ω〉 is an infinite descending sequence in R, then the sequence of sets
Ai = {(α0, . . . , αi−1) | f0(α0) ∋ f1(α1) ∋ . . . fi−1(αi−1)} violates countable
completeness. Ultrapowers by extenders, as opposed to mere pre-extenders,
are therefore wellfounded.

Let λ = spt(E). Using the various definitions one can prove the following
two properties of the ultrapower. The first relates the ultrapower embedding
back to the extender E, and the second describes a certain minimality of
the ultrapower:

(U1) The λ-restriction of j is precisely equal to E.

(U2) Every element of Ult(Q,E) has the form j(f)(a) for some function
f ∈ F and some a ∈ λ.

These properties determine the ultrapower and the embedding completely.

The following lemma relates an embedding π : V →M to the ultrapower
embedding by the extender over V derived from π. It shows that the ultra-
power by the λ-restriction of π captures π up to λ.

1.11 Lemma. Let π : V → M be an elementary embedding of V into a
wellfounded model M , and let κ = crit(π). Let λ ≤ π(κ) be an ordinal closed
under Gödel pairing. Let E be the λ-restriction of π. Let N = Ult(V,E)
and let j : V → N be the ultrapower embedding.

Then there is an elementary embedding k : N → M with π = k ◦ j (see
Diagram 2) and crit(k) ≥ λ. ⊣

1.12 Exercise. Let µ be a two-valued measure over a cardinal κ. Let
F be the class of functions from κ into V . For f, g ∈ F set f ∼ g iff
{ξ < κ | f(ξ) = g(ξ)} has measure one. Show that ∼ is an equivalence
relation. Let F∗ = F/ ∼. For f ∈ F let [f ] denote the equivalence class
of f . Define a relation R on F∗ by [f ] R [g] iff {ξ < κ | f(ξ) ∈ g(ξ)} has
measure one. Show that R is well defined.
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Define Ult(V, µ), the ultrapower of V by µ, to be the structure (F∗;R),
and define the ultrapower embedding j : V → Ult(V, µ) by j(x) = [cx] where
cx : κ→ V is the constant function which takes the value x.

Show that ultrapower embedding is elementary. Show that if µ is count-
ably complete, meaning that µ(

⋂
n<ω Xn) = 1 whenever 〈Xn | n < ω〉 is a

sequence of sets of measure one, then the ultrapower is wellfounded.

1.13 Exercise. The seed of a measure µ is the element [id] of the ul-
trapower, where id : κ → V is the identity function. Let s be the seed
of µ. Prove that every element of Ult(V, µ) has the form j(f)(s), where
j : V → Ult(V, µ) is the ultrapower embedding.

1.14 Exercise. A (two-valued) measure µ over a set U is called non-
principal just in case that µ({ξ}) = 0 for each singleton {ξ}. µ is κ-complete
if µ(

⋂
α<τ Xα) = 1 whenever τ < κ and Xα ⊆ U (α < τ) are all sets of

measure one. A cardinal κ is called measurable if there is a two-valued, non-
principal, κ-complete measure over κ. Let κ be measurable, let µ witness
this, and let j : V → Ult(V, µ) be the ultrapower embedding. Show that
crit(j) = κ.

1.15 Exercise. Let κ be measurable and let µ witness this. Let M =
Ult(V, µ). Prove that P(κ) ⊆M , and that P(P(κ)) 6⊆M .

Hint. To see that P(κ) ⊆ M , note that j(X) ∩ κ = X for each X ⊆ κ
(where j : V →M is the ultrapower embedding).

To see that P(P(κ)) 6⊆M , prove that µ 6∈M : Suppose for contradiction
that µ ∈ Ult(V, µ). Without loss of generality you may assume that κ is
the smallest cardinal carrying a measure µ with µ ∈ Ult(V, µ). Derive a
contradiction to the analogous minimality of j(κ) in M by showing that
µ ∈ Ult(M,µ). ⊣

1.16 Definition. An embedding π : V → M is α-strong just in case that
P(ξ) ⊆ M for all ξ < α. An extender E is α-strong just in case that
P(ξ) ⊆ Ult(V,E) for all ξ < α. The strength of π : V →M is defined to be
the largest α so that π is α-strong. The strength of an extender E is defined
similarly, using the ultrapower, and is denoted Strength(E). (Notice that
the strength of an embedding is always a cardinal.) An embedding π with
critical point κ is superstrong if it is π(κ)-strong. A cardinal κ is α-strong
if it is the critical point of an α-strong embedding, and superstrong if it is
the critical point of a superstrong embedding.

Measurable cardinals lie at the low end of the hierarchy of strength: as-
suming the GCH, an ultrapower embedding by a measure on κ is κ+-strong
and no more. Superstrong embeddings lie much higher in the hierarchy.
These embedding are the most we can hope to capture using (short) exten-
ders:
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1.17 Lemma. Let E be a (short) extender with critical point κ. Let j be
the ultrapower embedding by E. Then E is at most j(κ)-strong.

Proof. Using the ultrapower construction and the elementarity of j, one
can see that every element x of j(κ+) has the form j(f)(a) for a function
f : κ → κ+ and an a ∈ dom(j(f)) = j(κ). (The fact that f can be taken
to have domain κ traces back to the fact that the domain of E consists
precisely of the subsets of its critical point, in other words to the fact that
E is a short extender.) It follows that j(κ+) has cardinality at most θ =
(κ+)κ · j(κ). If j is j(κ)-strong then j(κ) is a strong limit cardinal in V ,
and a quick calculation shows that θ = j(κ). Thus j(κ+) = (j(κ)+)Ult(V,E)

has cardinality j(κ) in V , and from this it follows that Ult(V,E) must be
missing some subsets of j(κ). So E is not j(κ) + 1-strong. ⊣

1.18 Lemma. Let π : V → M with critical point κ. Suppose that π is α-
strong where α ≤ π(κ). Let λ ≤ π(κ) be an ordinal closed under Gödel
pairing and such that λ ≥ (2<α)M . Then the λ-restriction of π is an α-
strong extender.

Proof. Immediate from Lemma 1.11. ⊣

Lemma 1.18 shows that (short) extenders are adequate means for captur-
ing the strength of embeddings at or below the level of superstrong. On the
other hand Lemma 1.17 shows that (short) extenders cannot capture em-
beddings beyond superstrong. Such stronger embeddings can be captured
using the general extenders mentioned in Remark 1.3, but for our purpose
in this chapter the greater generality is not necessary.

1.19 Definition. We write Q‖α to denote V Q
α . We say that Q and N agree

well beyond κ if the first inaccessible above κ is the same in both Q and
N , and, letting α > κ be this inaccessible, Q‖α = N‖α. Given further
embeddings i : Q → Q∗ and j : N → N∗ we say that i and j agree well
beyond κ if i↾(Q‖α ∪ {α}) = j↾(N‖α ∪ {α}).

We shall use the notion of Definition 1.19 as an all purpose security
blanket, giving us (more than) enough room in several arguments below.

1.20 Claim. Let Q and N be models of set theory. Suppose that E is an
extender in N , and let κ = crit(E). Suppose that Q and N agree well
beyond κ, so that (in particular) E is a pre-extender over Q. Let i be the
ultrapower embedding of Q by E, and let j be the ultrapower embedding of
N by E. Then i and j agree well beyond κ, and Ult(Q,E) and Ult(N,E)
agree well beyond i(κ) = j(κ).

Let Q and N be models of set theory. Suppose that E is an extender in
N , and let κ = crit(E). Suppose that Q and N agree well beyond κ, so that
in particular E is a pre-extender over Q.
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Q∗
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E∗ ∈ N∗ Ult(Q∗, E∗)
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σ

OO

Ult(Q,E)

τ
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Diagram 3: Copying the ultrapower of Q by E to an ultrapower of Q∗ by
E∗.

Let π : Q→ Q∗ and σ : N → N∗ be elementary. Let E∗ = σ(E). Suppose
that π and σ agree well beyond κ. Hence in particular Q∗ and N∗ agree
well beyond π(κ) = σ(κ), and E∗ is therefore a pre-extender over Q∗. The
models and embeddings are presented in Diagram 3.

For an element x = [f, a] of Ult(Q,E) define τ(x) to be the element
[π(f), σ(a)] of Ult(Q∗, E∗).

Then τ is a well defined (meaning invariant under the choice of repre-
sentatives for x ∈ Ult(Q,E)) elementary embedding from Ult(Q,E) into
Ult(Q∗, E∗); τ↾ spt(E) = σ↾ spt(E); and τ makes Diagram 3, with i and i∗

being the relevant ultrapower embeddings, commute.
The ultrapower of Q∗ by E∗ is called the copy, via the pair 〈π, σ〉, of

the ultrapower of Q by E. τ is called the copy embedding. Note that the
definition of τ involves both π and σ, and the agreement between these two
embeddings is important for the proof that τ is well defined.

1.21 Remark. Recall that every element of Ult(Q,E) has the form i(f)(a)
for a function f ∈ Q and an ordinal a ∈ spt(E). The copy embedding τ is
characterized completely by the condition τ(i(f)(a)) = (i∗ ◦π)(f)(σ(a)) for
all f and a.

Next we describe how to repeatedly form ultrapowers by extenders, to
obtain a chain, or a tree, of models. For the record let us start by defining
direct limits.

1.22 Definition. Let 〈Mξ, jζ,ξ | ζ < ξ < α〉 be a system of models Mξ and
elementary embeddings jζ,ξ : Mζ →Mξ, commuting in the natural way. Let
D = {〈ξ, x〉 | ξ < α, x ∈Mξ}.

Define an equivalence relation ∼ on D by setting 〈ξ, x〉 ∼ 〈ξ′, x′〉 iff
jξ,ν(x) = jξ′,ν(x) where ν = max{ξ, ξ′}. Let D∗ = D/ ∼.

Define a relation R on D∗ by setting [ξ, x] R [ξ′, x′] iff jξ,ν(x) ∈ jξ′,ν(x)
where again ν = max{ξ, ξ′}. It is easy to check that R is well defined.

The structure M∗ = (D;R) is called the direct limit of the system
〈Mξ, jζ,ξ | ζ < ξ < α〉. The embeddings jξ,∗ : Mξ → M∗ determined by
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jξ(x) = [ξ, x] are called the direct limit embeddings. It is easy to check that
these embeddings commute with the embeddings jζ,ξ in the natural way.

1.23 Remark. If (D∗;R) is wellfounded then we identify it with its tran-
sitive collapse, and identify R with ∈.

We pass now to the matter of iterated ultrapowers.

1.24 Definition. A tree order is an order T on an ordinal α so that:

1. T is a suborder of <↾(α× α).

2. For each η < α, the set {ξ | ξ T η} is linearly ordered by T .

3. For each ξ so that ξ + 1 < α, the ordinal ξ + 1 is a successor in T .

4. For each limit ordinal γ < α, the set {ξ | ξ T γ} is cofinal in γ.

1.25 Definition. An iteration tree T of length α on a model M consists of
a tree order T on α and a sequence 〈Eξ | ξ + 1 < α〉, so that the following
conditions hold with an additional sequence 〈Mξ, jζ,ξ | ζ T ξ < α〉 which is
determined completely by the conditions:

1. M0 = M .

2. For each ξ so that ξ+ 1 < α, Eξ is an extender of Mξ, or Eξ =“pad.”

3. (a) If Eξ =“pad” then Mξ+1 = Mξ, the T -predecessor of ξ + 1 is ξ,
and jξ,ξ+1 is the identity.

(b) If Eξ 6=“pad” then Mξ+1 = Ult(Mζ , Eξ) and jζ,ξ+1 : Mζ →Mξ+1

is the ultrapower embedding, where ζ is the T -predecessor of ξ+1.
It is implicit in this condition that Mζ must agree with Mξ past
crit(Eξ), so that Eξ is a pre-extender over Mζ by Claim 1.7.

4. For limit λ < α, Mλ is the direct limit of the system 〈Mζ , jζ,ξ | ζ T
ξ T λ〉, and jζ,λ : Mζ →Mλ for ζ T λ are the direct limit embeddings.

5. The remaining embeddings jζ,ξ for ζ T ξ < α are obtained through
composition.

Mξ and jζ,ξ for ζ T ξ < α are the models and embeddings of T . We view
them as part of T , though formally they are not.

1.26 Remark. The inclusion of pads in iteration tree is convenient for
purposes of indexing in various constructions, and we shall use it later on.
But for much of the discussion below we make the implicit assumption that
the iteration tree considered has no pads. This assumption poses no loss of
generality.
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Mn+1

En ∈Mn

Mk

jk,n+1

OO

Diagram 4: Forming Mn+1

We shall only need iteration trees of length ω in this chapter. We shall
construct these trees recursively. In stage n of the construction we shall
have the models M0, . . . ,Mn. During the stage we shall pick an extender
En in Mn, and pick further some k ≤ n so that Mk and Mn agree past
crit(En). We shall then set k to be the T -predecessor of n + 1 and set
Mn+1 = Ult(Mk, En). This is illustrated in Diagram 4. After ω stages of a
construction of this kind we obtain an iteration tree of length ω.

A branch through an iteration tree T is a set b which is linearly ordered
by T . The branch is cofinal if sup(b) = lh(T ). By the direct limit along b,
denoted MT

b or simply Mb, we mean the direct limit of the system 〈Mξ, jζ,ξ |
ζ T ξ ∈ b〉. We use jTζ,b, or simply jζ,b, to denote the direct limit embeddings
of this system.

The branch b is called wellfounded just in case that the model Mb is
wellfounded.

2. Iterability

The existence of wellfounded cofinal branches through certain iteration trees
is crucial to proofs of determinacy. This existence is part of the general topic
of iterability. In this section we briefly describe the topic, point out its
most important open problem, and sketch a proof of the specific iterability
necessary for the determinacy results in this chapter.

Let M be a model of ZFC−. In the (full) iteration game on M players
“good” and “bad” collaborate to construct an iteration tree T of length ωV

1 +
1 on M . “bad” plays all the extenders, and determines the T -predecessor of
ξ + 1 for each ξ. “good” plays the branches {ζ | ζ T λ} for limit λ, thereby
determining the T -predecessors of λ and the direct limit model Mλ. Note
that “good” is also responsible for the final move, which determines MωV

1
.

If ever a model along the tree is reached which is illfounded then “bad”
wins. Otherwise “good” wins. M is (fully) iterable if “good” has a winning
strategy in this game. An iteration strategy for M is a strategy for the good
player in the iteration game on M . The Strategic Branch Hypothesis (SBH)
asserts that every countable model which embeds into a rank initial segment
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M
b0

//

T0

SSSSS
kkkkk

M1
// Mξ

bξ

//

Tξ

SSSSS
kkkkk

Mξ+1 //

Diagram 5: A weak iteration of M .

of V is iterable.
As stated the hypothesis is more general than necessary. The iteration

trees that come up in applications follow a specific format, and only the
restriction of SBH to trees of such format is needed.

Call an iteration tree T on M nice if:

1. The extenders used in T have increasing strengths. More precisely,
〈StrengthMξ(Eξ) | ξ + 1 < lh(T )〉 is strictly increasing.

2. For each ξ, StrengthMξ(Eξ) is inaccessible in Mξ.

3. For each ξ, spt(Eξ) = StrengthMξ(Eξ).

2.1 Remark. Throughout this chapter, whenever a result claims the exis-
tence of an iteration tree, the iteration tree is nice. In the later sections we
often neglect to mention this explicitly.

A model N is λ-closed if every subset of N of size λ in V belongs to N .

2.2 Exercise. Let T be a nice, finite iteration tree on V . Prove that each
of the models in T is countably closed, and conclude from this that each of
the models in T is wellfounded. Prove further that each of the models in T
is 2ℵ0 -closed.

Hint. Prove the general fact that if Q |=“E is an extender with inacces-
sible support,” N agrees with Q past the critical point of E, and both N
and Q are countably (respectively 2ℵ0) closed, then Ult(N,E) is countably
(respectively 2ℵ0) closed. Wellfoundedness follows from countable closure,
since by elementarity each of the models in T satisfies internally that “there
are no infinite descending sequences of ordinals.” ⊣

Call M iterable for nice trees if “good” has a winning strategy in the
iteration game on M when “bad” is restricted to extenders which give rise
to nice trees. Let nSBH be the assertion that every countable model which
embeds elementarily into a rank initial segment of V is iterable for nice trees.
nSBH is a technical weakening of SBH, sufficient for all known applications.
A proof of nSBH would constitute a substantial breakthrough in the study
of large cardinals, particularly in inner model theory.

For the sake of the determinacy proofs in this chapter we need only a
weak form of iterability, involving linear compositions of trees of length ω.
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Diagram 6: Theorem 2.3.

This iterability was proved by Martin–Steel [22]. We now proceed to state
the iterability precisely, and give its proof.

A weak iteration of M of length α consists of objects Mξ, Tξ, bξ for ξ < α
and embeddings jζ,ξ : Mζ →Mξ for ζ < ξ < α, so that:

1. M0 = M .

2. For each ξ < α, Tξ is a nice iteration tree of length ω on Mξ; bξ is
a cofinal branch through Tξ; Mξ+1 is the direct limit along bξ; and
jξ,ξ+1 : Mξ →Mξ+1 is the direct limit embedding along bξ.

3. For limit λ < α, Mλ is the direct limit of the system 〈Mξ, jζ,ξ | ζ <
ξ < λ〉 and jζ,λ : Mζ →Mλ are the direct limit embeddings.

4. The remaining embeddings jζ,ξ are obtained by composition.

A weak iteration is thus a linear composition of length ω iteration trees.
In the weak iteration game on M players “good” and “bad” collaborate

to produce a weak iteration of M , of length ωV
1 . “Bad” plays the iteration

trees Tξ and “good” plays the branches bξ. (These moves determine the
iteration completely.) If ever a model Mξ, ξ < ω1, is reached which is
illfounded, then “bad” wins. Otherwise “good” wins. M is weakly iterable
if “good” has a winning strategy in the weak iteration game on M .

2.3 Theorem. Let π : M → V ‖θ be elementary with M countable. Let T
be a nice iteration tree of length ω on M . Then there is a cofinal branch b
through T , and an embedding σ : Mb → V ‖θ, so that σ ◦ jb = π. (Note that
b is then a wellfounded branch, since Mb embeds into V ‖θ.)

2.4 Corollary. Let π : M → V ‖θ be elementary with M countable. Then
“good” has a winning strategy in the weak iteration game on M .

Proof. Immediate through iterated applications of Theorem 2.3. The good
player should simply keep choosing branches given by the theorem, succes-
sively embedding each Mξ+1 into V ‖θ, and preserving commutativity which
is needed for the limits.

The idea of proving iterability by embedding back into V , simple only in
retrospect, was first used by Jensen in the context of linear iterations. ⊣
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Theorem 2.3 and Corollary 2.4 provide the iterability necessary for the
determinacy proofs in this chapter. In the remainder of this section we give
the proof of the theorem.

2.5 Definition. Let T be a nice iteration tree of length ω on a model
M , giving rise to models and embeddings 〈Mm, jm,n | m T n < ω〉. T
is continuously illfounded if there exists a sequence of ordinals αn ∈ Mn

(n < ω) so that jm,n(αm) > αn whenever m T n.

Note that a continuously illfounded iteration tree has no wellfounded
cofinal branches. Indeed, for any cofinal branch b, the sequence jn,b(αn)
for n ∈ b witnesses that Mb is illfounded. Continuously illfounded iteration
trees, on countable models M which embed into rank initial segments of V ,
thus contradict Theorem 2.3 in a very strong way. We begin by showing
that in fact any counterexample to Theorem 2.3 gives rise to a continuously
illfounded iteration tree.

2.6 Lemma. Let π : M → V ‖θ be elementary with M countable. Let T
be a nice iteration tree of length ω on M , and suppose that the conclusion
of Theorem 2.3 fails for T . Then there is a continuously illfounded nice
iteration tree on V .

Proof. Let En, Mn, and jm,n (m T n < ω) denote the extenders, models,
and embeddings of T . Working recursively define a length ω iteration tree
T ∗ on V , and embeddings πn : Mn →M∗

n through the conditions:

• M∗
0 = V and π0 = π.

• E∗
n = πn(En).

• The T ∗-predecessor of n+ 1 is the same as the T -predecessor of n+ 1.

• M∗
n+1 = Ult(M∗

k , E
∗
n) where k is the T -predecessor of n+ 1, and πn+1

is the copy embedding via the pair 〈πk, πn〉.

It is easy to check that this definition goes through, giving rise to a nice
iteration tree T ∗ and the commuting diagram presented in Diagram 7. We
will show that T ∗ is continuously illfounded.

2.7 Definition. The tree T ∗ defined through the conditions above is the
copy of T via π : M → V . It is denoted πT .

From the fact that M is countable it follows that each Mn is countable.
Let ~en = 〈en

l | l < ω〉 enumerate Mn. Given an embedding σ with domain
Mn, we use σ↾l to denote the restriction of σ to {en

0 , . . . , e
n
l−1}, and we write

Mn↾l to denote {en
0 , . . . , e

n
l−1}.

Working in V let R be the tree of attempts to create a cofinal branch
b through T and a commuting system of embeddings realizing the models
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Diagram 7: T and T ∗.

along b into V . More precisely, a node in R consists of a finite branch a
through T , and of partial embeddings σi : Mi → V , i ∈ a, satisfying the
following conditions (where l is the length of a):

• For each i the domain of σi is precisely Mi↾l.

• (Commutativity) If i T i′ ∈ a, x ∈Mi↾l, x
′ ∈Mi′↾l, and x′ = ji,i′(x),

then σi′(x
′) = σi(x).

• σ0 is equal to π↾l.

The tree R consists of these nodes, ordered naturally by extension for each
component.

An infinite branch through R gives rise to a an infinite branch b =
{n0, n1, . . .} through T , and an embedding σ∞ of the direct limit along
b into V , with the commutativity σ∞ ◦ jb = π. Thus, an infinite branch
through R produces precisely the objects b and σ necessary for the conclu-
sion of Theorem 2.3.

The assumption of the current lemma is that T witnesses the failure of
Theorem 2.3. The tree R must therefore have no infinite branches. Let
ϕ : R → On be a rank function, that is a function assigning to each node
in R an ordinal, in such a way that if a node s′ extends a node s then
ϕ(s′) < ϕ(s). The existence of such a function follows from the fact that R
has no infinite branches.

For each finite branch a = 〈0 = n0 T n1 . . . T nl−1〉 through T , let sa

consist of a itself and the embeddings (πnl−1
◦ jni,nl−1

)↾l for each i < l.
Using the commutativity of Diagram 7 it is easy to check that sa is a node
in j∗0,nl−1

(R).
For k < ω let sk be the node sa where a is the branch of T ending at k.

sk is then a node in j∗0,k(R). For k T k′ it is easy to check, again using the
commutativity of Diagram 7, that sk′ extends j∗k,k′(sk).

