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Abstract

Let M be a premouse with a top extender, F . Suppose that

(a) M is linearly coarsely iterable via hitting F and its images, and

(b) if M
∗ is a linear iterate of M as in (a), then M

∗ is coarsely iterable
with respect to iteration trees which do not use the top extender of
M

∗ and its images.

Then M is coarsely iterable.

1 Introduction

In this article, we are going to prove a result concerning the iterability of premice.
We assume the reader to be familiar with the theory developed in [MS94b] or
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[Jen97]. A good introduction to the area is the monograph [Zem02]. Let’s begin
by fixing some terminology.

We shall deal with coarse normal iterations of premice. The term ”premouse”
here can be understood in the sense of [MS94b] (or [Ste00]), or in the sense of
[Jen97]. Both approaches use different kinds of indexing, but this difference
shall not matter here.

Let T be a normal iteration tree in the sense of [Jen97], or a normal k-
maximal iteration tree in the sense of [MS94b]. Such a tree comes with the
sequences 〈κTi | i + 1 < lh(T )〉, 〈λTi | i+ 1 < lh(T )〉 and 〈νTi | i+ 1 < lh(T )〉
of the critical points of the extenders applied, their lengths, and their indices,
respectively.

We write T (i+1) for the immediate T -predecessor of i+1 in the tree-order
<T , which is denoted by T -pred(i+1) in [MS94b], if i+1 < lh(T ). Also, in case
the ith model of the iteration tree is active, we shall write κ̂Ti for the critical

point of E
MT

i

top , that is, of the top extender of that model, and λ̂Ti for its “length”,

according to the particular indexing scheme used. So λ̂Ti is the image of the
critical point of the extender under the associated embedding, if Friedman-
Jensen indexing is used, and it is the strict supremum of the generators of
the extender and the ordinals less than the successor of its critical point, as
computed in the premouse, if Mitchell-Steel indexing is used. ν̂Ti stands for the
index of the top extender, that is, for the height ofMT

i .

Finally, we let T̂ (i+1) be the minimal ξ s.t. ξ = i, or else ξ < i and κ̂i < λTξ
(for i < lh(T )). So it is the index to which the top extender of the ith model
in the iteration would have to be applied, according to the rules for normal
iterations.

Frequently, when it is clear which iteration tree we are referring to, the
superscript T will be omitted.

By a coarse normal iteration, we mean an iteration in which we use coarse
ultrapowers for formingMT

i+1 = ult(M∗
i , E

T
i ) (whereM∗

i is the model to which
ET

i has to be applied according to the rules for forming normal iterations) if
there are no drops in [0, i)T . Otherwise, the ultrapowers are formed as fine as
possible, depending on where the critical point of ET

i lies in the sequence of the
projecta ofM∗

i .

Let us now state more precisely what we are going to prove.

Definition 1.1. Let M be an active premouse. We let Mpassive be the premouse
obtained from M by omitting the top extender.

The coarse top iteration ofM of length θ is the linear normal coarse iteration
of M of length θ, in which always the top extender is applied (if it exists, that
is, if the models in the iteration all are well founded). So it is the 0-maximal
iteration tree T on M of length θ such that νTi = ν̂Ti , for all i with i+ 1 < θ.

We say that M is coarsely α-iterable by its top extender iff the coarse top
iteration of M of length α exists.

M is coarsely iterable by its top extender iff it is coarsely α-iterable by its
top extender, for every α.
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N is a coarse top iterate of M if there is a coarse top iteration of M with
last model N . N has stage α if this top iteration has length α+ 1.

Finally, we say that M is separately α-iterable if M is coarsely α-iterable
by its top extender, and if for every coarse top iterate N of M with stage < α,
Npassive is coarsely normally α-iterable.

Our main result, Theorem 4.1, is:

Main Theorem. Let M be an active premouse. If M is separately α + 1-
iterable, then M is coarsely normally α+ 1-iterable.

The following is Corollary 4.2:

Corollary. If M is separately α-iterable, for every α, and if the sequence of
the corresponding iteration strategies 〈Σα | α <∞〉 is definable, where Σα is an
α + 1-iteration strategy of the coarse top iterate of stage α of M , then M is
coarsely normally iterable.

2 An Application

To give an example application of these results, let’s assume that x♯ exists, and
that there is no inner model with a Woodin cardinal.

The assumption that x♯ exists gives us “enough of a measurable cardinal” in
L[x] to carry out the construction of K there - we apply the theory developed
in [Ste96]; there, one working assumption is that there is no inner model with a
Woodin cardinal, and that Ω is measurable. Then Kc and K are built, giving
universal “weasels” of height Ω. But in order for the construction to work, it is
not necessary to have the normal ultrafilter on Ω be a set, instead, it suffices to
have a “V-ultrafilter”. So using the normal ultrafilters on the x-indiscernibles,
we can build K in L[x] up to any of those indiscernibles, and those mice stack
up to what we refer to as K = KL[x]. See [Ste96, p. 58] for a detailed discussion
of this.