Let αk = j∗0,k(ϕ)(sk). This is the rank of the node sk of j∗0,k(R) given
by the shift of the rank function ϕ to M∗

k . From the fact that sk′ extends



22 I. Determinacy in L(R)

j∗k,k′(sk) for k T k′ it follows that αk′ < jk,k′(αk). The ordinals 〈αk | k < ω〉
therefore witness that T ∗ is continuously illfounded. ⊣

2.8 Lemma. Let U be a nice length ω iteration tree on V . Then U is not
continuously illfounded.

Proof. Suppose for contradiction that U is a nice, length ω, continuously
illfounded iteration tree on V , and let 〈βn | n < ω〉 witness this. Let η be
large enough that U belongs to V ‖η. By replacing each βn with the βnth
regular cardinal of MU

n above jU0,n(η) we may assume that βn is regular in

MU
n for each n, and larger than jU0,n(η).
Let θ be large enough that both U and 〈βn | n < ω〉 belong to V ‖θ. Let

H be a countable Skolem hull of V ‖θ with U and 〈βn | n < ω〉 elements
of H. Let M be the transitive collapse of H and let π : M → V ‖θ be the
anticollapse embedding. Let T = π−1(U) and let 〈αn | n < ω〉 = π−1(〈βn |
n < ω〉). Then T is a nice, length ω, continuously illfounded iteration tree
on M ; 〈αn | n < ω〉 witnesses this; for each n, αn is regular in Mn = MT

n ;
and, for each n, En = ET

n belongs to Mn‖αn. (The last clause follows from
the fact that βn is greater than jU0,n(η), obtained in the previous paragraph,

and the fact that η was chosen large enough that EU
n ∈ V ‖jU0,n(η).)

Let Mn, En, and jm,n (m T n < ω) be the models and embeddings of
T . Let ρn be the strength of En in Mn. The sequence 〈ρn | n < ω〉 is
increasing, and for each n < n∗, Mn and Mn∗ agree to ρn.

Let P0 = V ‖β0 and let σ0 = π↾(M‖α0). We work by recursion to produce
models Pn and embeddings σn satisfying the following conditions:

1. σn is elementary from Mn‖αn into Pn.

2. σn belongs to Pn and is countable in Pn.

3. For n̄ < n, σn̄ and σn agree on Mn̄‖ρn̄.

We shall construct so that:

(i) For each n, Pn+1 ∈ Pn.

At the end of the construction we shall thus have an infinite ∈-decreasing
sequence, a contradiction.

We already have conditions (1) and (2) for n = 0, and condition (3) is
vacuous for n = 0. Suppose inductively that we have conditions (1)–(3) for
n. We describe how to construct Pn+1 and σn+1.

Let k be the T -predecessor of n+1, so that Mn+1 is the ultrapower of Mk

by En. We wish to copy this ultrapower to an ultrapower of Pk via the pair
〈σk, σn〉. We cannot quite manage this, since the domain of σk is Mk↾αk

rather than Mk. We adjust our wishes as follows: Let γ = jk,n+1(αk).
Mn+1‖γ is then the ultrapower of Mk‖αk by En. Now let P ∗

n be the copy
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of this ultrapower via the pair 〈σk, σn〉, and let σ∗
n : Mn+1‖γ → P ∗

n be the
copy embedding.

We would have liked to simply set Pn+1 = P ∗
n and σn+1 equal to the

restriction of σ∗
n to Mn+1‖αn+1. There are two problems with this desire.

First, P ∗
n does not belong to Pn, so we lose condition (i), the crucial condi-

tion in our scheme for a contradiction. Second, σ∗
n does not belong to P ∗

n ,
so we lose condition (2). We handle the second problem first.

2.9 Claim. Let τ denote the restriction of σ∗
n to Mn+1‖ρn. Then τ belongs

to P ∗
n .

Proof. Let ϕn denote σn(ρn). Let Fn denote σn(En).
P ∗

n is the ultrapower of Pk by Fn. Fn is ϕn-strong in Pn. It follows that
P ∗

n and Pn agree to ϕn.
The definition of copy embeddings is such that σ∗

n and σn agree on the
support of En. This support must contain ρn, since otherwise En could
not be ρn-strong. σ∗

n and σn thus agree on ρn. By condition (2) and the
inaccessibility of ϕn in Pn, σn↾ρn belongs to Pn↾ϕn. Since Pn and P ∗

n agree
to ϕn, σn↾ρn belongs to P ∗

n . Now σ∗
n is the same as σn up to ρn, so σ∗

n↾ρn

belongs to P ∗
n . From this, using the inaccessibility of ρn in Mn+1, one can

argue that σ∗
n↾(Mn+1‖ρn) belongs to P ∗

n . ⊣

Let α∗
n = σ∗

n(αn+1). Notice that the definition makes sense, as αn+1 is
smaller than γ = jk,n+1(αk), and therefore belongs to the domain of σ∗

n.

2.10 Claim. There is an elementary embedding σ∗∗
n : Mn+1‖αn+1 → P ∗

n‖α
∗
n

so that:

• The restriction of σ∗∗
n to Mn+1‖ρn is equal to τ .

• σ∗∗
n (ρn) = ϕn.

• σ∗∗
n belongs to P ∗

n and is countable in P ∗
n .

Notice that σ∗
n, restricted to Mn+1‖αn+1, already satisfies the first two

demands of the claim. Replacing it by an embedding σ∗∗
n that also satisfies

the third demand solves our “second problem” mentioned above.

Proof of Claim 2.10. This is a simple matter of absoluteness. Using the fact
that τ belongs to P ∗

n we can put together, inside P ∗
n , the tree of attempts to

construct an embedding σ∗∗
n satisfying the demands of the claim. This tree

of attempts has an infinite branch in V , given by the restriction of σ∗
n to

Mn+1‖αn+1. By absoluteness then it has an infinite branch inside P ∗
n . ⊣

Let P ∗∗
n = P ∗

n‖α
∗
n. Note that P ∗∗

n is then a strict rank initial segment of
P ∗

n , ultimately because αn+1 < jk,n+1(αn).
Taking Pn+1 = P ∗∗

n and σn+1 = σ∗∗
n would satisfy conditions (1)–(3). But

we need one more adjustment to obtain condition (i), the crucial condition
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in our scheme for a contradiction. This final adjustment hinges on the fact
that P ∗∗

n is a strict initial segment of P ∗
n , and therefore an element of P ∗

n .
Let H be the Skolem hull of P ∗∗

n ‖ϕn ∪ {ϕn, σ
∗∗
n } inside P ∗∗

n . Let Pn+1

be the transitive collapse of H, and let j : Pn+1 → H be the anticollapse
embedding. Let σn+1 = j−1◦σ∗∗

n . It is easy to check that conditions (1)–(3)
hold with these assignments.

Since P ∗∗
n and σ∗∗

n belong to P ∗
n , the Skolem hull H taken above has

cardinality ϕn inside P ∗
n . It follows that Pn+1 can be coded by a subset of

ϕn inside P ∗
n . Now P ∗

n is equal to Ult(Pk, Fn). Since Pk and Pn agree well
beyond the critical point of Fn, the ultrapowers Ult(Pk, Fn) and Ult(Pn, Fn)
agree well beyond the image of this critical point (Claim 1.20). This image
in turn is at least ϕn, that is the strength of Fn, since Fn is a short extender.
(See Lemma 1.17.) It follows that all subsets of ϕn in P ∗

n = Ult(Pk, Fn)
belong also to Ult(Pn, Fn). Now Ult(Pn, Fn) can be computed over Pn (as
Fn ∈ Pn). So all subsets of ϕn in P ∗

n belong to Pn. We noted at the start of
this paragraph that Pn+1 can be coded by such a subset. So Pn+1 belongs
to Pn, and we have condition (i), as required. ⊣

Lemmas 2.6 and 2.8 combine to prove Theorem 2.3.

2.11 Remark. The contradiction in Lemma 2.8 is obtained through the
very last adjustment in the proof, replacing P ∗∗

n by a Skolem hull which
belongs to Pn. It is crucial for that final adjustment that P ∗∗

n is a strict
rank initial segment of P ∗

n , and this is where the continuous illfoundedness
of T is used. The ordinals witnessing the continuous illfoundedness provide
the necessary drops in rank.

2.12 Lemma. Let T be a nice iteration tree of length ω on V . Then T has
a cofinal branch leading to a wellfounded direct limit.

Proof. Suppose not. For each cofinal branch b through T fix a sequence
〈αb

n | n ∈ b〉 witnessing that the direct limit along b is illfounded, more
precisely satisfying jm,n(αb

m) > αb
n for all m < n both in b. Let θ be large

enough that all the ordinals αb
n are smaller than θ.

For each n < ω let Bn be the set of cofinal branches b through T with
n ∈ b. Let Fn be the set of functions from Bn into θ. Let ≺ be the following
relation: 〈n, f〉 ≺ 〈m, g〉 iff f ∈ Fn, g ∈ Fm, m T n, and f(b) < g(b) for
every b ∈ Fn. The relation ≺ is wellfounded: if 〈ni, fi | i < ω〉 were an
infinite descending chain in ≺, then 〈fi(b) | i < ω〉, where b is the cofinal
branch through T generated by {ni | i < ω}, would be an infinite descending
sequence of ordinals.

For each n < ω let ϕn be the function b 7→ αb
n, defined on b ∈ Bn, that

is on branches b so that n ∈ b. By Exercise 2.2, each of the models Mn of
T is 2ℵ0 -closed, and it follows that for each n < ω, ϕn belongs to Mn. Let
≺n denote the relation j0,n(≺). Using the fact that jm,n(αb

m) > αb
n for all b
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and all m < n both in b, it is easy to check that 〈n, ϕn〉 ≺n 〈m, jm,n(ϕm)〉
whenever m T n. Letting γn be the rank of ϕn in ≺n it follows that
γn < jm,n(γm) whenever m T n. But then the sequence 〈γn | n < ω〉 is a
witness that T is continuously illfounded, contradicting Lemma 2.8. ⊣

3. Creating Iteration Trees

The creation of iteration trees with non-linear tree orders is not a simple
matter. Recall that the model Mn+1 in an iteration tree T is created by
picking an extender En ∈ Mn, picking k ≤ n so that Mk and Mn agree
past crit(En), and setting Mn+1 = Ult(Mk, En). The agreement between
Mk and Mn is necessary for the ultrapower to make sense. The agreement
can be obtained trivially by taking k = n. But doing this repeatedly would
generate a linear iteration, that is an iteration with the simple tree order
0 T 1 T 2 · · · . For the creation of iteration trees with more complicated
orders we need a way of ensuring that Mn has extenders with critical points
within the level of agreement between Mn and previous models in the tree.

This section introduces the large cardinals and machinery that will allow
us to create iteration trees with as complicated a tree order as we wish. The
results here are due to Martin–Steel [21]. The terminology follows Neeman
[31, §1A(1)].

3.1 Definition. u is called a (κ, n)-type, where κ is a limit ordinal and
n < ω, if u is a set of formulae involving n free variables v0 . . . vn−1, a

constant δ̃, and additional constants c̃ for each c ∈ V ‖κ ∪ {κ}.

A (κ, n)-type can be coded by a subset of (V ‖κ)<ω. Since κ is assumed
to be a limit ordinal, (V ‖κ)<ω ⊆ V ‖κ. We may therefore view (κ, n)-types
as subsets of V ‖κ.

We refer to κ as the domain of u, denoted dom(u). For τ ≤ κ and m ≤ n,
we let

projmτ (u) = {φ(δ̃, c̃0, . . . , c̃k, v0, . . . , vm−1) | k ∈ N, c0, . . . , ck ∈ V ‖τ ∪ {τ},

φ(δ̃, c̃0, . . . , c̃k, v0, . . . , vn−1) ∈ u, and φ makes no men-
tion of vm, . . . , vn−1}.

We use projτ (u) to denote projnτ (u), and projm(u) to denote projmκ (u).

3.2 Definition. We say that a (κ, n)-type u is realized (relative to δ) by
x0, . . . , xn−1 in V ‖η just in case that:

• x0, . . . , xn−1 and δ are elements of V ‖η.

• For any k < ω, any c0, . . . , ck ∈ V ‖κ∪{κ}, and any formula φ(δ̃, c̃0, . . . ,

c̃k, v0, . . . , vn−1), φ(δ̃, c̃0, . . . , c̃k, v0, . . . , vn−1) ∈ u if and only if V ‖η |=
φ[δ, c0, . . . , ck, x0, . . . , xn−1]. (Implicitly we must have η > κ and η >
δ.)
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We call u the κ-type of x0, . . . , xn−1 in V ‖η (relative to δ) if u is the unique
(κ, n)-type which is realized by x0, . . . , xn−1 in V ‖η. A (κ, n)-type u is
realizable (relative to δ) if it is realized by some x0, . . . , xn−1 in some V ‖η.

We often neglect to mention the set δ involved in the realization. In
applications δ is usually fixed, and clear from the context.

3.3 Note. If u is realized by x0, . . . , xn−1 in V ‖η, then projmτ (u) is realized
by x0, . . . , xm−1 in V ‖η.

3.4 Definition. If the formula “there exists a largest ordinal,” and the
formula “κ̃, δ̃, v0, . . . , vn−1 ∈ V ‖ν, where ν is the largest ordinal” are both
elements of the (κ, n)-type u we define

u− = {φ(δ̃, c̃0, . . . , c̃k, v0, . . . , vn−1) | k ∈ N, c0, . . . , ck ∈ V ‖κ ∪ {κ},

and the formula “V ‖ν |= φ[δ̃, c̃0, . . . , c̃k, v0, . . . , vn−1]
where ν is the largest ordinal” is an element of u}.

3.5 Note. If κ, δ, x0, . . . , xn−1 ∈ V ‖η and u is realized by x0, . . . , xn−1 in
V ‖η + 1 then u− is defined and is realized by the same x0, . . . , xn−1 in V ‖η.

3.6 Definition. Let u be a (κ, n)-type, and let w be a (τ,m)-type. We say
that w is a subtype of u (and write w < u) if:

• τ < κ.

• m ≥ n.

• The formula “there is an ordinal ν and vn, . . . , vm−1 ∈ V ‖ν such
that w̃ is realized by some permutation of v0, . . . , vm−1 in V ‖ν” is an
element of the type u.

3.7 Note. Let u be the κ-type of x0, . . . , xn−1 in V ‖η. Then w is a subtype
of u iff there is τ < κ, ν < η, m ≥ n, and sets xn, . . . , xm−1 so that w is the
τ -type of some permutation of x0, . . . , xm−1 in V ‖ν.

3.8 Remark. Definition 3.6 makes no mention of realizability but only
stipulates that one particular formula belongs to u. It is immediate then
that the property w < u is absolute for any two models of set theory which
have w and u as elements.

3.9 Definition. We say that a (τ,m)-type w exceeds the (κ, n)-type u, if:

• τ > κ.

• m ≥ n.

• There exist ordinals ν, η, and sets x0, . . . , xm−1 ∈ V ‖ν such that
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– u is realized by x0, . . . , xn−1 in V ‖η,

– w is realized by some permutation of x0, . . . , xm−1 in V ‖ν, and

– ν + 1 < η.

ν, η, and x0, . . . , xm−1 are said to witness the fact that w exceeds u.

3.10 Remark. The definition here is slightly more liberal than the corre-
sponding definition in Neeman [31], where it is required that w be realized by
x0, . . . , xm−1 in their original order, not by a permutation of x0, . . . , xm−1.
A similar comment applies to Definition 3.6.

3.11 Note. Let u be the κ-type of x0, . . . , xn−1 in V ‖η. Suppose there is
τ > κ, ν with ν + 1 < η, m ≥ n, and xn, . . . , xm−1 so that w is the τ -type
of a permutation of x0, . . . , xm−1 in V ‖ν. Then w exceeds u. This should
be compared with Note 3.7. There τ is smaller than κ, and here τ must be
larger than κ.

3.12 Definition. Let κ < λ be ordinals, E a λ-strong extender with
crit(E) = κ and u a type with dom(u) = κ. Let iE : V → Ult(V,E) be the
ultrapower embedding. We define StretchE

λ (u) to be equal to projλ(iE(u)).

iE(u) in Definition 3.12 is a type in Ult(V,E) with domain iE(κ). iE(κ) is
at least as large as λ by Lemma 1.17, since E is λ-strong. So the projection
to λ in Definition 3.12 makes sense.

3.13 Definition. A (κ, n)-type u is called elastic just in case that u− is
defined and u contains the following formulae:

• “δ̃ is an inaccessible cardinal.”

• “Let ν be the largest ordinal. Then for all λ < δ̃ there exists an
extender E ∈ V ‖δ̃ such that

– crit(E) = κ̃, spt(E) = Strength(E), Strength(E) is an inaccessi-
ble cardinal greater than λ, and

– StretchE
λ (u−) is realized (relative to δ̃) by v0, . . . , vn−1 in V ‖ν.”

Formally the last clause should begin with “StretchE
λ (w), where w is the type

of v0, . . . , vn−1 in V ‖ν,” instead of StretchE
λ (u−), as u− is not a parameter

in formulae in u.

3.14 Remark. The requirements on support and of inaccessible strength
in Definition 3.13 are not part of the definition in Neeman [31]. They are
added in this chapter so as to make sure, later on, that our iteration trees
are nice.
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3.15 Remark. Definition 3.13 makes no mention of realizability but only
stipulates that certain formulae belong to u. It is immediate then that the
property of being elastic is absolute between models of set theory.

Ordinarily if u is realized by x0, . . . , xn−1 in V ‖ν + 1 then StretchE
λ (u−)

is realized by iE(x0), . . . , iE(xn−1) in Ult(V,E)‖iE(ν), and relative to iE(δ).
The demand in Definition 3.13 that it must also be realized by x0, . . . , xn−1

in V ‖ν, and relative to δ, places a requirement of certain strength on the
extender E. The existence of realizable elastic types is dependent on the
existence of enough extenders with such strength.

3.16 Definition. Let H be a set. Let E be an extender and let κ = crit(E).
Let j be the ultrapower embedding by E. Let α ≤ j(κ). E is said to be
α-strong with respect to H if (a) it is α-strong; and (b) j(H ∩ κ) and H
agree to α, i.e., j(H ∩ κ) ∩ α = H ∩ α.

A cardinal κ is said to be α-strong with respect to H if it is the critical
point of an extender which is α-strong with respect to H.

A cardinal κ is said to be <α-strong with respect to H if it is β-strong
with respect to H for each β < α.

3.17 Lemma. Let τ be the critical point of a superstrong extender. Let
H ⊆ τ . Then there is κ < τ which is <τ -strong with respect to H.

Proof. Let E be a superstrong extender with critical point τ , let M =
Ult(V,E), and let π : V →M be the ultrapower embedding. Let τ∗ = π(τ).
For each α < τ∗ let Fα be the λ-restriction of π, where λ < τ∗ is the least
ordinal satisfying the requirements in Lemma 1.18 relative to α. Notice that
Fα is then an element of V ‖τ∗, and therefore, through of the agreement
between V and M , an element of M . Notice further that, by Lemma 1.18,
Fα is α-strong. Let jα be the ultrapower embedding by Fα, and notice finally
that jα(H) and π(H) agree up to λ, meaning that jα(H) ∩ λ = π(H) ∩ λ.
Since H = π(H) ∩ κ it follows that Fα is α-strong with respect to π(H).

The extenders Fα, α < τ∗, thus witness that τ is <τ∗-strong in M with
respect to π(H). So M is a model of the statement “there is κ < τ∗ which
is <τ∗-strong with respect to π(H).” Using the elementarity of π to pull
this statement back to V it follows that there is κ < τ which is <τ -strong
with respect to H. ⊣

3.18 Definition. A cardinal δ is called a Woodin cardinal if for everyH ⊆ δ,
there exists κ < δ which is <δ-strong with respect to H.

Lemma 3.17 shows that the critical point of a superstrong extender is
Woodin. The next exercise shows that there are Woodin cardinals below
the critical point. In fact Woodin cardinals sit well below such critical points
in the large cardinal hierarchy, and there are many large cardinal axioms
strictly between the existence of Woodin cardinals and the existence of
superstrong extenders.
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3.19 Exercise. Let E be a superstrong extender. Show that there are
Woodin cardinals below the critical point of E. In fact, show that the
critical point of E is a limit of Woodin cardinals.

3.20 Exercise. Let δ be a Woodin cardinal. Show that δ is a limit of
(strongly) inaccessible cardinals, and that it is (strongly) inaccessible itself.

3.21 Exercise. Let δ be a Woodin cardinal. Let H ⊆ δ and let κ be
<δ-strong with respect to H. Let α < δ be given. Prove that there is
an extender E with critical point κ so that E is α-strong with respect to
H, and so that spt(E) = Strength(E) and Strength(E) is an inaccessible
cardinal greater than α.

Hint. Let λ < δ be the first inaccessible cardinal above α. Using the fact
that κ is <δ-strong with respect to H, get an extender F with critical
point κ so that F is λ-strong with respect to H. In particular then F is
α-strong with respect to H, and Strength(F ) ≥ λ. Let π be the ultrapower
embedding by F , and let E be the λ-restriction of π. Show that the strength
of E is precisely λ, and that E is α-strong with respect to H. ⊣

3.22 Lemma. Let δ be a Woodin cardinal. Let η > δ, and let x0, . . . , xn−1

be elements of V ‖η. Then there exist unboundedly many κ < δ such that
the κ-type of x0, . . . , xn−1 in V ‖η + 1 relative to δ is elastic.

Proof. For each (strongly) inaccessible γ < δ let Aγ be the γ-type of
x0, . . . , xn−1 in V ‖η relative to δ, viewed as a subset of γ. Let H = {(ξ, γ) |
ξ ∈ Aγ}, where (∗, ∗) is the Gödel pairing.

Let κ be <δ-strong with respect to H. Let u be the κ-type of x0, . . . , xn−1

in V ‖η + 1.

It is easy to check that if λ∗ is closed under Gödel pairing and E is λ∗-
strong with respect to H, then for every λ < λ∗, StretchE

λ (u−) is realized
by x0, . . . , xn−1 in V ‖η. Using Exercise 3.21 it follows that the formula in
the second clause of Definition 3.13 holds for x0, . . . , xn−1 in V ‖η + 1, and
is therefore an element of u. By Exercise 3.20, δ is inaccessible, and so the
formula in the first clause of Definition 3.13 belongs to u. This shows that
u is elastic.

We have so far obtained one cardinal κ < δ so that the κ-type of
x0, . . . , xn−1 in V ‖η is elastic. We leave it to the reader to show that there
are unboundedly many. ⊣

We now know that Woodin cardinals provide the strength necessary for
the existence of many elastic types. The usefulness of elastic types appears
through the following lemma. The lemma essentially says that an elastic
type u which is exceeded by a type w can be stretched to a supertype of w.
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3.23 Lemma (One-step Lemma). Assume that u is an elastic type, and
that w exceeds u (with all realizations relative to δ). Let τ = dom(w) and
let κ = dom(u). Suppose that τ < δ. Then there exists an extender E ∈ V ‖δ
so that

• crit(E) = κ, spt(E) = Strength(E), the strength of E is an inaccessi-
ble cardinal greater than τ , and

• w < StretchE
τ+ω(u).

Proof. Let ν, η, x0, . . . , xm−1 witness that w exceeds u. Since u− exists, η
is a successor ordinal. Say η = η̄ + 1. Pick E ∈ V ‖δ so that crit(E) = κ, E
has inaccessible strength greater than τ , and StretchE

τ+ω(u−) is realized by
x0, . . . , xn−1 in V ‖η̄ relative to δ. This is possible since u is elastic.

Then w is a subtype of StretchE
τ+ω(u−), as it is realized by a permuta-

tion of x0, . . . , xn−1, xn, . . . , xm in V ‖ν and ν < η̄. Simple properties of
realizable types now imply that w is a subtype of StretchE

τ+ω(u). ⊣

We now have the tools necessary for the creation of iteration trees. We
work for the rest of the section under the assumption that δ is a Woodin
cardinal.

3.24 Lemma. Let M0 = V . There is an iteration tree with the structure of
models presented in the following diagram:

M0 =
((

M1 66M2 M3

Proof. Let η be an ordinal greater than δ. Let κ0 < δ be such that the
κ0-type of η in V ‖η + 5 is elastic. Let u0 be this type.

Let κ1 > κ0 be such that the κ1-type of η in V ‖η + 3 is elastic. Let u1

be this type.
Notice that u1 exceeds u0. Using the one-step lemma pick a κ1 + 1-

strong extender E1 ∈ M1‖δ so that crit(E1) = κ0, and u1 is a subtype of
StretchE1

κ1+ω(u0).
Set M2 = Ult(M0, E1), and let j0,2 : M0 →M2 be the ultrapower embed-

ding. Then u1 is a subtype of j0,2(u0). By the elementarity of j0,2, j0,2(u0)
is realized by j0,2(η) in M2‖j0,2(η)+5. It follows from this and from the fact
that u1 is a subtype of j0,2(u0), that u1 is also realized in M2, specifically it
must be realized by j0,2(η) in M2‖j0,2(η)+3. The level j0,2(η)+3 is reached
by observing that u1 contains the formula “v0 + 2 is the largest ordinal.”

Working now in M2, let κ2 > κ1 be such that the κ2-type of j0,2(η) in
M2‖j0,2(η) + 1 is elastic. Let u2 be this type. Notice that u2 then exceeds
u1, inside M2. This uses the realization of u1 in M2, reached in the previous
paragraph. Applying the one-step lemma pick an extender E2 ∈M2 which
stretches u1 to a supertype of u2. E2 has critical point κ1, and κ1 is within
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the level of agreement between M2 and M1. E2 can therefore be applied to
M1. Set M3 = Ult(M1, E2). ⊣

3.25 Exercise. Construct an iteration tree with the structure presented in
the following diagram:

M0 =
((

M1 66M2

((
M3 M4

3.26 Exercise. Construct a length ω iteration tree with the tree order
presented in the following diagram:

M0 =
((

M1 66M2

((
M3 66M4 M5

Hint. The following definition is useful:

3.27 Definition. Let ν
L
< ν

H
be ordinals greater than δ. We say that

〈ν
L
, ν

H
〉 is a pair of local indiscernibles relative to δ just in case that:

(V ‖ν
L

+ ω) |= φ[ν
L
, c0, . . . , ck−1] ⇐⇒ (V ‖ν

H
+ ω) |= φ[ν

H
, c0, . . . , ck−1]

for any k < ω, any formula φ with k+1 free variables, and any c0, . . . , ck−1 ∈
V ‖δ + ω.

Given local indiscernibles ν
L
< ν

H
, note that a type u is realized by ν

L

in V ‖ν
L

+ 1 iff it is realized by ν
H

in V ‖ν
H

+ 1. Notice further that if u is
realized by ν

H
in V ‖ν

H
+1, then any type of larger domain, which is realized

by ν
L

in V ‖ν
L

+ 3, exceeds proj0(u), because ν
L

+ 3 < ν
H

+ 1. (It should
be pointed out that the use of the projection is necessary here, to pass to a
type which does not involve ν

H
as a parameter.) In sum then you have:

3.28 Claim. Let u be κ-type realized by ν
L

in V ‖ν
L

+ 1. Let τ > κ and let
w be a τ -type realized by ν

L
in V ‖ν

L
+ 3. Then w exceeds proj0(u).

You have also the following claim, directly from the definitions:

3.29 Claim. Let α be an ordinal greater than δ. Let u be a κ-type realized
by α in V ‖α+ 3. Let τ > κ and let w be a τ -type realized by α in V ‖α+ 1.
Then w exceeds u.

Use the two claims alternately, to construct the iteration tree required for
the exercise, types un ∈Mn, and ordinals αn for n < ω odd, with α1 = ν

L
,

so that:

1. For even n < ω, un is realized by j0,n(ν
L
) in Mn‖j0,n(ν

L
) + 3.

2. For odd n < ω, un−1 is realized by αn in Mn‖αn+3, and un is realized
by αn in Mn‖αn + 1.
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The construction is similar to that of the previous exercise, except that the
use of the projection introduces some changes. The ordinals αn for n > 1
odd are chosen using the third clause of Definition 3.6, applied to the fact
that un−1 is a subtype of jn−2,n(proj0(un−2)). If you get αn < jn−2,n(αn−2)
for n > 1 odd, then you are on the right track. ⊣

3.30 Exercise. Go back to the last exercise, and make sure that the tree
you construct is nice.

4. Homogeneously Suslin Sets

By a tree on a set X we mean a set T ⊆ X<ω, closed under initial segments.
We use [T ] to denote the set of infinite branches through T , that is the set
{x ∈ Xω | (∀n)x↾n ∈ T}. Given a tree T on X × Y we often think of T as
a subset of X<ω × Y <ω rather than (X × Y )<ω, and similarly we think of
[T ] as a subset of Xω × Y ω. For T a tree on X × Y we use p[T ] to denote
the projection of [T ] to Xω, namely the set {x ∈ Xω | (∃y)〈x, y〉 ∈ [T ]}.
We use Ts (for s ∈ X<ω) to denote the set {t ∈ Y <ω | 〈s, t〉 ∈ T}, and
use Tx (for x ∈ Xω) to denote the tree

⋃
n<ω Tx↾n. x is an element of

p[T ] iff [Tx] is non-empty. We sometimes apply similar terminology in the
case that T is a tree on a product of more than two sets, for example
p[T ] = {x | (∃y)(∃z)〈x, y, z〉 ∈ [T ]} in the case that T is a tree on X×Y ×Z.

Recall that a set A ⊆ Xω is Σ1
1 iff there is a tree R on X × ω so that

A = p[R]. A set is Π1
n if its complement is Σ1

n; and a set A ⊆ Xω is Σ1
n+1

(for n ≥ 1) if there is a Π1
n set B ⊆ Xω×ωω so that x ∈ A⇔ (∃y)〈x, y〉 ∈ B.

A set is projective if it is Π1
n for some n < ω. The projective sets are thus

obtained from closed sets using complementations and projections along the
real line.

The sets of reals in the very first level L1(R) are precisely the projective

sets, and our climb to AD
L(R) begins at the low end of the projective hierar-

chy. We prove determinacy for Π1
1 sets assuming measurable cardinals. The

proof, due to Martin [16], can with hindsight be divided into two parts: a
proof, using a measurable cardinal κ, that all Π1

1 sets are κ-homogeneously
Suslin (see below for the definition); and a proof that all homogeneously
Suslin sets are determined.

Let γ be an ordinal and let m < n < ω. For Z ⊆ γm let Z∗ = {f ∈ γn |
f↾m ∈ Z}. A measure ν over γn is an extension of a measure µ over γm

just in case that for every Z ⊆ γm, µ(Z) = 1 → ν(Z∗) = 1.
A tower of measures over γ is a sequence 〈µn | n < ω〉 so that:

(i) µn is a measure over γn for each n.

(ii) µn is an extension of µm for all m < n < ω.

The tower is countably complete just in case that:
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(iii) If µn(Zn) = 1 for each n then there is a fiber through 〈Zn | n < ω〉,
namely a sequence 〈αi | i < ω〉 so that 〈α0, . . . , αn−1〉 ∈ Zn for each
n.

For sequences s and t we write s ≤ t to mean that s is an initial segment
of t, and s < t to mean that s is a proper initial segment of t.

4.1 Definition. A tree T on X × γ is homogeneous if there is a sequence
of measures 〈µs | s ∈ X<ω〉 so that:

1. For each s ∈ X<ω, µs is a measure over Ts (equivalently, over γlh(s)

with µs(Ts) = 1), and µs is card(X)+-complete.

2. If s ≤ t then µt is an extension of µs.

It follows from condition (2) that for every x ∈ Xω, the sequence 〈µx↾n |
n < ω〉 is a tower.

3. If x ∈ p[T ] then the tower 〈µx↾n | n < ω〉 is countably complete.

T is κ-homogeneous if in addition each of the measures µs is κ-complete.

4.2 Exercise. Let T be a homogeneous tree on X × γ. Prove that there is
a system 〈Ms, fs, js,t | s ≤ t ∈ X<ω〉 of (wellfounded) models Ms, nodes fs,
and embeddings js,t satisfying the following conditions:

1. js,t : Ms → Mt for each s ≤ t, crit(js,t) is larger than card(X), M∅ =
V , and the system 〈Ms, js,t | s ≤ t ∈ X<ω〉 commutes in the natural
way.

2. fs ∈ j∅,s(Ts) for each s ∈ X<ω, and the nodes 〈fs | s ∈ X<ω〉 cohere
in the natural way, meaning that s < t⇒ js,t(fs) < ft.

3. If x ∈ p[T ] then the system 〈Ms, js,t | s ≤ t < x〉 has a wellfounded
direct limit.

Hint. Let Ms = Ult(V, µs) and let js : V → Ms be the ultrapower embed-
ding. Let fs be the seed of the measure µs. Notice that fs is an element of
js(Ts).

Recall that each element of Ms has the form js(g)(fs) for some function
g : γlh(s) → V . For s ≤ t ∈ X<ω define an embedding js,t : Ms → Mt by
letting js,t send js(g)(fs) to jt(g)(ft↾ lh(fs)).

Prove that the resulting system satisfies conditions (1)–(3). ⊣

4.3 Exercise. Let T be a tree on X×γ and suppose that there is a system
〈Ms, fs, js,t | s ≤ t ∈ X<ω〉 satisfying the conditions in Exercise 4.2. Prove
that T is homogeneous.

Suppose in addition that the embeddings js,t all have critical points at
least κ. Show that T is κ-homogeneous.
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Hint. Set µs(Z) = 1 iff fs ∈ j∅,s(Z). Prove that the resulting system of
measures 〈µs | s ∈ X<ω〉 satisfies the conditions in Definition 4.1. ⊣

The existence of a system satisfying the conditions in Definition 4.1 is
thus equivalent to the existence of a system satisfying the conditions in
Exercise 4.2. We use the two systems alternately, and refer to both of them
as homogeneity systems for the tree T .

4.4 Exercise. Show that the converse of condition (3) in Exercise 4.2 fol-
lows from conditions (1) and (2) in the exercise. Condition (3) can therefore
be strengthened to an equivalence, and so can condition (3) in Definition
4.1.

Hint. Fix x. Let Mx be the direct limit of the system 〈Ms, js,t | s ≤ t < x〉,
and let js,x : Ms → Mx for s < x be the direct limit embeddings. Let
fx =

⋃
s<x js,x(fs), and notice that using condition (2), fx is an infinite

branch through j∅,x(Tx). Use the wellfoundedness of Mx to find some infi-
nite branch f through j∅,x(Tx) with f ∈Mx, and then using the elementar-
ity of j∅,x argue that x ∈ p[T ]. ⊣

A set A ⊆ Xω is Suslin if there is an ordinal γ and a tree T on X ×
γ so that p[T ] = A. A ⊆ Xω is homogeneously Suslin if in addition T
can be taken to be homogeneous, and κ-homogeneously Suslin if T can
be taken to be κ-homogeneous. These definitions are due independently to
Kechris and Martin. In the context of the axiom of choice, which we employ
throughout the chapter, every A ⊆ Xω is Suslin. But of course not every
set is homogeneously Suslin.

Let κ be a measurable cardinal. Fix a set X ∈ V ‖κ and a Π1
1 set A ⊆ Xω.

We aim to show that A is κ-homogeneously Suslin.

4.5 Exercise. Let R ⊆ ω<ω be a tree. The Brouwer–Kleene order on R
is the strict order ≺ defined by the condition: s ≺ t iff s extends t or
s(n) < t(n) where n is least so that s(n) 6= t(n). Prove that ≺ is illfounded
iff R has an infinite branch.

4.6 Exercise. Show that there is a map s 7→≺s, defined on s ∈ X<ω, so
that:

• ≺s is a linear order on lh(s).

• If s ≤ t then ≺s⊆≺t.

• x ∈ A iff ≺x is wellfounded, where ≺x=
⋃

n<ω ≺x↾n.

The last condition is the most important one. The first two conditions
are needed to make sense of ≺x.
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Hint to Exercise 4.6. Let R ⊆ (X ×ω)<ω be a tree so that p[R] is precisely
equal to the complement of A. Define the map s 7→≺s in such a way that
for each x ∈ Xω, ≺x is isomorphic to the Brouwer–Kleene order on Rx. ⊣

Let T ⊆ X × κ be the tree consisting of nodes 〈s, f〉 so that f has the
form 〈α0, . . . , αlh(s)−1〉 with αi < κ for each i, and αi < αj iff i ≺s j.

4.7 Exercise. Show that p[T ] = A.

Since κ is measurable, there is an elementary embedding j : V →M with
crit(j) = κ. Let µ be the measure over κ defined by µ(Z) = 1 iff κ ∈ j(Z).

4.8 Exercise. Prove that µ is a κ-complete, non-principal measure on κ.

4.9 Exercise. A function f : κ → κ is pressing down if f(α) < α for all
α < κ. A measure over κ is called normal if every pressing down function
on κ is constant on a set of measure one. Prove that the measure µ defined
above is normal.

4.10 Exercise. The diagonal intersection of the sets Zα (α < κ) is defined
to be the set {ξ ∈ κ | (∀α < ξ)ξ ∈ Zα}. Prove, for the measure µ defined
above, that the diagonal intersection of sets of measure one has measure
one.

For each s ∈ X<ω and each C ⊆ κ define Cs to be the set of tuples
〈α0, . . . , αlh(s)−1〉 with αi ∈ C for each i, and αi < αj iff i ≺s j. Define a

filter Fs over κlh(s) by setting Z ∈ Fs iff there exists a set C ⊆ κ so that
Z ⊇ Cs and µ(C) = 1.

4.11 Exercise. Prove that Fs is an ultrafilter over κlh(s), meaning that for
every Z ⊆ κlh(s), either Z ∈ Fs or else κs − Z ∈ Fs.

Hint. Work by induction on the length of s. The inductive step makes
several uses of Exercises 4.9 and 4.10. ⊣

Define a two-valued measure µs on κs by setting µs(Z) = 1 iff Z ∈ Fs.

4.12 Exercise. Prove that µs is κ-complete.

4.13 Exercise. Let s ≤ t ∈ X<ω. Prove that µt extends µs.

4.14 Exercise. Let x ∈ Xω, and suppose that x belongs to A, so that ≺x

is wellfounded. Prove that the tower 〈µx↾n | n < ω〉 is countably complete.

Hint. Suppose that µx↾n(Zn) = 1 for each n < ω. Fix Cn so that µ(Cn) = 1
and Cs

n ⊆ Zn. Let C =
⋂

n<ω Cn. Then Cs ⊆ Zn for each n, and µ(C) = 1
by countable completeness. Since x ∈ A, ≺x is wellfounded. The order
≺x can therefore be embedded into the ordinals, and in fact into C since
C is uncountable. Pick then a sequence 〈αi | i < ω〉 of ordinals in C so
that i ≺x j iff αi < αj . The sequence 〈αi | i < ω〉 is a fiber through
〈Zn | n < ω〉. ⊣
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4.15 Theorem. Let κ be a measurable cardinal. Let X belong to V ‖κ and
let A ⊆ Xω be Π1

1. Then A is κ-homogeneously Suslin.

Proof. Let T ⊆ (X × κ)<ω be the tree defined above and let µs be the
measures defined above. Exercises 4.12 through 4.14 establish that 〈µs |
s ∈ X<ω〉 is a κ-homogeneity system for T . ⊣

Next we prove that homogeneously Suslin sets are determined. We work
for the rest of the section with some set X and a homogeneously Suslin
set A ⊆ Xω. Let T and 〈µs | s ∈ X<ω〉 witness that A is homogeneously
Suslin.

DefineG∗ to be the game played according to Diagram 8 and the following
rules:

• xn ∈ X for each n < ω.

• 〈x0, α0, . . . , xn−1, αn−1〉 ∈ T for each n < ω.

The first rule is a requirement on player I if n is even, and on player II if n
is odd. The second rule is a requirement on player I. A player who violates
a rule loses. Infinite runs of G∗ are won by player I.

I x0 α0 α1 x2 α2 α3 . . .
II x1 x3 . . .

Diagram 8: The game G∗.

4.16 Exercise. Prove that G∗ is determined.

Hint. You are asked to prove the famous theorem of Gale–Stewart [6] that
infinite games with closed payoff are determined. Let S be the set of po-
sitions in G∗ from which player II has a winning strategy. If the initial
position belongs to S, then player II has a winning strategy in G∗. Sup-
pose that the initial position does not belong to S, and prove that there
is a strategy for player I which stays on positions outside S, and that this
strategy is winning. ⊣

4.17 Exercise. Suppose that player I has a winning strategy in G∗. Prove
that player I has a winning strategy in Gω(A).

Hint. Let σ∗ be a winning strategy for I in G∗. Call a position p =
〈x0, . . . , xn−1〉 in Gω(A) nice if it can be expanded to a position p∗ =
〈x0, α0, . . . , xn−1, αn−1〉 in G∗ so that p∗ is according to σ∗. Note that
if such an expansion exists, then it is unique. Define a strategy σ for I in
Gω(A) by setting σ(p) = σ∗(p∗). Show that every infinite run according to
σ belongs to p[T ], and is therefore won by player I in Gω(A). ⊣
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4.18 Lemma. Suppose that player II has a winning strategy in G∗. Then
player II has a winning strategy in Gω(A).

Proof. Let σ∗ be a winning strategy for II in G∗.
Let s = 〈x0, . . . , xi−1〉 be a position of odd length in Gω(A). For each

ϕ = 〈α0, . . . , αi−1〉 ∈ Ts, let hs(ϕ) be σ∗’s move following the position
〈x0, α0, . . . , xi−1, αi−1〉 in G∗. hs is then a function from Ts into X. By the
completeness of µs there is a specific move xi so that:

(∗) {ϕ | hs(ϕ) = xi} has µs-measure one.

Define σ(s) to be equal to this xi.
Suppose now that x = 〈xi | i < ω〉 is an infinite run of Gω(A), played

according to σ. We have to show that x is won by player II.
Using condition (∗) fix for each odd n < ω a set Zn ⊆ Tx↾n so that

hx↾n(ϕ) = xn for every ϕ ∈ Zn and µx↾n(Zn) = 1. For even n < ω let
Zn = Tx↾n.

Suppose for contradiction that x ∈ A. Then 〈µx↾n | n < ω〉 is count-
ably complete and so there is a fiber 〈αi | i < ω〉 for the sequence 〈Zn |
n < ω〉. In other words there is a sequence 〈αi | i < ω〉 in [Tx] so that
hx↾n(〈α0, . . . , αn−1〉) = xn for each odd n < ω. But then 〈xi, αi | i < ω〉 is
a run of G∗ and is consistent with σ∗. This is a contradiction, since σ∗ is
a winning strategy for player II, and infinite runs of G∗ are won by player
I. ⊣

4.19 Corollary. Let A ⊆ Xω be homogeneously Suslin. Then Gω(A) is
determined.

Proof. By Exercise 4.16, G∗ is determined. By Exercise 4.17 and Lemma
4.18, the player who has a winning strategy in G∗ has a winning strategy
in Gω(A). ⊣

Theorem 4.15 and Corollary 4.19 establish the determinacy of Π1
1 subsets

of ωω, assuming the existence of a measurable cardinal. In the next section
we deal with Π1

2 sets.

5. Projections and Complementations

Martin and Steel [21] use Woodin cardinals to propagate the property of be-
ing homogeneously Suslin under complementation and existential real quan-
tification, proving in this manner that all projective sets are determined. In
this section we present their results. We begin by proving that if δ is a
Woodin cardinal, and A ⊆ Xω × ωω is δ+-homogeneously Suslin, then the
set B = {x ∈ Xω | (∀y)〈x, y〉 6∈ A} is determined. We then go on to show
that B is κ-homogeneously Suslin for all κ < δ. Together with the results in
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Section 4 this shows that all Π1
n+1 sets are determined, assuming n Woodin

cardinals and a measurable cardinal above them.
Let δ be a Woodin cardinal. Let X be a set in V ‖δ, and let A ⊆ Xω×ωω.

Let B = {x ∈ Xω | (∀y)〈x, y〉 6∈ A}. Suppose that A is δ+-homogeneously
Suslin, and let S ⊆ (X × ω × γ)<ω (for some ordinal γ) and 〈µs,t | 〈s, t〉 ∈
(X × ω)<ω〉 witness this.

5.1 Remark. The objects in the homogeneity system are given for pairs
〈s, t〉 ∈ X<ω × ω<ω with lh(s) = lh(t). We sometimes write µs,t or Ss,t

also when s and t are of different length. We mean µs↾n,t↾n where n =
min{lh(s), lh(t)}, and similarly with Ss,t. We also write µx,t for x ∈ Xω to
mean µx↾n,t where n = lh(t), and similarly with Sx,t.