Let x♯ = 〈Jν [x], F 〉. We would like to “add F as a top extender to K||ν”, but
in order for this to work, we have to be a little more careful, because we want
the structure to be a premouse. For notational convenience, we shall here use
λ-indexing, as in [Jen97], as well as the functional representation of extenders.
So F is a function from P(κ)∩ Jν [x] to P(λ), where κ is the critical point of F ,
i.e., the least x-indiscernible, and λ = F (κ). Let τ = (κ+)K (actually, it follows
from [Ste96, Thm. 1.4.] that τ = (κ+)L[x]).

For κ < α ≤ λ, let F |α : dom(F ) −→ P(α) be the extender defined by
stipulating that (F |α)(x) = F (x) ∩ α. Further, let K̃α = ult(K||τ, F |α), and
let πα be the ultrapower embedding. Set K ′α = 〈K̃α, πα ↾ (P(κ) ∩ K̃α)〉. Then
K ′α is almost a premouse; only the initial segment condition might fail. But
there is a maximal α0 ∈ (κ, λ] such that K ′α0 does satisfy the initial segment
condition. Let K ′ = K ′α0 . We show:

Lemma 2.1. K ′ is a coarsely iterable premouse.
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Proof. By our main theorem, showing that every top iterate of K ′ is coarsely
normally iterable with respect to iterations not using the top extender, and that
the sequence of those coarse normal iteration strategies is definable, is more than
enough for this.

Let K ′
α be the coarse top iterate of K ′ of stage α, with embeddings π̄i,j , and

let 〈Nγ | γ <∞〉 be the top iteration of x♯, with embeddings πi,j . Now we have

an elementary embedding σ0 : K ′passive −→ K||ν, defined as follows: Letting

π̄ : K||τ −→F |α0
K ′passive

and π : Jτ [x] −→F Jν [x], we can set σ0(π̄(f)(~γ)) =
π(f)(~γ) (where f : κ −→ K||τ , f ∈ K||τ and ~γ < α0). This works because
K||τ is definable in Jτ [x], by the local definability of K. But then we have
σ0 : 〈|K ′|, EK′

top〉 −→0 〈Jν [x], F 〉 meaning that σ0 : 〈|K ′|,∈〉 −→Σ0
〈|Jν [x]|,∈〉,

and that for x ∈ P(κ) and γ < α0, γ ∈ E
K′

top(x) iff σ0(γ) ∈ F (σ0(x)). Actually,
since σ0 ↾ α0 = id, the latter is equivalent to γ ∈ F (x), but this simple reduction
won’t work in later iterates anymore.

So, an obvious copying construction inductively gives us embeddings

σi : K ′
i
passive

−→ KNi = K|ht(Ni),

so that σi : 〈|K ′
i|, E

K′

top〉 −→0 〈|Ni|, E
Ni

top〉, and so that the embeddings commute:
σj π̄i,j = πi,jσi. The definition in the successor case is

σi+1(π̄i,i+1(f)(~γ)) = πi,i+1(σi(f))(σi(~γ)),

and the definition in the limit case is just as obvious (and works because the

embeddings commute). We will have that for i ≤ j, σi ↾ lh(E
K′

i

top) = σj ↾

lh(E
K′

i

top).
The last point is that since we assumed that there is no inner model with a

Woodin cardinal, it follows that K is (ω,∞)-iterable, not only in L[x], where it
was built, but also in V.

In fact, we are presently going to prove thatK is iterable in V by the iteration
strategy which picks unique cofinal well-founded branches. Let’s refer to this
strategy as the uniqueness strategy.

To this end, it suffices to show that arbitrarily long initial segments of K
are iterable by the uniqueness strategy.

So fix such a segment of K, say K||β. We may pick β so that β is a K-
cardinal; in particular, K||β sees no Woodin cardinal. Moreover, K||β is 1-small.

Let’s assume, towards a contradiction, that K||β is not iterable by the
uniqueness strategy. This means that there is a least counterexample for this,
i.e., an iteration tree T on K||β of length λ such that T is formed according to
the uniqueness strategy (meaning that for every limit λ̄ < λ, the branch [0, λ̄)T
is the unique cofinal well-founded branch of T ↾ λ̄), but in case λ is a limit ordi-
nal, there is no unique cofinal well-founded branch, and in case λ is a successor
ordinal, there is a one-step extension of T which leads to an ill-founded model.
In the following, we shall focus on the case that T is of limit length λ.