5.2 Exercise (Martin–Solovay [20]). Let ti (i < ω) enumerate ω<ω. The
Martin–Solovay tree for the complement of p[A], where A ⊆ Xω ×ωω is the
projection of a tree S with homogeneity system 〈µs,t | 〈s, t〉 ∈ (X × ω)<ω〉,
is the tree of attempts to create x ∈ Xω and a sequence 〈ρi | i < ω〉 so that:

(i) ρi is a partial function from Sx↾ lh(ti),ti
into |S|+, and the domain of

ρi has µx↾ lh(ti),ti
-measure one.

(ii) If ti < tj then ρi(f↾ lh(ti)) > ρj(f) for every f ∈ dom(ρj).

Prove that this tree projects to Xω − p[A].

Definitions 5.3 and 5.6 below essentially code a subset of the Martin–
Solovay tree for B by a relation on types. We will use this coding to prove
that Gω(B) is determined, and that in fact B is homogeneously Suslin.
Martin–Steel [21] proved that the Martin–Solovay tree itself is homogeneous.
We work with types, rather than the Martin–Solovay tree of functions, in
preparation for Section 6.

The constructions below use the definitions of Section 3. By type here we
always mean a type with domain less than δ and greater than rank(X). All
realizations in V are relative to the fixed Woodin cardinal δ. The variable
v0 in each type will always be realized by S. (Realizations in iterates M
of V are made relative to the appropriate image of δ, and with the first
variable realized by the image of S.)

5.3 Definition. Let 〈s, t〉 ∈ X<ω × ω<ω, with lh(s) = lh(t) = k say. Let
w be a k + 2-type. Define Zs,t to be the set of f ∈ Ss,t for which (∃η ∈
On)(∃α > max{δ, rank(S)}) so that w is realized by S, 〈0, f(0)〉, . . . , 〈k −
1, f(k − 1)〉, and α in V ‖η. Define ρs,t : Zs,t → On by setting ρs,t(f) equal
to the least η witnessing the existential statement above.

5.4 Remark. Both Zs,t and ρs,t depend on w. When we wish to emphasize
the dependence we write Zs,t(w) and ρs,t(w).
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Definition 5.3 lets us view types as defining partial functions ρs,t from Ss,t

into the ordinals. The domain of the partial function ρs,t is Zs,t. Connecting
the definition to the homogeneity system, let us say that w is 〈s, t〉-nice if
Zs,t has µs,t-measure one.

5.5 Claim. Let w be a k + 2-type and suppose that w is 〈s, t〉-nice. Then
w contains the formula “{v1, . . . , vk} is a node in the tree (v0)es,et.”

Note that both s and t belong to the domain of w, since they are elements
of X<ω, and the domain of w is greater than rank(X) (see the comment
following Remark 5.1). The reference to s̃ and t̃ in a formula which may
potentially belong to w therefore makes sense. (v0)es,et in the formula stands
for the tree of nodes g so that 〈s, t, g〉 belongs to the interpretation of v0.

Proof of Claim 5.5. Let f be any element of Zs,t(w). (Zs,t has µs,t-measure
one, and so certainly it is not empty.) Then

1. w is realized by S, 〈0, f(0)〉, . . . , 〈k − 1, f(k − 1)〉, α in V ‖η for some
α and η.

2. 〈s, t, f〉 belongs to S, meaning that f , which is formally equal to the
set {〈0, f(0)〉, . . . , 〈k − 1, f(k − 1)〉}, belongs to Ss,t.

It follows that the formula in the claim belongs to w. ⊣

5.6 Definition. Let s′ and t′ extend s and t (perhaps not strictly), with
lh(s′) = lh(t′) = k′. Let w be 〈s, t〉-nice and let w′ be 〈s′, t′〉-nice. We write
w′ ≺ w to mean that the set {f ′ ∈ Ss′,t′ | ρs′,t′(w

′)(f ′) < ρs,t(w)(f ′↾k)} has
µs′,t′ -measure one.

5.7 Claim. The relation ≺ is transitive. ⊣

5.8 Definition. Given a k + 2-type w we use dcp(w) (pronounced “decap
w”) to denote projk+1(w). If w is realized by S, 〈0, f(0)〉, . . . , 〈k− 1, f(k−
1)〉, and α, then dcp(w) is realized by S, 〈0, f(0)〉, . . . , and 〈k−1, f(k−1)〉.

5.9 Claim. Let w be 〈s, t〉-nice, and suppose that w contains the formula
“vk+1 + 2 exists” (where k = lh(s) = lh(t), and w is a k + 2-type). Let s′

and t′ extend s and t, with lh(s′) = lh(t′) = k′. Then there is a k′ + 2-type
u so that:

1. u is 〈s′, t′〉-nice.

2. u contains the formula “vk′+1 is the largest ordinal.”

3. dcp(u) is elastic.

4. u exceeds w.
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5. u ≺ w.

Proof. Fix for a moment some f ′ ∈ Ss′,t′ , and suppose that f ′↾k ∈ Zs,t(w).
Let η = ρs,t(f

′↾k), so that w is realized by S, 〈0, f ′(0)〉, . . . , 〈k − 1, f ′(k −
1)〉, and some α > max{δ, rank(S)} in V ‖η. Since w contains the formula
“vk+1 + 2 exists,” it must be that η > α+ 2.

Let τ < δ be such that the τ -type of S, 〈0, f ′(0)〉, . . . , and 〈k′−1, f ′(k′−
1)〉 in V ‖α+ 1 is elastic, and such that τ > dom(w). Such a τ exists by
Lemma 3.22. Let u be the τ -type of S, 〈0, f ′(0)〉, . . . , 〈k′−1, f ′(k′−1)〉, and
α in V ‖α+ 1. Then u contains the formula “vk′+1 is the largest ordinal,”
u exceeds w, and dcp(u) is elastic.

The type u defined above depends on the node f ′ ∈ Ss′,t′ used. To
emphasize the dependence let us from now on write u(f ′) to denote this
type. Let us similarly write α(f ′) and η(f ′) to emphasize the dependence
of α and η on f ′.

The function f ′ 7→ u(f ′) maps {f ′ ∈ Ss′,t′ | f
′↾k ∈ Zs,t} into V ‖δ. Using

the fact that Zs,t has µs,t-measure one it is easy to check that the domain of
this function has µs′,t′ -measure one. From this and the δ+-completeness of
the measures it follows that the function is fixed on a set of µs′,t′ -measure
one. Thus, there exists a particular type u, and a set Z ⊆ Ss′,t′ , so that
u(f ′) = u for each f ′ ∈ Z, and Z has µs′,t′ -measure one.

Clearly Zs′,t′(u) ⊇ Z, and it follows from this that u is 〈s′, t′〉-nice. It
is also clear that ρs′,t′(u)(f ′) ≤ α(f ′) + 1 < η(f ′) for each f ′ ∈ Z, and it
follows from this that u ≺ w. ⊣

5.10 Claim. Let u be 〈s, t〉-nice, where lh(s) = lh(t) = k. Let w be a k+ 2-

type, containing the formula “vk+1 > max{δ̃, rank(v0)}.” Suppose that w is
a subtype of dcp(u). Then w is 〈s, t〉-nice, and w ≺ u.

Proof. Fix for a moment some f ∈ Zs,t(u). Let η = ρs,t(u)(f), so that u is
realized by S, 〈0, f(0)〉, . . . , 〈k − 1, f(k − 1)〉, and some α in V ‖η.

Since w is a subtype of dcp(u), there must be some β and some ν so that
w is realized by S, 〈0, f(0)〉, . . . , 〈k − 1, f(k − 1)〉, and β in V ‖ν, and so

that ν < η. Since w contains the formula “vk+1 > max{δ̃, rank(v0)},” β is
greater than max{δ, rank(S)}.

It follows from the argument of the previous paragraph that, for each
f ∈ Zs,t(u), there exists ν and β > max{δ, rank(S)} so that w is realized
by S, 〈0, f(0)〉, . . . , 〈k − 1, f(k − 1)〉, and β in V ‖ν, and that the least ν
witnessing this is smaller than ρs,t(u)(f). In other words f ∈ Zs,t(w) and
ρs,t(w)(f) < ρs,t(u)(f), for each f ∈ Zs,t(u). Since Zs,t(u) has µs,t-measure
one this implies that w is 〈s, t〉-nice and that w ≺ u. ⊣

5.11 Claim. Let x ∈ Xω. Suppose that there are types 〈wt | t ∈ ω<ω〉 so
that:

1. Each wt is 〈x, t〉-nice.
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2. For each t < t∗ ∈ ω<ω, wt∗ ≺ wt.

Then x ∈ B.

Proof. We have to show that (∀y ∈ ωω)〈x, y〉 6∈ A. Fix y ∈ ωω. For each
n < ω let µn denote µx↾n,y↾n. Let ρn denote ρx,y↾n(wy↾n). ρn is a partial
function with domain a µn-measure one subset of Sx↾n,y↾n.

Set Z0 = S∅,∅ and for each n < ω set Zn+1 = {f ∈ Sx↾n+1,y↾n+1 |
ρn+1(f) < ρn(f↾n)}. By assumption wy↾n+1 ≺ wy↾n so Zn+1 has µn+1-
measure one.

Suppose for contradiction that 〈x, y〉 ∈ A. The tower 〈µn | n < ω〉 is
then countably complete by Definition 4.1, so the sequence 〈Zn | n < ω〉
has a fiber, f = 〈αi | i < ω〉 say. Then f↾n + 1 ∈ Zn+1 for each n < ω,
meaning that ρn+1(f↾n + 1) < ρn(f↾n), so that 〈ρn(f↾n) | n < ω〉 is an
infinite descending sequence of ordinals, contradiction. ⊣

Let 〈ν
L
, ν

H
〉 be the lexicographically least pair of local indiscernible of V

relative to max{δ, rank(S)}, minimizing first over the second coordinate.

5.12 Claim. For each κ < δ, the κ-type of S and ν
L

in V ‖ν
L

+ 1 is 〈∅, ∅〉-
nice. ⊣

For t ∈ ω<ω let pred(t) denote t↾(lh(t) − 1).

5.13 Definition. Define G∗, illustrated in Diagram 9, to be played accord-
ing to the following rules:

1. xn ∈ X.

2. tn ∈ ω<ω.

3. un is a kn + 2-type, dcp(un) is elastic, and un contains the formula
“{v1, . . . , vkn

} is a node in the tree (v0)esn,etn
,” where kn = lh(tn) and

sn = x↾kn.

4. If n > 0 then dom(un) > dom(un−1). (And dom(u0) > rank(X), see
the comment following Remark 5.1.)

5. If tn = ∅ then un is realized by S and ν
L

in V ‖ν
L

+ 1.

6. If tn 6= ∅ then ln < n is such that tln = pred(tn), and un exceeds wln .

7. wn too is a kn + 2-type, wn is a subtype of dcp(un), and wn contains

the formulae “vkn+1 > max{δ̃, rank(v0)}” and “vkn+1 + 2 exists and
is the largest ordinal.”

The first player to violate any of the rules loses. Infinite runs where all rules
have been followed are won by player I.
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I w0 x0 w1 w2 x2 . . .
II l0, t0, u0 l1, t1, u1 x1 l2, t2, u2 . . .

Diagram 9: The game G∗.

5.14 Lemma. Suppose that player I has a winning strategy in G∗. Then
player I has a winning strategy in Gω(B).

Proof. Let σ∗ be a winning strategy for player I in G∗. Let 〈t∗n | n < ω〉
enumerate ω<ω in such a way that (∀t ∈ ω<ω) pred(t) is enumerated before
t. In particular t∗0 = ∅. For n > 0 let l∗n < n be such that pred(t∗n) = t∗l∗n .
Let l∗0 = 0.

Fix an opponent willing to play for II in Gω(B). We describe how to
play against the opponent, and win. Our description takes the form of a
construction of a run of G∗. σ∗ supplies moves for I. The opponent supplies
the moves x1, x3, x5, · · · for II. It is up to us to come up with the remaining
moves, ln, tn, un for n < ω. We make sure as we play that:

1. tn = t∗n and ln = l∗n.

2. un contains the formula “vkn+1 is the largest ordinal” where kn =
lh(tn).

3. un is 〈x, tn〉-nice.

(We write 〈x, tn〉-nice, but notice that only x↾ lh(tn) is relevant to the con-
dition.)
wn, by the rules of G∗, is a kn + 2-type, is a subtype of dcp(un), and

contains the formula “vkn+1 > max{δ̃, rank(v0)}.” It follows by Claim 5.10
that:

(i) wn is 〈x, tn〉-nice.

(ii) wn ≺ un.

Let us now describe how to play ln, tn, and un. We begin with the case
n = 0. Set t0 = ∅ and l0 = 0. Using Lemma 3.22 let κ0 < δ be such that
the κ0-type of S in V ‖ν

L
+ 1 is elastic. Set u0 to be the κ0-type of S and

ν
L

in V ‖ν
L

+ 1. These assignments determine the moves l0, t0, and u0. It
is easy to check that they satisfy the relevant rules of G∗, and conditions
(1)–(3) above for n = 0.

Suppose next that rounds 0 through n − 1 have been played, subject to
the relevant rules and to conditions (1)–(3) above. Set tn = t∗n and ln = l∗n.
Note that by condition (i), wln is 〈x, tln〉-nice. Let kn = lh(tn). Using Claim
5.9, set un to be a kn + 2-type so that: un is 〈x, tn〉-nice; un contains the
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formula “vkn+1 is the largest ordinal”; dcp(un) is elastic; un exceeds wln ;
and un ≺ wln . These assignments determine the moves ln, tn, and un. It is
again easy to check that they satisfy the relevant rules of G∗, and conditions
(1)–(3) above. For the record let us note that we have also the following
condition:

(iii) un ≺ wln .

The assignments made above, together with moves supplied by σ∗ and
by the opponent, determine an infinite run 〈ln, tn, wn, un, xn | n < ω〉 of
G∗. It remains to check that the real x = 〈xn | n < ω〉 constructed as part
of this run is won by player I in Gω(B).

By conditions (ii) and (iii), wn ≺ wln for each n > 0. It follows from this
that wn ≺ wm whenever tn > tm. By Claim 5.11, x ∈ B. So x is won by
player I in Gω(B), as required. ⊣

5.15 Lemma. Suppose that player II has a winning strategy in G∗. Then
player II has a winning strategy in Gω(B).

Proof. Let σ∗ be a winning strategy for player II in G∗. Fix an opponent
willing to play for I in Gω(B). We describe how to play against the op-
ponent, and win. Again our description takes the form of a construction.
But this time we do not construct a run of G∗. Rather we construct an
iteration tree T with an even branch consisting of {0, 2, 4, . . .}, and a run
of jeven(G∗), played according to jeven(σ∗).

Precisely, we construct:

(A) ln, tn, un, wn, and xn for n < ω.

(B) An iteration tree T giving rise to modelsMk for k < ω and embeddings
jl,k for l T k < ω.

(C) Nodes gn ∈ j0,2n+1(S)x,tn
for n < ω.

x in the last condition is the sequence 〈xn | n < ω〉, although of course only
x↾ lh(tn) is relevant to the condition.

We construct so that:

• 0 T 2 T 4 · · · .

• If tn 6= ∅ then the T -predecessor of 2n+ 1 is 2ln + 1.

• If tn = ∅ then the T -predecessor of 2n+ 1 is 2n.

Note that these conditions determine the tree order T completely.
Let p0 = ∅ and recursively define

pn+1 = j2n,2n+2(pn)⌢〈ln, tn, j2n,2n+2(un), wn, xn〉.

We construct so that pn is a position in j0,2n(G∗), played according to
j0,2n(σ∗). This amounts to maintaining the following conditions:
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1. ln, tn, and un are the moves played by j0,2n(σ∗) following the position
pn.

2. wn is a legal move for player I following the position j2n,2n+2(pn)⌢

〈ln, tn, j2n,2n+2(un)〉.

3. If n is odd then xn is the move played by j0,2n+2(σ∗) following the
position j2n,2n+2(pn)⌢〈ln, tn, j2n,2n+2(un), wn〉.

Notice that conditions (1) and (3) determine ln, tn, and un for each n, and
xn for odd n.

Let kn denote lh(tn). Condition (C) above already places some restriction
on the nature of gn. It must be a sequence of length kn, and 〈x↾kn, tn, gn〉
must belong to j0,2n+1(S). We maintain the following additional condition
during the construction:

4. wn is realized by j0,2n+1(S), 〈0, gn(0)〉, . . . , 〈kn − 1, gn(kn − 1)〉 and
j0,2n+1(ν

L
) in M2n+1‖j0,2n+1(ν

L
) + 3.

Notice that from this it automatically follows that wn is a kn + 2-type and
that it contains the formulae “vkn+1 > max{δ̃, rank(v0)}” and “vkn+1 + 2
exists and is the largest ordinal,” as demanded by rule (7) of G∗.

Finally, we maintain the conditions:

5. wn is elastic.

6. M2n+1 agrees with all later models of T , that is all models Mi for
i > 2n+ 1, past dom(wn). wn belongs to Mi for each i > 2n+ 1.

7. All the extenders used in T have critical points above rank(X). For
each m > n, the critical point of j2n+2,2m+2 is greater than the domain
of wn. In particular j2n+2,2m+2(wn) = wn for each m ≥ n.

5.16 Remark. It follows from the last condition that pn has the form
〈li, ti, j2i,2n(ui), wi, xi | i < n〉.

Let us now describe the construction in round n, assuming inductively
that we have already constructed the objects corresponding to rounds 0
through n− 1, and that we maintained conditions (1)–(7) for these rounds.

Set ln, tn, and un to be the moves played by j0,2n(σ∗) following the
position pn, in line with condition (1). The construction continues subject
to one of the following cases:

Case 1, tn = ∅. The rules of G∗ are such that un is realized by j0,2n(S) and
j0,2n(ν

L
) in M2n‖j0,2n(ν

L
) + 1. From the local indiscernibility of ν

L
and ν

H

it follows that un is realized by j0,2n(S) and j0,2n(ν
H

) in M2n‖j0,2n(ν
H

) + 1.
Working in M2n using Lemma 3.22, let τ < j0,2n(δ) be such that τ >
dom(un) and such that the τ -type of j0,2n(S) and j0,2n(ν

L
) in j0,2n(ν

L
) + 3
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is elastic. Let wn be this type. It is easy to check that wn exceeds dcp(un)
in M2n.

Set E2n =“pad” so that M2n+1 = M2n and j2n,2n+1 is the identity. Using
the one-step lemma, Lemma 3.23, in M2n+1, find an extender E2n+1 ∈

M2n+1 so that wn is a subtype of Stretch
E2n+1

τ+ω (dcp(un)). Set M2n+2 =
Ult(M2n, E2n+1), and set j2n,2n+2 to be the ultrapower embedding. Note
that these settings are such that wn is a subtype of j2n,2n+2(dcp(un)). It is
easy now to check that wn satisfies the conditions of rule (7) of G∗, shifted
to M2n+2, following the position j2n,2n+2(pn

⌢〈ln, tn, un〉).
Finally, set xn to be the move played by j0,2n+2(σ∗) following the position

j2n,2n+2(pn)⌢〈ln, tn, j2n,2n+2(un), wn〉 if n is odd, and the move played by
the opponent in Gω(B) following 〈x0, . . . , xn−1〉 if n is even. This completes
the round. ⊣ (Case 1)

Case 2, tn 6= ∅. The rules of j0,2n(G∗) following the position pn are such
that un exceeds wln in M2n. (We are making an implicit use of Remark
5.16 here.) Let κ denote the domain of un. Using the one-step lemma inM2n

find an extender E2n with critical point dom(wln), so that un is a subtype
of StretchE2n

κ+ω(wln). Set M2n+1 = Ult(M2ln+1, E2n), and set j2ln+1,2n+1 to
be the ultrapower embedding, so that un is a subtype of j2ln+1,2n+1(wln).

5.17 Exercise. Complete the precise details of this construction, verifying
that there is enough agreement between the various models to make sense
of the ultrapower taken.

Let k denote lh(tn). Note that tln = pred(tn), so lh(tln) = k − 1. Let k̄
denote k − 1. Let ḡ denote gln , and let ḡ′ = j2ln+1,2n+1(ḡ).

Now wln is realized by j0,2ln+1(S), 〈0, ḡ(0)〉, . . . , 〈k̄ − 1, ḡ(k̄ − 1)〉 and
j0,2ln+1(ν

L
) in M2ln+1‖j0,2ln+1(ν

L
) + 3. Using the elementarity of the em-

bedding j2ln+1,2n+1 it follows that j2ln+1,2n+1(wln) is realized by j0,2n+1(S),
〈0, ḡ′(0)〉, . . . , 〈k̄ − 1, ḡ′(k̄ − 1)〉 and j0,2n+1(ν

L
) in M2n+1‖j0,2n+1(ν

L
) + 3.

Since un is a subtype of j2ln+1,2n+1(wln) it must be realized, by the same
objects and one more object, at a lower rank. Combining this with the
fact that un is a k + 2-type which contains the formula in rule (3) of the
definition of G∗ (Definition 5.13), we see that there must exist some set z
so that un is realized by j0,2n+1(S), 〈0, ḡ′(0)〉, . . . , 〈k̄ − 1, ḡ′(k̄ − 1)〉, 〈k̄, z〉
and j0,2n+1(ν

L
) in M2n+1‖j0,2n+1(ν

L
) + 1, and that moreover the function

g = ḡ′ ∪ {〈k̄, z〉} is a node in j0,2n+1(S)x,tn
. Set gn equal to this function

g, securing the demands of condition (C) above. For the record let us note
that:

(i) gn extends j2ln+1,2n+1(gln).

We now continue very much as we did in case 1. Using the local indis-
cernibility of ν

L
and ν

H
, we see that un is realized by j0,2n+1(S), 〈0, gn(0)〉,

. . . , 〈k − 1, gn(k − 1)〉, and j0,2n+1(ν
H

) in M2n+1‖j0,2n+1(ν
H

) + 1. Working
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in M2n+1 using Lemma 3.22, let τ < j0,2n+1(δ) be such that τ > dom(un)
and such that the τ -type of j0,2n+1(S), 〈0, gn(0)〉, . . . , 〈k − 1, gn(k − 1)〉,
j0,2n+1(ν

L
) in M2n+1‖j0,2n+1(ν

L
) + 3 is elastic. Let wn be this type. wn

then exceeds dcp(un) in M2n+1.
Using the one-step lemma in M2n+1, find an extender E2n+1 ∈ M2n+1,

with critical point equal to the domain of un, so that wn is a subtype of

Stretch
E2n+1

τ+ω (dcp(un)). Set M2n+2 = Ult(M2n, E2n+1), and set j2n,2n+2 to
be the ultrapower embedding. Note that these settings are such that wn

is a subtype of j2n,2n+2(dcp(un)), and this secures the main requirement
on wn posed by rule (7) of G∗, shifted to M2n+2, following the position
j2n,2n+2(pn

⌢〈ln, tn, un〉).
Finally, as in case 1, set xn to be the move played by j0,2n+2(σ∗) following

the position j2n,2n+2(pn)⌢〈ln, tn, j2n,2n+2(un), wn〉 if n is odd, and the move
played by the opponent in Gω(B) following 〈x0, . . . , xn−1〉 if n is even. This
completes the round. ⊣ (Case 2)

5.18 Exercise. Verify that the construction described above maintains con-
ditions (1)–(7).

It remains now to check that every sequence x = 〈xn | n < ω〉 ∈ Xω that
can be obtained by following the construction described above (with moves
xn for even n supplied by the opponent) is won by player II in Gω(B).

Let x, T , 〈ln, tn, un, wn | n < ω〉, and 〈gn | n < ω〉 be obtained through
the construction above. We work through a series of claims to show that
x 6∈ B.

5.19 Claim. The even branch of T has an illfounded direct limit.

Proof. Suppose for contradiction that Meven is wellfounded. Let R be the
tree of attempts to construct an infinite run of G∗, played according to σ∗.
Note that jeven(R) has an infinite branch, consisting of

⋃
n<ω j2n,even(pn).

Since Meven is wellfounded, the existence of an infinite branch through
jeven(R) reflects to Meven. Thus, Meven |=“there is an infinite run of
jeven(G∗), played according to jeven(σ∗).” Using the elementarity of jeven
it follows that V |=“there is an infinite run of G∗ played according to σ∗.”
But this contradicts the fact that σ∗ is a winning strategy for player II, the
player who loses infinite runs. ⊣

Let θ be a regular cardinal, large enough that all the objects involved in
the construction belong to V ‖θ. Let H be a countable elementary substruc-
ture of V ‖θ, with x, T , 〈ln, tn, un, wn | n < ω〉 and 〈gn | n < ω〉 in H. Let
P be the transitive collapse of H, and let π : P → H be the anti-collapse
embedding. Let U = π−1(T ) and let hn = π−1(gn). Let Pi and j̄i,i′ denote
the models and embeddings of U . Let S̄ denote π−1(S). Let x̄i = π−1(xi)
and let x̄ = 〈x̄i | i < ω〉.
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Using Theorem 2.3 find an infinite branch b through U so that there is
an embedding σ : P̄b → V ‖θ with σ ◦ j̄b = π.

5.20 Claim. b is not the even branch.

Proof. The fact that P̄b embeds into V ‖θ implies that it is wellfounded.
P̄even is not wellfounded, by Claim 5.19. ⊣

Let m0,m1, . . . be such that 2m0 + 1, 2m1 + 1, 2m2 + 2, . . . lists, in in-
creasing order, all the odd models in b. The tree structure of T , and hence
of U , is such that:

• tm0
= ∅.

• pred(tmi+1
) = tmi

.

From the last condition and from condition (i) of the construction it follows
that:

• hmi+1
extends j̄2mi+1,2mi+1+1(hmi

).

Letting h∗i = j̄2mi+1,b(hmi
) it follows that:

• h∗i+1 extends h∗i for each i.

Let y =
⋃

i<ω tmi
and let h∗ =

⋃
i<ω h

∗
i . Condition (C) of the construction

implies that 〈x̄↾i, y↾i, h∗↾i〉 is a node in j̄b(S̄). Applying the embedding
σ : Pb → V ‖θ to this statement, and using the fact that σ ◦ j̄b = π, it follows
that 〈x↾i, y↾i, σ(h∗↾i)〉 is a node in π(S̄) = S. This is true for each i, and
hence:

5.21 Claim. 〈x, y〉 ∈ p[S].

Proof. Let h∗∗ =
⋃

i<ω σ(h∗↾i). The argument of the previous paragraph
shows that 〈x, y, h∗∗〉 is an infinite branch through S. ⊣

Recall that A = p[S] and that B = {x ∈ Xω | (∀y)〈x, y〉 6∈ A}. From
the last claim it follows that x 6∈ B, and therefore x is won by player II in
Gω(B), as required. ⊣

5.22 Definition. Let M be a model of ZFC−. Let X belong to M and
let S ∈ M be a tree on X × U for some set U ∈ M . Define gp(S), the
generalized projection of S, by setting x ∈ gp(S) iff there exists a length
ω iteration tree T on M , using only extenders with critical points above
rank(X), so that for every wellfounded cofinal branch b of T , x ∈ p[jTb (S)].
An iteration tree T witnessing that x ∈ gp(S) is said to put x in a shifted
projection of S. Notice that the tree must be such that x ∈ p[jTb (S)] for all
wellfounded cofinal branches of T .
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5.23 Exercise. Let M be a model of ZFC and let δ be a Woodin cardinal
of M . Let X belong to M‖δ and let S ∈ M be a tree on X × ω × γ for
some ordinal γ. Let G∗ be the game of Definition 5.13 but relativized to M .
Suppose M |=“player II has a winning strategy in G∗.” Prove that there
is a strategy σ for player II in the game on X so that, in V , every infinite
play according to σ belongs to gp(S).

Hint. Let σ∗ ∈ M be a winning strategy for player II in G∗. Imitate the
construction in the proof of Lemma 5.15 to define a strategy σ for II in the
game on X. Show that if x ∈ Xω and T are produced by the construction
in the proof of Lemma 5.15, then T witnesses that x belongs to a shifted
projection of S: Claim 5.19 shows that the even branch of T is illfounded,
and the argument following Claim 5.20 can be modified to produce, for
each cofinal branch b other than the even branch, some y and f so that
〈x, y, f〉 ∈ [jb(S)]. ⊣

Lemmas 5.14 and 5.15 combine to show that Gω(B) is determined: G∗

is determined since it is a closed game, and by Lemmas 5.14 and 5.15 the
player who has a winning strategy in G∗ has a winning strategy in Gω(B).
We thus obtained the following theorem:

5.24 Theorem. Let δ be a Woodin cardinal. Let X belong to V ‖δ and let
A ⊆ (X × ω)ω. Let B = {x ∈ Xω | (∀y)〈x, y〉 6∈ A}. Suppose that A is δ+

homogeneously Suslin. Then B is determined.

In the next section we weaken the assumption, from homogeneously
Suslin to universally Baire. But first we continue toward a proof that B
is homogeneously Suslin.

Let Γ be the map that assigns to each position q∗ = 〈li, ti, ui, wi, xi | i <
n〉 in the game G∗ the move 〈ln, tn, un〉 described in the proof of Lemma
5.14. By this we mean the move that the construction there would pro-
duce for round n, assuming that the moves of the previous rounds were
〈li, ti, ui, wi, xi | i < n〉. (The construction appears between conditions (ii)
and (iii) in the proof of Lemma 5.14. Notice that this part does not depend
on the strategy σ∗.) If the moves in 〈li, ti, ui, wi, xi | i < n〉 do not sat-
isfy the inductive conditions in the proof of Lemma 5.14, then leave Γ(q∗)
undefined.

Given a sequence q = 〈xi, wi | i < n〉 define q∗ to be the sequence
〈li, ti, ui, wi, xi | i < n〉 where for each m < n, 〈lm, tm, um〉 is equal to
Γ(q∗↾m). If for some m < n, q∗↾m is not a legal position in G∗ or Γ(q∗↾m)
is undefined, then leave q∗ undefined.

Let R ⊆ (X × V ‖δ)<ω be the tree of sequences q = 〈xi, wi | i < n〉 so
that q∗ is defined.

5.25 Exercise. Suppose that x ∈ p[R]. Prove that x ∈ B.
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Hint. Let 〈wi | i < ω〉 be such that 〈xi, wi | i < n〉 ∈ R for each n < ω.
Let qn denote 〈xi, wi | i < n〉. Note that for each n < ω, q∗n is defined.
Let q∗ =

⋃
n<ω q

∗
n. Check that q∗ is an infinite run of G∗, satisfying all the

conditions in the proof of Lemma 5.14. Use the final argument in that proof
to conclude that x ∈ B. ⊣

Given z ∈ Xω let 〈lzn, t
z
n, u

z
n, w

z
n, x

z
n | n < ω〉, T z, and 〈gz

n | n < ω〉 be
the objects obtained by constructing subject to the conditions in the proof
of Lemma 5.15, with condition (1) replaced by the condition “〈ln, tn, un〉 =
j0,2n(Γ)(pn),” and condition (3) replaced by the condition “xn = zn for all
n.” These two replacements remove the use of the opponent and of σ∗ in
the construction. The use of σ∗ is replaced by a use of Γ and of the odd
half of z. The use of the opponent is replaced by a use of the even half of z.

Notice that the dependence of the construction on z is continuous, in the
sense that knowledge of z↾n suffices to determine the construction in rounds
0 through n−1. These rounds construct, among other things, T z↾2n+1, and
〈w0, . . . , wn−1〉. We have therefore maps s 7→ T s, s 7→ 〈lsi , t

s
i , u

s
i , w

s
i , x

s
i | i <

lh(s)〉, and s 7→ 〈gs
i | i < lh(s)〉, defined on s ∈ X<ω, with the properties:

• T s is an iteration tree of length 2 lh(s) + 1, leading to a final model
indexed 2 lh(s).

• T z =
⋃

n<ω T z↾n.

• lzi = lsi whenever z extends s and i < lh(s), and similarly with tzi , uz
i ,

wz
i , xz

i , and gz
i .

Let Ms
i , for i ≤ 2 lh(s), be the models of the tree T s. Let js

i,i′ be the
embeddings of the tree.

5.26 Exercise. Show that 〈xs
i , w

s
i | i < lh(s)〉 belongs to js

0,2 lh(s)(R).

Hint. Let q = 〈xs
i , w

s
i | i < lh(s)〉. Let p = 〈lsi , t

s
i , j

s
2i,2 lh(s)(u

s
i ), ws

i , x
s
i | i <

lh(s)〉. Use the fact that 〈lsi , t
s
i , u

s
i 〉 = j0,2i(Γ)(p↾i) to show that q∗ (in the

sense of Ms
2 lh(s)) is equal to p. ⊣

Define Ms to be the last model of the tree T s, namely the model Ms
2 lh(s).

Define js,s∗ : Ms → Ms∗ to be the embedding js∗

2 lh(s),2 lh(s∗). Define ϕs to

be the sequence 〈ws
i | i < lh(s)〉.

5.27 Exercise. Prove that R is homogeneous by showing that the system
〈Ms, ϕs, js,s∗ | s < s∗ ∈ X<ω〉 satisfies the conditions in Exercise 4.2.
Conclude that B is homogeneously Suslin.

Hint. Condition (2) of Exercise 4.2 follows from the previous exercise. For
condition (3): The direct limit of 〈Ms, js,s∗ | s < s∗ < x〉 is simply the
direct limit along the even branch of T x. You can use its illfoundedness
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as a replacement for Claim 5.19, and proceed from there as in the proof of
Lemma 5.15, to show that x 6∈ B, and hence by Exercise 5.25, x 6∈ p[R]. To
conclude that B is homogeneously Suslin you now only need the converse
to Exercise 5.25. To prove it use the fact that illfoundedness of the direct
limit of 〈Ms, js,s∗ | s < s∗ < x〉 implies not only x 6∈ p[R], but x 6∈ B. ⊣

5.28 Exercise. Prove that the Martin–Solovay tree for B (see Exercise 5.2)
is homogeneous.

Hint. Embed R into the Martin–Solovay tree for B, and use the embedding
to transfer the homogeneity measures on R to the Martin–Solovay tree. ⊣

The exercises above establish that B is homogeneously Suslin. With a
small additional adjustment we obtain the following:

5.29 Exercise. Let δ be a Woodin cardinal. Let X belong to V ‖δ and let
A ⊆ (X × ω)ω. Let B = {x ∈ Xω | (∀y)〈x, y〉 6∈ A}. Suppose that A is δ+

homogeneously Suslin. Then B is κ-homogeneously Suslin for each κ < δ.

Hint. Fix κ < δ. Revise the construction in the proof of Lemma 5.14 to
make sure that dom(u0) > κ. Show that if Γ is defined using this revised
construction, then the embeddings js,s∗ obtained above all have critical
points above κ. ⊣

5.30 Corollary. Suppose that there are n Woodin cardinals and a measur-
able cardinal above them. Let A ⊆ ωω be Π1

n+1. Then A is homogeneously
Suslin.

Proof. Let δ1 < · · · < δn be the Woodin cardinals, and let κ > δn be the
measurable cardinal. Let δ0 = ℵ0.

Let Ak ⊆ (ωω)k be such that An+1 is Π1
1, Ak = {〈x, y1, . . . , yk−1〉 |

(∀yk)〈x, y1, . . . , yk〉 6∈ Ak+1} for each k ≤ n, and A1 = A.
By Theorem 4.15, An+1 is (δn)+-homogeneously Suslin. Successive ap-

plications of Exercise 5.29, starting from k = n and working down to k = 1,
show that Ak is (δk−1)+-homogeneously Suslin. Finally then A = A1 is
homogeneously Suslin. ⊣

5.31 Corollary. Suppose that there are n Woodin cardinals and a measur-
able cardinal above them. Let A ⊆ ωω be Π1

n+1. Then Gω(A) is determined.

6. Universally Baire Sets

Let δ be a Woodin cardinal. Let X belong to V ‖δ. Let S be a tree on
X × ω × γ for some ordinal γ, let A = p[S] ⊆ Xω × ωω, and let B =
{x ∈ Xω | (∀y)〈x, y〉 6∈ A}. In the previous section we showed that if S
is δ+-homogeneous then Gω(B) is determined. Here we work without the
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assumption of homogeneity, and try to salvage as much determinacy as we
can. We cannot hope for actual determinacy since every set is Suslin under
the axiom of choice, but not every set is determined. The approximation for
determinacy that we salvage is the following lemma. Recalling a standard
notation, Col(ω, δ) is the poset that adjoins a map from ω onto δ using
restrictions of the map to finite sets as conditions.

6.1 Lemma. Let g be Col(ω, δ)-generic over V . In V [g] define B∗ to be
the set {x ∈ Xω | (∀y)〈x, y〉 6∈ p[S]}, where Xω, the quantifier (∀y), and the
projection p[S] are all computed in V [g]. Then at least one of the following
cases hold:

1. In V , player II has a winning strategy in the game Gω(B).

2. In V [g], player I has a winning strategy in Gω(B∗).

With a sufficiently absolute set B the lemma can be used to obtain actual
determinacy, as we shall see later on.

Proof of Lemma 6.1. Let G∗ be the game defined in the previous section,
specifically in Definition 5.13. Notice that the game is defined with no
reference to the homogeneity system of the previous section, and so we may
use it in the current context. Notice further that Lemma 5.15 is proved
without use of the homogeneity system. It too applies in the current context,
showing that if player II has a winning strategy in G∗ then player II has
a winning strategy in Gω(B). To complete the proof of Lemma 6.1 it thus
suffices to show that if player I has a winning strategy in G∗, then condition
(2) of Lemma 6.1 holds true.

Let σ∗ be a winning strategy for player I in G∗. Let ρ : δ → V ‖δ be a
bijection. To be precise we emphasize that both σ∗ and ρ are taken in V .
Working now in V [g], notice that ρ ◦ g is a bijection of ω and V ‖δ.

In Lemma 5.14 we used the homogeneity measures for S to ascribe aux-
iliary moves for player II in G∗ while playing against σ∗. We cannot do the
same here since T is not assumed to be homogeneous. Instead, we plan to
ascribe to player II the ρ ◦ g-first legal move in each round.

6.2 Claim. Let p∗ = 〈li, ti, ui, wi, xi | i < n〉 be a legal position in G∗. Then
there is a move 〈ln, tn, un〉 which is legal for player II in G∗ following p∗.

Proof. Let ζ < δ be large enough that all the moves made in p belong to
V ‖ζ. Using Lemma 3.22 let κ < δ be such that the κ-type of S in V ‖ν

L
+ 1

is elastic, and such that κ > ζ. Set u to be the κ-type of S and ν
L

in
V ‖ν

L
+ 1. (ν

L
here is taken from the lexicographically least pair of local

indiscernibles relative to max{δ, rank(S)}.) It is easy to check that the triple
〈0, ∅, u〉 is legal for II in G∗ following p∗. It falls under the case of rule (5)
in Definition 5.13. ⊣
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Call a number e < ω valid at a position p∗ = 〈li, ti, ui, wi, xi | i < n〉 in
G∗ just in case that (ρ ◦ g)(e) is a legal move for player II in G∗ following
p∗. By this we mean that (ρ ◦ g)(e) is equal to a tuple 〈ln, tn, un〉 ∈ V ‖δ
that satisfies the relevant rules in Definition 5.13. By the last claim there
is always a number which is valid at p∗.

6.3 Definition. A position 〈x0, . . . , xn−1〉 in Gω(B∗) is nice if it can be
expanded to a position p∗ = 〈li, ti, ui, wi, xi | i < n〉⌢〈ln, tn, un, wn〉 in G∗

so that:

1. p∗ is according to σ∗.

2. For each m ≤ n, 〈lm, tm, um〉 is equal to (ρ◦g)(e) for the least number
e which is valid at p∗↾m.

Notice that if p is nice then the expansion p∗ is unique: condition (1)
uniquely determines wm for each m ≤ n, and condition (2) uniquely deter-
mines lm, tm, and um for each m ≤ n. Define a strategy σ for player I in
Gω(B∗) by setting σ(p) = σ(p∗) in the case that p is a nice position of even
length. (It is easy to check that all finite plays by σ lead to nice positions.
So there is no need to define σ on positions which are not nice.)

The generic g comes in to the definition of σ through condition (2) in
Definition 6.3. σ is thus not an element of V , but of V [g]. We now aim to
show that, in V [g], σ is winning for I in Gω(B∗).

Let x ∈ V [g] be an infinite run, played according to σ. Suppose for
contradiction that x 6∈ B, and let y ∈ V [g] and f ∈ V [g] be such that
〈x, y, f〉 is an infinite branch through S.

For each n < ω let p∗n be the unique expansion of x↾n that satisfies the
conditions of Definition 6.3. Let p∗ =

⋃
n<ω p

∗
n. Let li, ti, ui, and wi be

such that p∗ = 〈li, ti, ui, wi, xi | i < ω〉. Let en be the least number valid at
p∗↾n, so that 〈li, ti, ui〉 = (ρ ◦ g)(ei).

We work recursively to construct sequences n0 < n1 < . . . and α0, α1, . . .
so that for each i:

1. tni
= y↾i.

2. uni
is realized by S, 〈0, f(0)〉, . . . , 〈i−1, f(i−1)〉, and αi in V ‖αi + 1.

Set to begin with n0 = 0 and α0 = ν
L
. The rules of G∗ are such that

t0 = ∅ and u0 is the type of S and ν
L

in V ‖ν
L

+ 1. Conditions (1) and (2)
for i = 0 therefore hold with these settings.

Suppose now that ni and αi have been defined and that conditions (1)
and (2) hold for i. The rules of G∗ are such that wni

is a subtype of dcp(uni
),

and must therefore be realized at a lower level. In fact, using the realization
of uni

given by condition (2) above, the specific requirements in rule (7) in
Definition 5.13 are such that there must exist some ordinal β < αi so that
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wni
is realized by S, 〈0, f(0)〉, . . . , 〈i− 1, f(i− 1)〉, and β in V ‖β + 3, and

so that β > max{δ, rank(S)}.
Let αi+1 be this ordinal β. For the record we note that:

(i) αi+1 < αi.

(ii) wni
is realized by S, 〈0, f(0)〉, . . . , 〈i − 1, f(i − 1)〉, and αi+1 in

V ‖αi+1 + 3.

It remains to define ni+1 in such a way that conditions (1) and (2) hold for
i+ 1.

6.4 Claim. Let E = max{e0, . . . , eni
}. There exists e < ω and κ < δ so

that:

(a) (ρ ◦ g)(e) has the form 〈l, t, u〉 with l = ni, t = y↾i+ 1, and u equal to
the κ-type of S, 〈0, f(0)〉, . . . , 〈i, f(i)〉, and αi+1 in V ‖αi+1 + 1.

(b) dcp(u) is elastic.

(c) e > E.

(d) κ is large enough that (ρ ◦ g)(0), . . . , (ρ ◦ g)(e− 1) all belong to V ‖κ.

Proof. Let D ⊆ Col(ω, δ) be the set of conditions q so that conditions (a)–
(d) hold for some e < dom(q) and κ < δ, with (ρ ◦ g) replaced by (ρ ◦ q)
in conditions (a) and (d). Notice that D is defined in V : it only makes
reference to f↾i+ 1 and y↾i+ 1. Using Lemma 3.22 it is easy to check that
D is dense. Thus g ∩D is non-empty and the claim follows. ⊣

Let e be given by the last claim. Let 〈l, t, u〉 = (ρ ◦ g)(e), and let κ =
dom(u).

6.5 Claim. 〈l, t, u〉 is a legal move for player II in G∗ following p∗↾n, for
every n such that:

1. n > ni.

2. dom(un−1) < κ.

Proof. This is easy to verify, using conditions (1), (ii), (a), and (b) above,
and the fact that 〈x↾i+ 1, y↾i+ 1, f↾i+ 1〉 is a node in S. ⊣

6.6 Claim. There exists n < ω so that en = e.

Proof. Let n be least so that en ≥ e. Since e > E = max{e0, . . . , eni
},

certainly n > ni. Note that en−1 < e and so from condition (d) it follows
that (ρ ◦ g)(en−1) belongs to V ‖κ. In particular then un−1 belongs to V ‖κ,
so certainly dom(un−1) < κ. Applying Claim 6.5 it follows that 〈l, t, u〉 is
legal for II in G∗ following p∗↾n, and hence e is valid at p∗↾n. Since en is
the least number which is valid at p∗↾n, it must be that en ≤ e. We have
en ≥ e by the initial choice of n. Thus en = e. ⊣
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Set ni+1 equal to the number n given by the last claim. By condition
(a) of Claim 6.4 then, lni+1

, tni+1
, and uni+1

are such that lni+1
= ni,

tni+1
= y↾i+1, and uni+1

is equal to the κ-type of S, 〈0, f(0)〉, . . . , 〈i, f(i)〉,
and αi+1 in V ‖αi+1 + 1. In particular conditions (1) and (2) hold for i+ 1.