Now, we can pick θ large enough, so that K||β, T ∈ Vθ and Vθ satisfies
enough of ZFC. We may pick a countable elementary substructure X ≺ Vθ with
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K||β, T ∈ X. Let π : 〈H,∈〉
∼
←→ 〈X,∈〉 invert the Mostowski-collapse. Let

K̄ = π−1(K||β), T̄ = π−1(T ), λ̄ = π−1(λ), β̄ = π−1(β), and x̄ = π−1(x). Let
G ∈ V be Col(ω, τ)-generic over H, where τ = λ̄ + β̄. In (L[x̄])H [G], K̄ is still
iterable, by [Ste96, Thm. 5.18]. And since K̄ is 1-small, and has no Woodin
cardinal, it is iterable in (L[x̄])H [G] by the uniqueness strategy. This is because
every cofinal well-founded branch of an iteration tree on K̄ in (L[x̄])H [G] has a
Q-Structure, and this Q-structure necessarily is reached by forming rudimentary
closures over the lower part model of the tree, because K̄ is 1-small. So there
can be only one cofinal well-founded branch, or else we would get distinct cofinal
well-founded branches with the same Q-structure.1

Recall the Π1
2 game on a countable premouse, stemming from [MS94a, Def.

6.12]: Player I plays a (code for) a countable tree U on the premouse and an
ordinal α < ω1 (or rather, a code for such an α). In order to win, player II
can now accept, in case U has a last well-founded model, or he has to play a
(real coding a) maximal branch b of the tree such that the direct limit MU

b of
the models on that branch via the iteration embeddings is α-good. The latter
means that MU

b is well-founded, or, if not, that α is contained in the well-
founded part of MU

b . A premouse for which player II has a winning strategy
in this game is said to be Π1

2-iterable. The statement expressing that a given
countable premouse is Π1

2-iterable is Π1
2 in any real coding the premouse.

It’s clear that a premouse which is normally (ω, ω1)-iterable by the unique-
ness strategy is Π1

2-iterable. This is because the tree played by I necessarily is
in accordance with that strategy, and so, player II can pick the unique cofinal
well-founded branch, and hence wins.

So the above Π1
2 statement is true of (a real coding) K̄ in (L[x̄])H [G] (where

K̄ is countable), and so it is true of (a code for) K̄ in H[G], by Shoenfield-
absoluteness between (L[x])H [G] and H[G].

Let Ω = (ω1)
H[G], and fix a real y coding K̄ in H[G]. Since player II wins

the Π1
2-game for y, player II has a winning response bα, for every move 〈T̄ , α〉

played by I (actually, I plays reals coding the tree and countable ordinals), where
α < Ω.

For α < Ω, let sα = sup bα.

Note that no b = bα can be a well-founded branch of T̄ ↾ sα. This is because
every cofinal well-founded branch comes with a Q-structure, for K||β has no
Woodin cardinal.

As before, the Q-structures always have the simple form Jγ [M(T̄ ↾ sα)],
because K||β is 1-small. So they are trivially iterable above δ(T̄ ↾ sα).

But there can be only one cofinal well-founded branch that comes with such
a Q-structure. So if there is a cofinal well-founded branch of T̄ ↾ sα in H[G],
then this branch is the unique cofinal well-founded branch of T̄ ↾ sα in H[G].
So sα = λ, or else b = bα = [0, sα)T̄ is not maximal. But then, b is the unique
cofinal well-founded branch of T̄ in H[G], which means that b ∈ H, by the
homogeneity of Col(ω, τ). So the image of this branch under π is the unique

1As a reference for both terminology and results about unique cofinal branches and Q-
structures, we refer the reader to [Ste00, 6.9-6.14].
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cofinal well-founded branch through T in Vθ, and hence the unique cofinal well-
founded branch through T in V, which contradicts our choice of T .

Arguing in H[G], by a pigeonhole principle, there is some γ < λ such that
the set A = {α | sα = γ} is unbounded in Ω. Now there is no Woodin cardinal in
the model L[M(T̄ ↾ γ)] (the point here is that this is an inner model ofH, where
there is no inner model with a Woodin cardinal), so there is a least θ such that
δ(T̄ ↾ γ) ceases to be a Woodin cardinal in Jθ+1[M(T̄ ↾ γ)]. By condensation,
θ < Ω. So we can pick α0 and α1 in A so that On∩Jθ+1[M(T̄ ↾ γ)] < α0 < α1.

NowMT̄ ↾γ
bα0

andMT̄ ↾γ
bα1

both are θ+1-good but ill-founded. So the well-founded

parts of both models contain Jθ+1[M(T̄ ↾ γ)]. But this cannot be the case,
because δ(T̄ ↾ γ) is Woodin with respect to subsets of itself which are in the
intersection of the well-founded parts of the two limit models, by the Branch
Uniqueness Theorem - see [Ste00, Thm. 6.10] or [MS94a, Thm. 2.2].