Working by recursion we completed the construction of the sequences
〈ni | i < ω〉 and 〈αi | i < ω〉. By condition (i) above the sequence 〈αi |
i < ω〉 is descending. The construction of this infinite descending sequence
was based on the assumption that 〈x, y, f〉 is an infinite branch through S.
(This assumption was used in the proof of Claim 6.5.) The assumption must
therefore be false, and this shows that x, an arbitrary play according to σ∗

in V [g], must belong to B∗. This completes the proof of Lemma 6.1. ⊣

6.7 Corollary. Let δ be a Woodin cardinal. Let X belong to V ‖δ. Let T
be a tree on X × γ for some ordinal γ. Let g be Col(ω, δ)-generic over V .
Then at least one of the following holds:

1. V |=“player II has a winning strategy in the game Gω(¬p[T ]).”

2. V [g] |=“player I has a winning strategy in the game Gω(¬p[T ]).”

(¬p[T ] here is the complement of the projection of T . Notice that ¬p[T ]
need not be the same in V [g] and in V .)

Proof. Immediate from Lemma 6.1 by introducing a vacuous coordinate,
more precisely by using the tree S = {〈s, t, f〉 ∈ (X × ω × γ)<ω | 〈s, f〉 ∈
T}. ⊣

6.8 Exercise. It may seem that we are losing ground in passing from the
lemma to the corollary, but in fact we are not. Prove that Lemma 6.1 is a
consequence of Corollary 6.7.

Hint. Let S ⊆ (X × ω × γ)<ω be given. Let ϕ : ω × γ → γ′ be a bijection
of ω × γ onto an ordinal γ′. Define a tree T on X × γ′ in such a way that
〈x, y, f〉 ∈ [S] iff 〈x, g〉 ∈ [T ] where g(n) = ϕ(〈yn, f(n)〉). Use Corollary 6.7
with T . ⊣

6.9 Exercise. Let M be a model of ZFC. Let δ be a Woodin cardinal of M .
Let X belong to M‖δ. Let T ∈ M be a tree on X × γ for some ordinal γ.
Let g be Col(ω, δ)-generic over M . Prove that at least one of the following
holds:

1. There is a strategy σ for player II in the game on X so that, in V ,
every infinite play according to σ belongs to gp(T ).

2. There is a strategy σ ∈ M [g] for player I in the game on X so that,
in M [g], every infinite play according to σ avoids p[T ].
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Hint. Relativize the proof of Corollary 6.7 to M , but replace the use of
Lemma 5.15, which ultimately leads to the case of condition (1) in Corollary
6.7, with a use of Exercise 5.23. ⊣

6.10 Corollary. Let δ be a Woodin cardinal. Let X belong to V ‖δ. Let T
be a tree on X × γ for some ordinal γ. Let g be Col(ω, δ)-generic over V .
Then at least one of the following holds:

1. V |=“player I has a winning strategy in the game Gω(p[T ]).”

2. V [g] |=“player II has a winning strategy in the game Gω(p[T ]).”

(Notice that p[T ] need not be the same in V [g] and in V .)

Proof. Immediate from Corollary 6.7, using continuous substitution to re-
verse the roles of the players. Let us just point out that both here and in
Corollary 6.7, the player who has a winning strategy in V is the player who
wants to get into p[T ], and the player who has a winning strategy in V [g]
is the player who wants to avoid p[T ]. ⊣

We can use various forms of absoluteness to obtain actual determinacy,
either in V or in V [g], from Corollary 6.10:

6.11 Lemma. Let δ be a Woodin cardinal. Let X belong to V ‖δ. Let T
be a tree on X × γ for some ordinal γ. Let g be Col(ω, δ)-generic over V .
Suppose that there is a tree S in V so that V [g] |=“p[S] = ¬p[T ].” Then
V [g] |=“Gω(p[T ]) is determined.”

Proof. It is enough to show that if case 1 of Corollary 6.10 holds, then player
I wins Gω(p[T ]) also in V [g].

Suppose then that player I wins Gω(p[T ]) in V , and let σ witness this.
Let R be the tree of attempts to construct a pair 〈x, f〉 so that x ∈ Xω is
a play according to σ, and 〈x, f〉 ∈ [S].

The tree R belongs to V . An infinite branch in V through R would
produce an x which belongs to both p[T ] and p[S]. But then the same x,
taken in V [g], would exhibit a contradiction to the assumption of the lemma
that (p[S])V [g] and (p[T ])V [g] are complementary.

Thus R has no infinite branches in V . By absoluteness R has no infinite
branches in V [g] either. It follows that all plays according to σ in V [g]
belong to the complement of (p[S])V [g], which by assumption is (p[T ])V [g].
So σ witnesses that player I wins Gω(p[T ]) in V [g]. ⊣

6.12 Corollary (Woodin). Let δ be a Woodin cardinal and let g be a
Col(ω, δ)-generic filter over V . Then V [g] is a model of ∆1

2 (lightface) de-
terminacy.
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Let X be hereditarily countable. A set C ⊆ Xω is λ-universally Baire if
all its continuous preimages, to topological spaces with regular open bases
of cardinality ≤ λ, have the property of Baire. C is ∞-universally Baire
if it is λ-universally Baire for all cardinals λ. Feng–Magidor–Woodin [4]
provides the following convenient characterization of universally Baire sets,
and the basic results in Exercises 6.15 and 6.16:

6.13 Definition. A pair of trees T and T ∗ on X×γ and X×γ∗ respectively
is exhaustive for a poset P if the statement “p[T ]∪ p[T ∗] = Xω” is forced to
hold in all generic extensions of V by P.

6.14 Fact (Feng–Magidor–Woodin [4]). Let X be hereditarily countable,
let C ⊆ Xω, and let λ be an infinite cardinal. C is λ-universally Baire iff
there are trees T and T ∗ so that:

1. p[T ] = C and p[T ∗] = Xω − C.

2. The pair 〈T, T ∗〉 is exhaustive for all posets of size ≤ λ.

6.15 Exercise. Suppose T and T ∗ are trees so that:

1. p[T ] ∩ p[T ∗] is empty.

2. 〈T, T ∗〉 is exhaustive for Col(ω, λ).

Prove that p[T ∗] = R − p[T ], and that p[T ] is λ-universally Baire.

Hint. Use condition (2) and simple absoluteness to argue that p[T ]∪p[T ∗] =
R. This establishes that p[T ∗] = R − p[T ]. Basic forcing arguments show
that condition (2) here is equivalent to the corresponding condition in Fact
6.14. ⊣

6.16 Exercise (Feng–Magidor–Woodin [4]). A set C ⊆ Xω is weakly ho-
mogeneously Suslin (respectively, weakly λ-homogeneously Suslin) if it is the
projection to Xω of a homogeneously Suslin (respectively, λ-homogeneously
Suslin) subset of Xω × ωω. Prove that if C is weakly λ+-homogeneously
Suslin then it is λ-universally Baire.

Hint. Let A ⊆ Xω × ωω be λ+-homogeneously Suslin with p[A] = C. Let
S ⊆ (X × ω × γ)<ω be a λ+-homogeneous tree projecting to A, and let
〈µs,t | 〈s, t〉 ∈ (X × ω)<ω〉 be a λ+-homogeneity system for S.

Let T be equal to S, viewed as a tree on X×(ω×γ), so that T projects to
p[A] = C. Let T ∗ be the Martin–Solovay tree for the complement of p[A],
defined in Exercise 5.2. Prove that 〈T, T ∗〉 is exhaustive for every poset
P of size ≤ λ. You will need the following claim, which follows from the
completeness of the measures µs,t: Let ρ̇ ∈ V P be a function from Ss,t into
the ordinals. Then there is a µs,t-measure one set Z so that ρ̇↾Ž is forced
to belong to V . ⊣
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Using the characterization in Fact 6.14 we can prove, from a Woodin
cardinal δ, that δ-universally Baire sets are determined. In light of Exercise
6.16 this is a strengthening of Theorem 5.24:

6.17 Theorem. Suppose that C is δ-universally Baire, and that δ is a
Woodin cardinal. Then Gω(C) is determined.

Proof. Let T and T ∗ witness that C is δ-universally Baire. Apply Corollary
6.10 with T and Corollary 6.7 with T ∗.

If case 1 of Corollary 6.10 with T holds, then player I wins Gω(C) in V . If
case 1 of Corollary 6.7 with T ∗ holds, then player II wins Gω(C) in V . Thus
it suffices to show that it cannot be that case 2 holds in both applications.

Suppose for contradiction that case 2 holds in both applications. Then
in V [g] player II wins Gω(p[T ]) and player I wins Gω(¬p[T ∗]). Pitting
I’s winning strategy against II’s winning strategy we obtain a real x ∈ V [g]
which does not belong to (p[T ])V [g] and does belong to (¬p[T ∗])V [g]. In other
words x belongs to neither (p[T ])V [g] nor (p[T ∗])V [g]. But this contradicts
the fact that 〈T, T ∗〉 is exhaustive for Col(ω, δ). ⊣

Our plan for the future is to prove AD
L(R) by proving, from large cardi-

nals, that the least non-determined set in L(R), if it exists, is universally
Baire, and then appealing to Theorem 6.17 to conclude that in fact the set
is determined.

7. Genericity Iterations

Given a tree S on X × U1 × U2, define dp(S), the demanding projection of
S, by putting x ∈ dp(S) iff there exists f1 : ω → U1 and f2 : ω → U2 so
that 〈x, f1, f2〉 ∈ [S] and so that f1 is onto U1. It is the final clause, that
f1 must be onto U1, that makes the demanding projection more demanding
than the standard projection p[S].

Let M be a model of ZFC and let δ be a Woodin cardinal of M . Let
X belong to M‖δ and let S ∈ M be a tree on X × U1 × U2 for some
sets U1, U2 ∈ M . For convenience suppose that U1 ∩ U2 = ∅. For further
convenience suppose that U1 and U2 are the smallest (meaning ⊆-minimal)
sets so that S is a tree on X ×U1 ×U2. U1 and U2 are then definable from
S.

Define gdp(S), the generalized demanding projection of S, by setting x ∈
gdp(S) iff there exists a length ω iteration tree T on M , using only extenders
with critical points above rank(X), so that for every wellfounded cofinal
branch b of T , x ∈ dp(jTb (S)).

An iteration tree T witnessing that x ∈ gdp(S) is said to put x in a
shifted demanding projection of S. Note that the tree must be such that
x ∈ dp(jTb (S)) for every cofinal wellfounded branch of T .
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I w0 x0 w1 w2 x2 . . .
II l0, u0 l1, u1 x1 l2, u2 . . .

Diagram 10: The game G∗.

The generalized projection here is similar to the one in Definition 5.22,
only using the demanding projection instead of the standard projection.
We work next to obtain some parallel to the result in Exercise 6.9, for the
generalized demanding projection. We work with the objects M , X, δ, and
S fixed. We assume throughout that U1 and PM (δ) are countable in V , so
that in V there are surjections onto U1, and there are Col(ω, δ) filters which
are generic over M .

7.1 Definition. Working inside M , define G∗ to be played according to
Diagram 10 and the following rules:

1. xn ∈ X.

2. un is a 2kn + 2-type for some number kn, dcp(un) is elastic, and,
setting sn = x↾kn, un contains the formula “〈s̃n, a, b〉 is a node in v0
where a = {v1, v3, . . . , v2kn−1} and b = {v2, v4, . . . , v2kn

}.”

3. If n > 0 then dom(un) > dom(un−1). dom(u0) > rank(X).

4. If kn = 0 then un is realized by S and ν
L

in V ‖ν
L

+ 1.

5. If kn 6= 0 then ln < n is such that kln = kn − 1, and un exceeds wln .

6. wn is a 2kn + 3-type, wn is a subtype of dcp(un), and wn contains the

formulae “v2kn+2 > max{δ̃, rank(v0)},” “v2kn+2 + 2 exists and is the
largest ordinal,” and “v2kn+1 has the form 〈kn, z〉 with z ∈ A1, where

A1, A2 are the smallest sets so that v0 is a tree on X̃ ×A1 ×A2.”

The first player to violate any of the rules loses. Infinite runs where all rules
have been followed are won by player I.

7.2 Remark. The key difference between the definition here and that in
Section 5 is the addition of variables to the types. The use of these variables
is governed by rules (2) and (6). Rule (2) is such that the sets realizing
v1, . . . , v2k must form a node 〈a, b〉 of Sx. Rule (6) is such that v2k+1 must
be realized by a pair 〈k, z〉 with z ∈ U1.

A smaller difference is the elimination here of the moves tn of Section
5. These moves correspond to the vacuous coordinate in the derivation of
Corollary 6.7 from Lemma 6.1, and are not needed in a direct proof.
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For x ∈ Xω define G(¬Sx) to be the following game: players I and II
alternate moves as in Diagram 11 to construct sequences f1 = 〈f1(n) |
n < ω〉 ∈ (U1)ω and f2 = 〈f2(n) | n < ω〉 ∈ (U2)ω. If at any point
〈x↾n, f1↾n, f2↾n〉 6∈ S then player I wins. Otherwise player II wins.

I f1(0) f1(1) · · ·
II f2(0) f2(1) · · ·

Diagram 11: The game G(¬Sx).

Define a(¬S) by setting x ∈ a(¬S) iff I has a winning strategy in G(¬Sx).

7.3 Exercise. Suppose x 6∈ dp(S). Prove that x ∈ a(¬S).

7.4 Lemma. Let g be Col(ω, δ)-generic over M , and let B = a(¬S) in the
sense of M [g]. Suppose that M |=“player I has a winning strategy in G∗.”
Then M [g] |=“player I has a winning strategy in Gω(B).”

Proof. We adapt the construction in the proof of Lemma 6.1.
Let σ ∈ M be a winning strategy for player I in G∗. Let ρ ∈ M be

a bijection of δ onto V ‖δ. Call a number e < ω valid at a position p∗ =
〈li, ui, wi, xi | i < n〉 in G∗ just in case that (ρ ◦ g)(e) is a legal move for
player II in G∗ following p∗. Adapting the proof of Claim 6.2, it is easy to
see that player II always has a legal move in G∗, so that there is always a
number which is valid at p∗.

7.5 Definition. Call a position 〈x0, . . . , xn−1〉 in Gω(B) nice if it can be
expanded to a position p∗ = 〈li, ui, wi, xi | i < n〉⌢〈ln, un, wn〉 in G∗ so
that:

1. p∗ is according to σ∗.

2. For each m ≤ n, 〈lm, um〉 is equal to (ρ ◦ g)(e) for the least number e
which is valid at p∗↾m.

Notice that if p is nice then the expansion p∗ is unique. Define a strategy
σ for player I in Gω(B) by setting σ(p) = σ(p∗) in the case that p is a nice
position of even length. (All finite plays by σ lead to nice positions, so there
is no need to define σ on positions which are not nice.)

We now aim to show that, in M [g], σ is winning for I in Gω(B). Again
we adapt the argument in the proof of Lemma 6.1.

Let x ∈M [g] be an infinite run of Gω(B), played according to σ. Suppose
for contradiction that x 6∈ B. This implies that there is a strategy τ ∈M [g]
which is winning for II in G(¬Sx). We intend to use τ and the nature of
rule (6) in Definition 7.1 as replacements for the infinite branch through Sx

used in the proof of Lemma 6.1.
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For each n < ω let p∗n be the unique expansion of x↾n that satisfies the
conditions of Definition 7.5. Let p∗ =

⋃
n<ω p

∗
n. Let li, ui, and wi be such

that p∗ = 〈li, ui, wi, xi | i < ω〉. Let ei be the least number valid at p∗↾n,
so that 〈li, ui〉 = (ρ ◦ g)(ei).

We work recursively to construct f1 ∈ (U1)ω, f2 ∈ (U2)ω, and sequences
n0 < n1 < . . . and α0, α1, . . . so that for each i:

1. kni
= i (see Definition 7.1 for the definition of kn).

2. 〈x↾i, f1↾i, f2↾i〉 ∈ S.

3. 〈f1↾i, f2↾i〉, viewed as a position in G(¬Sx), is according to τ .

4. uni
is realized by S, 〈0, f1(0)〉, 〈0, f2(0)〉, . . . , 〈i − 1, f1(i − 1)〉,

〈i− 1, f2(i− 1)〉 and αi in V ‖αi + 1.

As in the proof of Lemma 6.1, we shall have αi+1 < αi, leading to a con-
tradiction.

Set to begin with n0 = 0, α0 = ν
L
, f1↾0 = ∅, and f2↾0 = ∅. It is easy

to check that these assignments satisfy conditions (1)–(4). In the case of
condition (4) note that condition (5) in Definition 7.1 implies that k0 = 0,
whence by condition (4) of the definition, u0 is realized by S and ν

L
in

V ‖ν
L

+ 1.
Suppose now that ni, αi, f1↾i, and f2↾i have been defined and that

conditions (1)–(4) hold for i. The rules of G∗ are such that wni
is a subtype

of uni
. Using the realization of uni

given by condition (4) and the conditions
placed on wni

by rule (6) in Definition 7.1, it follows that there is β < αi and
z ∈ U1 so that wni

is realized by S, 〈0, f1(0)〉, 〈0, f2(0)〉, . . . , 〈i−1, f1(i−1)〉,
〈i−1, f2(i−1)〉, 〈i, z〉, and β, in V ‖β + 3, and so that β > max{δ, rank(S)}.

Let αi+1 = β and let f1(i) = z. Let f2(i) be τ ’s reply to the move
f1(i) = z following the position 〈f1↾i, f2↾i〉 in G(¬Sx). Since τ is a winning
strategy for II in G(¬Sx), 〈x↾i+ 1, f1↾i+ 1, f2↾i+ 1〉 is a node in S.

7.6 Remark. The use of rule (6) in Definition 7.1 to obtain f1(i), and
the use of τ to obtain f2(i), together replace the use of the infinite branch
through S in the proof of Lemma 6.1.

We have so far determined αi+1, f1↾i + 1, and f2↾i + 1. It remains to
determine ni+1.

7.7 Claim. Let E = max{e0, . . . , eni
}. There exists e < ω and κ < δ so

that:

(a) (ρ◦g)(e) has the form 〈l, u〉 with l = ni, and u equal to the κ-type of S,
〈0, f1(0)〉, 〈0, f2(0)〉, . . . , 〈i, f1(i)〉, 〈i, f2(i)〉, and αi+1 in V ‖αi+1 + 1.

(b) dcp(u) is elastic, e > E, and κ is large enough that (ρ ◦ q)(0), . . . ,
(ρ ◦ q)(e− 1) all belong to V ‖κ.
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Proof. Similar to the proof of Claim 6.4. ⊣

Let e be given by the last claim. Let 〈l, u〉 = (ρ ◦ g)(e), and let κ =
dom(u). An argument similar to that in the proof of Claim 6.5, using the
fact that 〈x↾i + 1, f1↾i + 1, f2↾i + 1〉 is a node in S, shows that 〈l, u〉 is a
legal move for player I following p∗↾n. An argument similar to that in the
proof of Claim 6.6 produces n < ω so that en = e. Set ni+1 equal to this
n. By condition (a) then, lni+1

= ni and uni+1
is equal to the κ-type of S,

〈0, f1(0)〉, 〈0, f2(0)〉, . . . , 〈i, f1(i)〉, 〈i, f2(i)〉, and αi+1 in V ‖αi+1 + 1. It is
easy now to check that conditions (1)–(4) hold for i+ 1.

The recursive construction above is such that αi+1 < αi for each i < ω.
This contradiction, similar to the one obtained in the proof of Lemma 6.1,
completes the proof of Lemma 7.4. ⊣

7.8 Lemma. Suppose that player II has a winning strategy in G∗. Then
there is a strategy σ for player II in the game on X so that, in V , every
infinite play according to σ belongs to gdp(S).

Proof. We adapt the solution for Exercise 5.23 to the current setting.

Let σ ∈ M be a winning strategy for player II in G∗. Fix an opponent,
willing to play for I in the game on X. We describe how to play against the
opponent, making sure that each infinite play according to our description
ends up in gdp(S). As usual our description takes the form of a construction.
Precisely, we construct:

(A) ln, un, wn, and xn for n < ω.

(B) An iteration tree T on M giving rise to models Mk for k < ω and
embeddings jl,k for l T k < ω.

(C) Nodes 〈an, bn〉 ∈ j0,2n+1(S)x for n < ω.

(D) zn ∈ j0,2n+1(U1) for n < ω.

This list of objects is similar to the one in the proof of Lemma 5.15, and
our construction too will be similar to the one in that proof.

As in Lemma 5.15 we construct so that: 0 T 2 T 4 · · · ; if kn 6= 0 then the
T -predecessor of 2n+ 1 is 2ln + 1; and if kn = 0 then the T -predecessor of
2n+ 1 is 2n. kn here is such that un is a 2kn + 2-type, see Definition 7.1.

Let p0 = ∅ and recursively define

pn+1 = j2n,2n+2(pn)⌢〈ln, j2n,2n+2(un), wn, xn〉.

We construct so that pn is a position in j0,2n(G∗), played according to
j0,2n(σ∗). In addition we maintain the conditions:
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1. wn is realized by the objects j0,2n+1(S), 〈0, an(0)〉, 〈0, bn(0)〉, . . . ,
〈kn − 1, an(kn − 1)〉, 〈kn − 1, bn(kn − 1)〉, 〈kn, zn〉, and j0,2n+1(ν

L
) in

M2n+1‖j0,2n+1(ν
L
) + 3.

2. wn is elastic.

3. M2n+1 agrees with all later models of T , that is all models Mi for
i > 2n+ 1, past dom(wn). wn belongs to Mi for each i > 2n+ 1.

4. All the extenders used in T have critical points above rank(X). For
each m > n, the critical point of j2n+2,2m+2 is greater than the domain
of wn. In particular j2n+2,2m+2(wn) = wn for each m ≥ n.

Notice that from condition (1) and the fact that zn ∈ j0,2n+1(U1) it auto-
matically follows that wn is a 2kn +3-type and that it contains the formulae
required by rule (6) of G∗.

To begin round n of the construction set ln, and un to be the moves
played by j0,2n(σ∗) following the position pn. Let kn be such that un is a
2kn + 2-type. The construction in round n continues subject to one of the
following cases:

Case 1, kn = 0. The rules of G∗ are such that un is realized by j0,2n(S) and
j0,2n(ν

L
) in M2n‖j0,2n(ν

L
) + 1. From the local indiscernibility of ν

L
and ν

H

it follows that un is realized by j0,2n(S) and j0,2n(ν
H

) in M2n‖j0,2n(ν
H

) + 1.
Pick a set zn ∈ j0,2n(U1). We shall say more on how this set should be
picked, later on. Working in M2n using Lemma 3.22, let τ < j0,2n(δ) be
such that τ > dom(un) and such that the τ -type of j0,2n(S), 〈0, zn〉, and
j0,2n(ν

L
) in j0,2n(ν

L
) + 3 is elastic. Let wn be this type. It is easy to check

that wn exceeds dcp(un) in M2n.
Set E2n =“pad” so that M2n+1 = M2n and j2n,2n+1 is the identity. Using

the one-step lemma, Lemma 3.23, in M2n+1, find an extender E2n+1 ∈

M2n+1 so that wn is a subtype of Stretch
E2n+1

τ+ω (dcp(un)). Set M2n+2 =
Ult(M2n, E2n+1), and set j2n,2n+2 to be the ultrapower embedding. Note
that these settings are such that wn is a subtype of j2n,2n+2(dcp(un)). It is
easy now to check that wn satisfies the conditions of rule (6) of G∗, shifted
to M2n+2, following the position j2n,2n+2(pn

⌢〈ln, un〉).
Finally, set xn to be the move played j0,2n+2(σ∗) following the position

j2n,2n+2(pn)⌢〈ln, j2n,2n+2(un), wn〉 if n is odd, and the move played by the
opponent in the game on X following 〈x0, . . . , xn−1〉 if n is even. This
completes the round. ⊣ (Case 1)

Case 2, kn 6= 0. The rules of j0,2n(G∗) following the position pn are such
that un exceeds wln in M2n. Let κ denote the domain of un. Using the
one-step lemma in M2n find an extender E2n with critical point dom(wln),
so that un is a subtype of StretchE2n

κ+ω(wln). Set M2n+1 = Ult(M2ln+1, E2n),
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and set j2ln+1,2n+1 to be the ultrapower embedding, so that un is a subtype
of j2ln+1,2n+1(wln).

Let k = kn be such that un is a 2kn + 2-type. Let k̄ denote k − 1. The
rules of G∗ are such that wln is a 2k̄ + 3-type. Let ā, b̄, and z̄ denote aln ,
bln , and zln . Let a = j2ln+1,2n+1(ā) and similarly with b and z.

Our construction is such that wln is realized by j0,2ln+1(S), 〈0, ā(0)〉,
〈0, b̄(0)〉, . . . , 〈k̄ − 1, ā(k̄ − 1)〉, 〈k̄ − 1, b̄(k̄ − 1)〉, 〈k̄, z〉, and j0,2ln+1(ν

L
)

in M2ln+1‖j0,2ln+1(ν
L
) + 3. Using the elementarity of j2ln+1,2n+1, the fact

that un is a subtype of j2ln+1,2n+1, and the conditions placed on un by
rule (2) of Definition 7.1, it follows that there must exist some set z′ so
that un is realized by j0,2n+1(S), 〈0, a(0)〉, 〈0, b(0)〉, . . . , 〈k̄ − 1, a(k̄ − 1)〉,
〈k̄−1, b(k̄−1)〉, 〈k̄, z〉, 〈k̄, z′〉, and j0,2n+1(ν

L
) in M2n+1‖j0,2n+1(ν

L
)+1, and

that moreover 〈a⌢〈z〉, b⌢〈z′〉〉 is a node in j0,2n+1(S)x. Set an = a⌢〈z〉 and
set bn = b⌢〈z′〉. Then 〈an, bn〉 is a node in j0,2n+1(S), and un is realized by
j0,2n+1(S), 〈0, an(0)〉, 〈0, bn(0)〉, . . . , 〈k − 1, an(k − 1)〉, 〈k − 1, bn(k − 1)〉,
and j0,2n+1(ν

L
) in M2n+1‖j0,2n+1(ν

L
) + 1. For the record we note that:

(i) an extends j2ln+1,2n+1(aln), and similarly with bn.

(ii) j2ln+1,2n+1(zln) belongs to the range of an.

From here we continue as in case 1.
By the local indiscernibility of ν

L
and ν

H
, un is realized by j0,2n+1(S),

〈0, an(0)〉, 〈0, bn(0)〉, . . . , 〈k−1, an(k−1)〉, 〈k−1, bn(k−1)〉, and j0,2n+1(ν
H

)
in M2n+1‖j0,2n+1(ν

H
) + 1

Pick some set zn ∈ j0,2n+1(U1). We shall say more on how this set should
be picked, later on. Working in M2n+1 using Lemma 3.22, let τ < j0,2n+1(δ)
be such that τ > dom(un) and such that the τ -type of j0,2n+1(S), 〈0, an(0)〉,
〈0, bn(0)〉, . . . , 〈k− 1, an(k− 1)〉, 〈k− 1, bn(k− 1)〉, 〈k, zn〉, and j0,2n+1(ν

L
)

in M2n+1‖j0,2n+1(ν
L
) + 3 is elastic. Let wn be this type. It is easy to check

that wn exceeds dcp(un) in M2n+1.
Using the one-step lemma, Lemma 3.23, in M2n+1, find an extender

E2n+1 ∈ M2n+1 so that wn is a subtype of Stretch
E2n+1

τ+ω (dcp(un)). Set
M2n+2 = Ult(M2n, E2n+1), and set j2n,2n+2 to be the ultrapower embed-
ding. As in case 1, wn satisfies the conditions of rule (6) of G∗, shifted to
M2n+2, following the position j2n,2n+2(pn

⌢〈ln, un〉).
Finally, set xn to be the move played by j0,2n+2(σ∗) following the position

j2n,2n+2(pn)⌢〈ln, j2n,2n+2(un), wn〉 if n is odd, and the move played by the
opponent in the game on X following 〈x0, . . . , xn−1〉 if n is even. This
completes the round. ⊣ (Case 2)

The description above completes the construction, except that we have
yet to specify how the sets zn are picked. Note that the structure of the
iteration tree T is such that cofinal branches other than the even branch have
the form 0, 2, . . . , 2m0, 2m0 + 1, 2m1 + 1, . . . for some increasing sequence
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{mi}. The sets zn should be picked during the construction in such a way
that:

(iii) For every cofinal branch b other than the even branch, for every odd
node 2m+1 ∈ b, and for every set y ∈ j0,2m+1(U1), there exists a node
2m∗ + 1 ∈ b, with m∗ > m, so that zm∗ is equal to j2m+1,2m∗+1(y).

Securing this through some condition on the way zn is chosen is a simple
matter of book-keeping, using the fact that U1 is countable in V . Let us
just note that this book-keeping cannot in general be phrased inside M ,
since U1 is only assumed to be countable in V . Thus the strategy σ which
our construction describes need not be an element of M .

With the construction complete, it remains to check that every sequence
x = 〈xn | n < ω〉 ∈ Xω that can be obtained by following the construction,
with moves xn for even n supplied by the opponent, belongs to gdp(S).

Let x, T , 〈ln, un, wn | n < ω〉, 〈an | n < ω〉, 〈bn | n < ω〉 and 〈zn | n < ω〉
be obtained through the construction above. We work through a series of
claims to show that x belongs to gdp(S).

7.9 Claim. The even branch of T has an illfounded direct limit.

Proof. Identical to the proof of Claim 5.19. ⊣

7.10 Claim. Let b be a branch of T other than the even branch. Let {mi} be
such that b = {0, 2, . . . , 2m0, 2m0+1, . . . , 2mi+1, . . .}. Let a∗i = j2mi+1,b(ai)
and let b∗i = j2mi+1,b(bi). Let a∗ =

⋃
i<ω a

∗
i and let b∗ =

⋃
i<ω b

∗
i . Then:

1. 〈x, a∗, b∗〉 ∈ [j0,b(S)].

2. a∗ is onto j0,b(U1).

Proof. Note first that by condition (i),
⋃

i<ω a
∗
i and

⋃
i<ω b

∗
i are both in-

creasing unions giving rise to infinite sequences. By condition (C), below
Lemma 7.8, 〈x↾i, a∗i , b

∗
i 〉 is a node in j0,b(S) for each i. Thus 〈x, a∗, b∗〉 is an

infinite branch through j0,b(S).
By conditions (ii), j2mi+1,b(zmi

) belongs to the range of a∗ for each i.
From this and condition (iii) it follows that a∗ is onto j0,b(U1). ⊣

Claims 7.9 and 7.10 together combine to show that x ∈ dp(j0,b(S)) for
every wellfounded cofinal branch b of T . T therefore witnesses that x ∈
gdp(S). ⊣

7.11 Corollary. Let M be a model of ZFC. Let δ be a Woodin cardinal of
M . Let X belong to M‖δ.

Let S ∈ M be a tree. Suppose that both S and PM (δ) are countable in
V . Let g be Col(ω, δ)-generic over M .

Then at least one of the following conditions holds:
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1. There is a strategy σ for player II in the game on X so that, in V ,
every infinite run according to σ belongs to gdp(S).

2. There is a strategy σ ∈ M [g] for player I in the game on X so that,
in M [g], every infinite run according to σ belongs to a(¬S).

Proof. Immediate from Lemma 7.4, Lemma 7.8, and the fact that the game
G∗ is closed and therefore determined in M . ⊣

Sometimes we want to restrict players on X to some specific subtree of
X<ω. The the next exercise is useful in such circumstances.

7.12 Exercise. Work in the setting of Corollary 7.11, and in addition to
the objects there let R ∈ M be a tree on X with no terminal nodes. Show
that at least one of the conditions in the corollary holds, with “game on X”
replaced by “game on R” in both conditions.

Hint. Define π : X<ω → R so that lh(π(s)) = lh(s) for each s ∈ X<ω,
s < t ⇒ π(s) < π(t) for all s, t ∈ X<ω, and so that π is onto R. Let
Ŝ = {〈s, u1, u2〉 | 〈π(s), u1, u2〉 ∈ S}. Use Corollary 7.11 on Ŝ. ⊣

One can use Corollary 7.11 to directly obtain determinacy results. Here
instead we use the corollary to obtain a genericity result, and then use the
genericity result in conjunction with Theorem 6.17 to obtain determinacy.

7.13 Definition. Let P ∈M be a poset. An iteration tree T on M is said
to absorb x to an extension by an image of P just in case that for every
wellfounded cofinal branch b through T , there is a generic extension MT

b [g]
of MT

b by the poset jT0,b(P), so that x ∈MT
b [g].

7.14 Exercise. Let M be a model of ZFC. Let δ be a Woodin cardinal of
M . Let X belong to M‖δ. Suppose that PM (δ) is countable in V .

Let U1 be the set of dense sets in Col(ω, δ). Let A be the set of canonical
names in M for functions from ω into X. Let U2 be the union of A with
the set of conditions in Col(ω, δ). Working in M let S ⊆ (X × U1 × U2)<ω

be the tree of attempts to construct sequences x = 〈x0, x1, . . . 〉 ∈ Xω,
〈D0,D1, . . . 〉 ∈ (U1)ω, and 〈ẋ, p1, p2, . . . 〉 ∈ (U2)ω so that:

1. ẋ ∈ A and pn ∈ Col(ω, δ) for each n.

2. pn+1 < pn and pn+1 ∈ Dn for each n.

3. pn 
“ẋ(ň) = x̌n” for each n.

Prove that x ∈ dp(S) iff there is a g which is Col(ω, δ)-generic over M
with x ∈M [g].
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7.15 Exercise. Continuing to work with the tree of the previous exercise,
prove that x ∈ a(¬S) iff there is no g which is Col(ω, δ)-generic over M
with x ∈M [g].

7.16 Theorem. Let M be a model of ZFC. Let δ be a Woodin cardinal of
M . Let X belong to M‖δ. Suppose that PM (δ) is countable in V .

Then for every x ∈ Xω there is a length ω iteration tree T on M which
absorbs x into an extension by an image of Col(ω, δ).

Note that in particular any real number in V can be absorbed into a
generic extension of an iterate of M .

Proof of Theorem 7.16. Let g be Col(ω, δ)-generic over M , and apply Corol-
lary 7.11 to the tree S of Exercise 7.14. Notice that condition (2) of the
corollary cannot hold: the strategy σ in that condition belongs to M [g],
and certainly then there are plays x ∈ Xω which are according to σ, and
which belong to M [g]. But from Exercise 7.15 and the fact that x belongs
to M [g] it follows that x 6∈ a(¬S), while from condition (2) of the corollary
and the fact that x is according to σ it follows that x ∈ a(¬S).

Thus condition (1) of the corollary must hold, and this immediately
implies that for every sequence 〈x0, x2, . . . 〉 ∈ Xω, there is a sequence
〈x1, x3, . . . 〉 ∈ Xω and a length ω iteration tree T on M , so that the com-
bined sequence x = 〈x0, x1, . . . 〉 belongs to dp(j0,b)(S) for every cofinal
wellfounded branch b of T . By Exercise 7.14 then, x belongs to a generic
extension of MT

b by j0,b(Col(ω, δ)). So T absorbs x, and therefore certainly
〈x0, x2, . . . 〉, into an extension by an image of Col(ω, δ). ⊣

Theorem 7.16 was proved in Neeman [29, 30]. It is the second of two
genericity results. The first is due to Woodin [42]. Woodin’s theorem uses a
forcing notion which has the δ chain condition, and it does not require any
assumption on the size of δ or its power set in V . These properties often
make it more useful than Theorem 7.16, see for example Neeman–Zapletal
[34]. On the other hand Woodin’s theorem requires full iterability for trees
of lengths up to ω1, and in our setting this is a disadvantage.

7.17 Definition. Let M be a model of ZFC, let δ be a cardinal of M , let
X ∈M‖δ, and let Ȧ ∈M be a Col(ω, δ)-name for a subset of Xω.
x ∈ Xω belongs to the generalized interpretation of Ȧ if there exists a

length ω iteration tree T on M using only extenders with critical points
above rank(X), and a map h : ω → On<ω, so that for every wellfounded
cofinal branch b of T :

1. hb =
⋃

n∈b h(n) is Col(ω, jTb (δ))-generic over MT
b .

2. x belongs to jTb (Ȧ)[hb].
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7.18 Exercise. Let M be a model of ZFC. Let δ be a Woodin cardinal of
M . Let X belong to M‖δ. Suppose that PM (δ) is countable in V . Let g
be Col(ω, δ)-generic over M .

Let Ȧ ∈ M be a Col(ω, δ)-name for a subset of Xω. Prove that at least
one of the following conditions holds:

1. In V , player I has a winning strategy in Gω(A∗), where A∗ is the
generalized interpretation of Ȧ.

2. In M [g], player II has a winning strategy in Gω(Ȧ[g]).

Hint. First note that by changing the roles of the players (and modifying
the name Ȧ accordingly) the exercise can be reduced to proving that at
least one of the following conditions holds:

1. There is a strategy σ for player II so that, in V , every play according
to σ belongs to the generalized interpretation of Ȧ.

2. There is a strategy σ ∈M [g] for player I so that, in M [g], every play
according to σ belongs to the complement of Ȧ[g].

This in turn can be derived from Corollary 7.11, with a tree S similar to the
one defined in Exercise 7.14, but replacing the set A used in that exercise
with the name Ȧ. ⊣

Exercise 7.18 appeared in Neeman [29]. When applied with an iterable
model M and a name Ȧ for a set defined by an absolute condition, the
exercise leads to determinacy, and Neeman [29] uses it to prove projective

determinacy and indeed AD
L(R).

Tracing through the construction leading to the exercise, the reader can
check that in condition (1), the tree T and the function h witnessing that
x belongs to the generalized interpretation of Ȧ depend on x continuously.
This element of continuity is expressed more explicitly in Lemma 1.7 of
Neeman [29]. It is crucial for proofs of determinacy of long games, but we
shall not get into this here. The interested reader may find more in Neeman
[31].

7.19 Exercise (Windßus [41], see [13, Lemma 4.5, Theorem 5.2]). Let
π : P → V ‖θ be elementary, with P countable. Let κ̄ ∈ P . Let A be
the set of sequences 〈ui | i < ω〉 ∈ Pω so that:

(i) ui is a (nice) finite iteration tree on P . If i < j then uj extends ui, so
that U =

⋃
i<ω ui is a (nice) iteration tree of length ω. The trees use

only extenders with critical points above κ̄.

(ii) Let ni + 1 = lh(ui). Then b = {ni | i < ω} is a branch through U .
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(iii) The direct limit of the models of πU along b is wellfounded. (Recall
that πU is the copy of U via π, see Definition 2.7. It is an iteration
tree on V .)

Prove that A is π(κ̄)-homogeneously Suslin.

Proof. The proof builds on that of Lemma 2.12. Let B be the set of se-
quences 〈ui | i < ω〉 satisfying conditions (i) and (ii), but such that the
direct limit of πU along b is illfounded. For each x = 〈ui | i < ω〉 in B
fix a sequence 〈αx

i | i < ω〉 witnessing the illfoundedness, more precisely a
sequence so that:

1. for all i < ω, j
πui+1

ni,ni+1
(αx

i ) > αx
i+1.

Let θ be larger than all the ordinals αx
i .

For s = 〈u0, . . . , ui−1〉 let Bs be the set of x ∈ B which extend s. Let
T be the tree of attempts to construct sequences x = 〈ui | i < ω〉 and
〈σi | i < ω〉 so that:

2. x satisfies conditions (i) and (ii).

3. σi : B〈u0,...,ui〉 → θ.

4. For all i and all y ∈ B〈u0,...,ui+1〉, σi(y) > σi+1(y).

Prove that x ∈ B =⇒ x 6∈ p[T ], and hence p[T ] ⊆ A. You will prove that
A ⊆ p[T ] later on.

Let M∅ = V . For s = 〈u0, . . . , ui〉 let Ms be the final model Mπui
ni

of the
copied tree πui. Let ϕs be the function x 7→ αx

i , defined for x ∈ Bs, where
αx

i are the ordinals witnessing condition (1) above. The models of πui are
2ℵ0 -closed by Exercise 2.2, and hence ϕs ∈Ms.

For t = 〈u0, . . . , ui∗〉 extending s = 〈u0, . . . , ui〉 let js,t : Ms →Mt be the
embedding jπui∗

ni,ni∗
. Let j∅,t : V → Mt be the embedding jπui∗

0,i∗ . Notice that
all these embeddings have critical points above π(κ̄).

Show using condition (1) that fs = 〈js↾1,s(ϕs↾1), js↾2,s(ϕs↾2), . . . , ϕs〉 is a
node in j∅,s(Ts), and use the models Ms, embeddings js,t, and nodes fs to
assemble a homogeneity system for T along the conditions of Exercise 4.2.
Finally use the converse of condition (3) of Exercise 4.2, given by Exercise
4.4, to show that A ⊆ p[T ]. ⊣

7.20 Exercise (Woodin, see [14, Theorem 3.3.8]). Let δ be Woodin in
V and let A ⊆ ωω be δ-universally Baire. Prove that A is weakly κ-
homogeneously Suslin for each κ < δ.

Hint. Fix κ. Let 〈T, T ∗〉 witness that A is δ-universally Baire. Let θ be large
enough that δ, T , and T ∗ belong to V ‖θ. Let π : P → V ‖θ be elementary,
with P countable and κ, δ, T , and T ∗ in the range of π. Let κ̄ be such that
π(κ̄) = κ, and similarly with δ̄, T̄ , and T̄ ∗.
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Let B be the set of tuples 〈x,U , b, n, ẋ, g〉 so that: x ∈ ωω; U is a (nice)
length ω iteration tree on P using only extenders with critical points above
κ̄; b is a cofinal branch through U , leading to a wellfounded direct limit
in the copy tree πU on V ; n ∈ b; ẋ ∈ Pn is a name in Col(ω, j0,n(δ̄)),
forced by the empty condition to be a real belonging to p[j0,n(T̄ )]; g is
Col(ω, jb(δ̄))-generic over Pb; and jn,b(ẋ)[g] = x.

Show using Exercise 7.19 that B is κ-homogeneously Suslin. Then show
using Theorem 7.16 and Lemma 2.12 that x ∈ A iff (∃U)(∃b)(∃n)(∃ẋ)(∃g)
〈x,U , b, n, ẋ, g〉 ∈ B. The quantifiers all involve elements of P and Pω,
which are isomorphic to ω and ωω. Use this to present A as the projection
of a κ-homogeneously Suslin subset of ωω × ωω. ⊣

7.21 Remark. If κ is a limit of Woodin cardinals, then for any A ⊆ ωω,
Exercises 5.29, 6.16, and 7.20 together imply that A is <κ-universally Baire
iff A is <κ-homogeneously Suslin iff A is weakly <κ-homogeneously Suslin.

7.22 Exercise. Let j : M → N be elementary. Let h be Col(ω, κ)-generic
over M . Suppose that crit(j) > κ. Prove that j can be extended to an
embedding j∗ : M [h] → N [h].

Hint. Define j∗ by setting j∗(ȧ[h]) = (j(ȧ))[h]. Show that j∗ is well defined
and elementary. ⊣

7.23 Exercise. Let M be a model of ZFC. Let δ be a Woodin cardinal of
M . Let X belong to M‖δ. Suppose that PM (δ) is countable in V .

Let κ < δ. Let h be Col(ω, κ)-generic over M .

Let x ∈ Xω. Then there is a length ω iteration tree T on M so that:

1. All the extenders used in T have critical points above κ. (In particular
then the embeddings along branches of T extend to act on M [h].)

2. For every cofinal wellfounded branch b of T , there is g which is
Col(ω, jb(δ))-generic over Mb[h], and so that x belongs to Mb[h][g].

Note that in particular any real in V can be absorbed into a generic
extension of Mb[h] for an iterate Mb of M .

Hint to Exercise 7.23. Let X̂ = M‖κ + ω. Let R ⊆ X̂<ω be the tree of
attempts to construct a sequence 〈〈x0, q0〉, E0, 〈x1, q1〉, E1, . . . 〉 so that:

1. xn ∈ X for each n, and qn is a condition in Col(ω, κ).

2. En is a dense subset of Col(ω, κ) for each n.

3. qn+1 < qn and qn+1 ∈ En for each n.
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For clarity let us point out that in games on R, player I plays the objects
〈xn, qn〉, and player II plays the objects En.

Working in M let U1 be the set of Col(ω, κ)-names for dense subsets
of Col(ω, δ), let A be the set of canonical Col(ω, κ) × Col(ω, δ)-names for
functions from ω into X, and let U2 be the union of A with the set of
conditions in Col(ω, δ).

Let S ⊆ (X̂×U1×U2)<ω be the tree of attempts to construct a sequence
〈〈x0, q0〉, E0, 〈x1, q1〉, E1, . . . 〉 ∈ [R], a sequence 〈Ḋ0, Ḋ1, . . . 〉 ∈ (U1)ω, and
a sequence 〈ẋ, p1, p2, . . . 〉 ∈ (U2)ω so that:

1. ẋ ∈ A and pn ∈ Col(ω, δ) for each n.

2. For each n and each i ≤ n, pn+1 < pn and qn+1 6
Col(ω,κ)“p̌i+1 6∈ Ḋi.”

3. For each n and each i ≤ n, 〈qn, pn〉 6

Col(ω,κ)×Col(ω,δ)“ẋ(̌i) 6= x̌i.”

Apply Exercise 7.12 to X̂, R, and S as defined above. Argue first that
case (2) cannot hold. (For this you will need the following forcing claim:
Let g be Col(ω, δ)-generic over M . Let h∗ belong to M [g] and suppose that
h∗ is Col(ω, κ)-generic over M . Then there exists a g∗ which is Col(ω, δ)-
generic over M [h∗] and so that M [h∗][g∗] = M [g].) Then use case (1) of
Exercise 7.12 to reach the conclusion of the current exercise. ⊣

7.24 Remark. Let κ1 < κ2 < · · · < κi = κ. Col(ω, κ) is then isomorphic
to Col(ω, κ1)× · · · ×Col(ω, κi). Exercise 7.23 can therefore be rephrased to
replace h by a generic h1×· · ·×hi for Col(ω, κ1)×· · ·×Col(ω, κi). This sets
the stage for an iterated use of the exercise, assuming an increasing sequence
of Woodin cardinals. We shall make such a use in the next section.

8. Determinacy in L(R)

Let M be a model of ZFC and let δ0 < δ1 < · · · be ω Woodin cardinals in
M . Let δ∞ = supn<ω δn. Suppose that PM (δ∞) is countable in V .

Let P be the finite support product Col(ω, δ0) × Col(ω, δ1) × · · · .
Given a filter G = 〈gi | i < ω〉 which is P-generic over M define R∗[G] to

be
⋃

n<ω RM [G↾n]. We refer to R∗[G] as the reals in the symmetric collapse
of M induced by G. We refer to LM∩On(R∗[G]) as the derived model of M
induced by G. (This is L(R∗[G]) if M is a class model.)

8.1 Remark. Let v1, . . . , vk ∈ M [G↾n]. Let P
L

= Col(ω, δ0) × · · · ×
Col(ω, δn−1), so that G↾n is P

L
-generic over M , and let P

H
= Col(ω, δn) ×

· · · . Because of the symmetry of P
H

, any statement ϕ[v1, . . . , vk] which holds
in M(R∗[G]) must be forced to hold in M(R∗[G]) by the empty condition
in P

H
over M [G↾n].
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8.2 Exercise. Let R∗ denote the reals of the symmetric collapse of M
induced by G, and let W denote the derived model of M induced by G.
Prove that RW = R∗.

Hint. The inclusion RW ⊇ R∗ is clear. For the reverse inclusion: let b ∈
RW . b is definable in W from some parameters in R∗ ∪ (On ∩M). Thus
there is some n < ω so that the parameters defining b belong to M [G↾n].
Use this and the symmetry given by Remark 8.1 to argue that b belongs to
M [G↾n], and therefore b ∈ R∗. ⊣

Exercise 8.2 makes no use of the assumption that δ∞ is a limit of Woodin
cardinals in M . But without this assumption the derived model need not
even satisfy the axiom of dependent choice for reals, and in such circum-
stances the conclusion of the exercise is less meaningful than it appears.

8.3 Definition. By a Σ1(R) statement over L(R), Σ1(R) for short, we mean
a statement of the form (∃Q ⊇ R)Q |= ψ[x1, . . . , xn], where x1, . . . , xn ∈ R.

We say that Lα(R) is an initial segment of Lβ(R) if: (1) α ≤ β; and (2)
RLα(R) = RLβ(R) = R.

8.4 Claim. Suppose that Lα(R) is an initial segment of Lβ(R). Then any
Σ1(R) statement true in Lα(R) is also true in Lβ(R). ⊣

The failure of AD
L(R) is Σ1(R), and so is the failure of dependent choice

for reals in L(R).

8.5 Lemma. Let ϕ[x1, . . . , xk] be Σ1(R) over L(R). Suppose that x1, . . . , xk

belong to the symmetric collapse of M induced by G. Suppose that M is
countable and embeds into a rank initial segment of V . Then if ϕ[x1, . . . , xk]
holds in the derived model of M induced by G, it must hold also in (the true)
L(R).

Proof. Let Σ be the weak iteration strategy for M given by Corollary 2.4.
Let θ be a cardinal large enough that M , Σ, G, and R all belong to V ‖θ,
and so that V ‖θ satisfies enough of ZFC for the argument below. Let X be
a countable elementary substructure of V ‖θ containing these objects. Let
P be the transitive collapse of X and let τ : P → V ‖θ be the anti-collapse
embedding. Notice that M , being countable, is not moved by the collapse.
So τ(M) = M . Notice further that τ−1(Σ) is simply equal to Σ ∩ P . This
is because the iteration trees which come up in weak iteration games on M
are countable, and not moved by τ .

Let 〈ai | n ≤ i < ω〉 be an enumeration of the reals of P , which is
Col(ω,RP )-generic over P . Let M0 = M1 = · · · = Mn = M and let ji,i′
for i ≤ i′ ≤ n be the identity. For i < n let hi = gi. Below let hi

denote h0 × h1 × · · · × hi−1. Using repeated applications of Exercise 7.23
and Remark 7.24 construct Ti, bi, Mi, and hi for i ≥ n, and a commuting
system of embeddings ji,i′ : Mi →Mi′ for i ≤ i′ < ω so that:
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1. Ti is a length ω iteration tree on Mi, using only extenders with critical
points above j0,i(δi−1).

2. bi is the cofinal branch through Ti given by Σ (equivalently by Σ̄).

3. Mi+1 is the direct limit of the models of Ti along bi. ji,i+1 : Mi →
Mi+1 is the direct limit embedding.

4. hi is Col(ω, j0,i+1(δi))-generic over Mi+1[hi].

5. ai belongs to Mi+1[hi × hi].

The key point in the construction is the last condition, condition (5). It is
obtained through an application of Exercise 7.23, inside P , on the model
Mi[h

i], to absorb the real ai into a generic extension of an iterate. Ti is the
iteration tree given by the exercise.

The construction is dependent on the sequence 〈ai | n ≤ i < ω〉 which
does not belong to P . Thus the sequence 〈Mi, Ti, bi, hi | i < ω〉 does not
belong to P . But notice that every stage of the construction is done inside
P . Each of the individual objects in the sequence is therefore an element
of P (and countable in P , since M is countable in P ). Using this and some
book-keeping it is easy to arrange that:

(i) For every i < ω, and every D ∈ Mi which is dense in j0,i(P), there
exists some i∗ > i so that the filter h0 × · · · × hi∗−1 meets ji,i∗(D).

The book-keeping requires an enumeration of
⋃

i<ω Mi. Notice that there
are such enumerations in P [ai | n ≤ i < ω] since each Mi is countable in P ,
and therefore coded by a real.

Let M∞ be the direct limit of the system 〈Mi, ji,i′ | i ≤ i′ < ω〉, and let
ji,∞ be the direct limit maps. M∞ is wellfounded since it is obtained in a
play of the weak iteration game according to Σ.

From condition (1) it follows that crit(ji∗,∞) ≥ j0,i∗(δi−1) for every i∗ <
ω. Conditions in hi∗ are therefore not moved by ji∗,∞. From this and
condition (i) it follows that H = 〈hi | i < ω〉 is j0,∞(P)-generic over M∞.

8.6 Claim. ϕ[x1, . . . , xk] holds in the derived model of M∞ induced by H.

Proof. We know that ϕ[x1, . . . , xk] holds in the derived model of M induced
by G. By Remark 8.1 this statement, let us denote it (∗), is forced, over
M [g0 × · · · × gn−1] = M [h0 × · · · × hn−1] by the empty condition in P

H
.

j0,∞ has critical point above δn−1 and therefore extends to an elementary
embedding of M [h0 × · · · × hn−1] into M∞[h0 × · · · × hn−1]. x1, . . . , xk,
being reals, are not moved by the embedding. From this and elementarity if
follows that the statement (∗) is forced to hold also over M∞[h0×· · ·×hn−1].
It follows that ϕ[x1, . . . , xk] holds in the derived model of M∞ induced by
H. ⊣
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8.7 Claim. R∗(H) = RP .

Proof. From the restriction on the critical points in condition (1) it follows
that R∩M∞[H↾i] = R∩Mi[H↾i]. Since Mi and H↾i belong to P it follows
that R ∩M∞[H↾i] ⊆ P , and hence R∗(H) ⊆ RP .

Conversely, every real in P belongs to {ai | n ≤ i < ω}, and is, by
construction, an element of Mi+1[hi][hi] = Mi+1[H↾i+ 1] for some i. Using
the restriction on the critical points in condition (1), R ∩Mi+1[H↾i+ 1] =
R ∩M∞[H↾i+ 1]. So RP ⊆ R∗(H). ⊣

8.8 Claim. ϕ[x1, . . . , xk] holds in (L(R))P .

Proof. Notice that the ordinals of M∞ are contained in the ordinals of P .
(This is because M∞ belongs to P [ai | n ≤ i < ω].) From this and the
last claim it follows that the derived model of M∞ induced by H is an
initial segment of the model (L(R))P . By Claim 8.6, ϕ[x1, . . . , xk] holds in
the former model. From this and the fact that ϕ is Σ1(R) it follows that
ϕ[x1, . . . , xk] holds also in the latter. ⊣

We showed so far that ϕ[x1, . . . , xk] holds in (L(R))P , where P is the
transitive collapse of a Skolem hull of a rank initial segment of V . Using
the elementarity of the anti-collapse embedding it follows that ϕ[x1, . . . , xk]
holds in (L(R))V ‖θ, and since ϕ[x1, . . . , xk] is Σ1(R) this implies that it
holds in (L(R))V . ⊣

8.9 Lemma. Suppose that 〈ηi | i < ω〉 is an increasing sequence of Woodin
cardinals of V . Let Q be the finite support product Col(ω, η1)×Col(ω, η2)×
· · · . Let H = 〈hi | i < ω〉 be Q-generic over V .

Then the derived model of V induced by H satisfies the axiom of depen-
dent choice for reals (and hence the full axiom of dependent choice).

Proof. Suppose not. Let θ be a cardinal large enough that Q ∈ V ‖θ and so
that V ‖θ satisfies the fragment of ZFC that must be assumed in a model
M for Lemma 8.5 to hold for the model. Let π : M → V ‖θ be elementary,
with M countable and Q ∈ range(π). By elementarity, dependent choice
for reals fails in the derived models of M . The failure of dependent choice
for reals is Σ1(R). Thus by Lemma 8.5 dependent choice for reals must fail
also in the true L(R). But this is a contradiction. Dependent choice for
reals in the true L(R) follows from the axiom of choice in V and the fact
that countable sequences of reals can be coded by reals. ⊣

8.10 Theorem. Suppose that 〈ηi | i < ω〉 is an increasing sequence of
Woodin cardinals of V . Let Q be the finite support product Col(ω, η1) ×
Col(ω, η2) × · · · . Let H = 〈hi | i < ω〉 be Q-generic over V .

Then the derived model of V induced by H satisfies AD.
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Proof. Let R∗ denote R∗[H], and suppose for contradiction that there is a
set A ∈ L(R∗) so that A ⊆ R∗ and Gω(A) is not determined in L(R∗).

Since every set in L(R∗) is definable from real and ordinal parameters
in a level of L(R∗), there must be a parameter a ∈ R∗, a formula ϕ, and
ordinals γ, ζ so that

x ∈ A ⇐⇒ Lγ(R∗) |= ϕ[x, a, ζ].

Without loss of generality we may assume that a ∈ RV . Otherwise we
may simply replace V by V [h0 × · · · × hi] for i large enough that a ∈
RV [h0×···×hi].

Again without loss of generality we may assume that 〈γ, ζ〉 is the lexico-
graphically least pair of ordinals for which the set {x | Lγ(R∗) |= ϕ[x, a, ζ]}
is not determined. By the symmetry of the collapse, this minimality of
〈γ, ζ〉 is forced by the empty condition in Q over V .

8.11 Remark. We refer to A as the least non-determined set definable from
a and ordinal parameters in L(R∗).

Let θ be a cardinal larger than supi<ω ηi, larger than γ, and so that
V ‖θ satisfies the fragment of ZFC that must be assumed in a model M for
Lemma 8.5 to hold for the model. Let Ṙ∗ ∈ V be the canonical name for
R∗[H].

8.12 Definition. Working in V let Tin ⊆ ω × V ‖θ be the tree of attempts
to construct a real x, and a sequence 〈〈ei, fi〉 | i < ω〉 ∈ (V ‖θ)ω so that:

1. {ei | i < ω} is an elementary substructure of V ‖θ.

Let M be the transitive collapse of {ei | i < ω}, and let π : M → V ‖θ be
the anticollapse embedding.

2. e0 = a, e1 is equal to 〈ηi | i < ω〉, e2 = Q, e3 = Ṙ∗, e4 = γ, e5 = ζ,
and e6 is a name for a real in the symmetric collapse of V by Q.

3. It is forced by the empty condition in Q that Lγ̌(Ṙ∗) |= ϕ[e6, ǎ, ζ̌].

Let ẋ denote π−1(e6). Let P denote π−1(Q).

4. The set G = {π−1(efi
) | i < ω} forms a P-generic filter over M .

5. ẋ[G] is equal to x.

Let Tout ∈ V be defined similarly, only changing “|=” in condition (3) to
“6|=.”

8.13 Remark. We emphasize that both Tin and Tout are defined in V , that
is with no reference to H.
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8.14 Remark. Let x ∈ p[Tin] and let 〈〈ei, fi〉 | i < ω〉 witness this. Let M ,
π, and G be as in Definition 8.12. Note in this case that the derived model
of M induced by G satisfies the statement “there is a non-determined set
definable from a and ordinal parameters, and x belongs to the least such
set.” This follows from the minimality of 〈γ, ζ〉, the elementarity of π,
condition (3) of Definition 8.12, and condition (5) of the definition.

Similarly, if x ∈ p[Tout], then the derived model of M induced by G
satisfies the statement “there is a non-determined set definable from a and
ordinal parameters, and x belongs to the complement of the least such set.”

8.15 Claim. The pair 〈Tin, Tout〉 is exhaustive for Col(ω, η0).

Proof. Let x be a real in V [h0]. Recall that A = {x | Lγ(R∗) |= ϕ[x, a, ζ]}.
If x ∈ A then a Skolem hull argument in V [H] easily shows that x ∈
(p[Tin])V [H], and from this by absoluteness it follows that x ∈ (p[Tin])V [h0].
If x 6∈ A then a similar argument shows that x ∈ (p[Tout])

V [h0]. ⊣

8.16 Claim. Let x be a real in V . Suppose that x ∈ p[Tin]. Then, in L(R),
there is a non-determined set definable from a and ordinal parameters, and
x belongs to the least such set.

Proof. Let 〈〈ei, fi〉 | i < ω〉 witness that x ∈ p[Tin]. Let M , π, ẋ, and G be
as in Definition 8.12. By Remark 8.14, the derived model of M induced by G
satisfies the statement “there is a non-determined set definable from a and
ordinals parameters, and x belongs to the least such set.” This statement
is Σ1(R). By Lemma 8.5 the statement must hold of x and a in the true
L(R). ⊣

8.17 Claim. Let x be a real in V . Suppose that x ∈ p[Tout]. Then, in L(R),
there is a non-determined set definable from a and ordinal parameters, and
x belongs to the complement of the least such set.

Proof. Similar to the proof of the previous claim. ⊣

8.18 Claim. V |=“p[Tin] ∩ p[Tout] = ∅.”

Proof. This follows immediately from the last two claims: x cannot belong
to both the least non-determined set and its complement. ⊣

From Claims 8.15 and 8.18, and Exercise 6.15, it follows that, in V , p[Tout]
is precisely equal to the complement of p[Tin]. In particular this means that,
in the true L(R), there is a non-determined set definable from a and ordinal
parameter, for otherwise both p[Tin] and p[Tout] would be empty by Claims
8.16 and 8.17. p[Tin] is equal to the least such set.

Again from Exercise 6.15, p[Tin] is η0-universally Baire. By Theorem 6.17,
Gω(p[Tin]) must be determined. But this is a contradiction since p[Tin] is
the least non-determined set. The contradiction completes the proof of
Theorem 8.10 ⊣
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8.19 Definition. Let A ⊆ R in V be <η-universally Baire, that is κ-
universally Baire for each κ < η. Let H be Col(ω,<η)-generic over V
and let R∗ = R∗[H] =

⋃
α<η RV [H↾α]. The set A has a canonical extension

to a set A∗ ⊆ R∗, defined as follows: x ∈ RV [H↾α] belongs to A∗ iff x ∈ p[T ]
for some, and equivalently any, pair 〈T, T ∗〉 ∈ V witnessing that A is α-
universally Baire. (The equivalence is easy to prove using the conditions in
Fact 6.14, and makes the canonical extension useful.)

8.20 Exercise. Let η be a limit of Woodin cardinals, and let H be a
Col(ω,<η)-generic filter over V . Let A ⊆ R in V be <η-universally Baire
(equivalently, by Remark 7.21, <η-homogeneously Suslin, or weakly <η-
homogeneously Suslin). Let A∗ be the canonical extension of A to a subset
of R∗ = R∗[H]. Prove that L(R∗, A∗) satisfies AD.

Exercise 8.20 is a first step towards Woodin’s derived model theorem,
which the reader can find in Steel [38]. Assuming enough large cardinals, it
can be shown that there are universally Baire sets which do not belong to
L(R), and in that case Exercise 8.20 is a proper strengthening of Theorem
8.10, taking determinacy to sets outside L(R∗).

Hint to Exercise 8.20. Adapt the proof of Theorem 8.10, replacing L(R) by
L(R, A) and, for countable N and σ : N → V ‖θ, replacing derived models
of N by models of the form LN∩On(R̄∗, Ā∗) where R̄∗ is the set of reals
of the derived model and Ā∗ is the canonical extension of Ā = σ−1(A)
to a subset of R̄∗. (Notice that all the countable models which come up
during the proof of Theorem 8.10 embed into rank initial segments of V ,
either directly by construction or because they are obtained through uses
of Theorem 2.3.) You will need the following observation, which is easily
verified, to connect L(R̄∗, Ā∗) with L(R, A): Let σ : N → V ‖θ be elementary,
with N countable and σ(Ā) = A, σ(η̄) = η. Let H̄ ∈ V be Col(ω, η̄)-generic
over N . Let R̄∗ =

⋃
α<η̄ RN [H̄↾α] and let Ā∗ be the canonical extension

of Ā to a subset of R̄∗, as defined inside N [H̄]. Then for every x ∈ R̄∗,
x ∈ Ā∗ ⇐⇒ x ∈ A. ⊣

8.21 Theorem. Suppose that there is a model M of ZFC so that:

• M has ω Woodin cardinals, and a measurable cardinal above them.

• M is countable in V .

• M is weakly iterable.

Then the true L(R) satisfies AD.

Proof. Let Σ be a weak iteration strategy for M . Let θ be a cardinal large
enough that Σ ∈ V ‖θ, and so that V ‖θ satisfies enough of ZFC for the
argument below. Let X be a countable elementary substructure of V ‖θ
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with M,Σ ∈ X. Let P be the transitive collapse of X and let τ : P → V ‖θ
be the anti-collapse embedding. We intend to show that (L(R))P satisfies
AD, and then use the elementarity of τ .

Let 〈δi | i < ω〉 ∈ M be an increasing sequence of Woodin cardinals of
M , and let ρ be a measurable cardinal of M above these Woodin cardinals.
Let P denote the finite support product Col(ω, δ0) × Col(ω, δ1) × · · · .

Using iterated applications of Exercise 7.23 construct a weak iteration
〈Mi, ji,i′ | i ≤ i′ ≤ ω〉 of M0 = M , and a filter H, so that: the iteration is
according to Σ, H is j0,ω(P)-generic over Mω, and R∗[H] is precisely equal
to R∩P . The construction is similar to the main construction in the proof
of Lemma 8.5.

By Theorem 8.10, the derived model of Mω induced by H satisfies AD.
This model is an initial segment of (L(R))P : it has the reals that P has,
but it does not have all the ordinals P has. We now add ordinals by passing
from Mω to an iterate of Mω obtained through ultrapowers by a measure
on ρ and its images.

Let µ witness that ρ is measurable in M . Extend the iteration 〈Mi, ji,i′ |
i ≤ i′ ≤ ω〉 of M to a weak iteration of length ω1 by setting Mξ+1 =
Ult(Mξ, j0,ξ(µ)) for each ξ ≥ ω and setting jξ,ξ+1 to be the ultrapower
embedding. This completely determines the iteration.

Let ηα denote the ordinal height of Mα, that is On ∩Mα.

8.22 Exercise. Show that ηα ≥ α.

Hint. The map ξ 7→ j0,ξ(ρ) embeds α− ω into the ordinals of Mα. ⊣

Note that, for α ≥ ω, jω,α has critical point j0,ω(ρ), and this is larger
than j0,ω(supi<ω δi). It follows that H is generic also over Mα, and that
the reals of the symmetric collapse induced by H over Mα are the same as
the reals of the symmetric collapse induced by H over Mω, which in turn
are the same as the reals of P . Thus, for each α ≥ ω:

(i) The derived model of Mα induced by H is equal to Lηα
(RP ).

From this and Theorem 8.10 it follows that:

(ii) Lηα
(RP ) satisfies AD.

Using (i) and Exercise 8.2:

(iii) RLηα (RP ) is equal to RP .

Using Exercise 8.22 fix some α < ω1 so that ηα > On ∩ P . By condition
(iii) then, (L(R))P is an initial segment of Lηα

(RP ). From this and condition
(ii) it follows that (L(R))P satisfies AD. Using the elementarity of τ it follows
that (L(R))V ‖θ = Lθ(R) satisfies AD. Since θ could be chosen arbitrarily
large, it follows finally that L(R) satisfies AD. ⊣
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8.23 Remark. Readers familiar with sharps can verify, by adapting the
proof given above, that the assumption in Theorem 8.21 can be weakened,
from demanding that M has ω Woodin cardinals and a measurable cardinal
above them, to demanding that M is a sharp for ω Woodin cardinals.

8.24 Theorem. Suppose that in V there are ω Woodin cardinals and a
measurable cardinal above them. Then L(R) satisfies AD.

Proof. Let θ be a cardinal large enough that V ‖θ |=“there are ω Woodin
cardinals and a measurable cardinal above them,” and so that V ‖θ satisfies
the fragment of ZFC necessary in a model M for Theorem 8.21 to hold for
the model. Let X be a countable elementary substructure of V ‖θ and let M
be the transitive collapse of X. Then M |=“there are ω Woodin cardinals
and a measurable cardinal above them,” M is countable in V , and, by
Corollary 2.4, M is weakly iterable. Applying Theorem 8.21 it follows that
L(R) satisfies AD. ⊣
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λ (u), 27
strong cardinal, 13
strong embedding/extender, 13
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superstrong cardinal, 13
superstrong embedding, 13
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Suslin set, 34
symmetric collapse, 70
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tree order, 16
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