So we get an iteration strategy for K ′
γ
passive

, which is the “pullback” of the
strategy for K, and which consequently only depends on the canonical embed-
ding from K ′

γ
passive

into the corresponding segment of K. Since the sequence of

embeddings is clearly definable from x♯, so is the sequence of iteration strategies.
Now Corollary 4.2 to our Main Theorem tells us that K ′ is coarsely normally

iterable, as wished.

3 Some machinery

We collect in this section some key observations which are needed in order to
carry out some kind of a copying construction in the proof of the main result.

Let T be a normal iteration tree.

Lemma 3.1. Let i < lh(T ) be such that there is no truncation in [0, i]T , and
let ξ = T̂ (i+ 1). Then:

(a) ξ ≤T i and κ̂ξ = κ̂i.

(b) There is no h+ 1 ∈ (ξ, i]T such that νh = ν̂h.

Proof of (a). If ξ = i, then we are done. So let ξ < i, and assume, towards

a contradiction, that ξ 6<T i. Let h < i be minimal s.t. h̄
def
= T (h + 1) < ξ <

h+ 1 ≤T i. So

(1) κh < λh̄ ≤ κ̂i.

(2) κ̂h̄ < κh.

Proof. Otherwise, κ̂h+1 = iT
h̄,h+1

(κ̂h̄) ≥ λh, so, since h + 1 ≤T i, κ̂i ≥ λh. But

T̂ (i+ 1) = ξ ≤ h, so κ̂i < λh, a contradiction. 2(2)

So since κ̂h+1 = iT
h̄,h+1

(κ̂h̄), it follows that
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(3) κ̂h+1 = κ̂h̄.

But crit(iTh+1,i) ≥ λh, and λh > κ̂h+1, since λh > κh > κ̂h̄ = κ̂h+1. So

(4) κ̂h+1 = κ̂i.

This leads to the contradiction

κh > κ̂h̄ = κ̂i ≥ λh̄ > κh.

Now that we know that ξ <T i, the second part of the claim follows quite
easily: We know that κ̂i = iTξ,i(κ̂ξ). So we have to show that κ̂ξ < crit(iTξ,i).

But otherwise, κ̂i ≥ λTi , which contradicts the fact that ξ = T̂ (i + 1), so that,
in particular, κ̂i < λTξ .

Proof of (b). This is vacuously true if ξ = i. So let ξ < i. Assume the claim to
be false. Let h+ 1 be a counterexample, and let ζ = T (h+ 1). Then

ξ ≤T ζ <T h+ 1 ≤T i, ζ = T̂ (h+ 1).

By (a), κ̂h = κ̂ζ , and κ̂i = κ̂ξ.
Now, κ̂i = κ̂ξ ≤ κ̂ζ = κ̂h (since ξ ≤T ζ). On the other hand, κ̂i ≥ κ̂ζ = κ̂h

(since ζ ≤T i). So κ̂ξ = κ̂ζ = κ̂h = κ̂i. But this leads to the contradiction

κ̂i ≥ κ̂h+1 = iTζ,h+1(κ̂ζ) = iTζ,h+1( κ̂h
︸︷︷︸

=κT

h

) > κ̂h = κ̂i.

The construction in the proof of the main lemma also relies on two commu-
tativity properties of coarse ultrapowers. We state them as separate lemmas.

Lemma 3.2. Let M , M ′ be premice. Let σ̄ : M −→F M ′, where F = EM
top.

Let H be a (possibly long) extender on M and M ′ s.t., letting π : M −→H N ,
π′ : M ′ −→H N ′, π ⊆ π′. Let G = EN

top and λ̃ = lh(H) ≤ κ = crit(G). Let

σ : N −→G Ñ . Then Ñ = N ′ and π′σ̄ = σπ. The following diagram illustrates
the situation.

H

π

σ

σ̄

N
′

N

M

π
′

G

F

H

M
′

Proof. Let κ̄ = crit(F ). We define a Σ0-preserving map τ : Ñ −→ N ′ and show
that it is surjective. We deduce how it must be defined. To this end, let a ∈ Ñ
be given. It is of the form a = σ(f)(~α), where f ∈ κm

N ∩N and ~α < ν(G) (~α
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are generators of G). And f is of the form f = π(g)(~γ), where g ∈ κ̃n

M ∩M ,
~γ < λ̃ (dom(H) ⊆ P(κ̃)). Let ψ be a Σ0 formula. We get:

Ñ |= ψ[σ(f)(~α)]

⇐⇒ ≺~α≻∈ G({≺ ~β≻< κ | N |= ψ[f(~β)]})

⇐⇒ ≺~α≻∈ G({≺ ~β≻< κ | N |= ψ[π(g)(~γ)(~β)]})
⇐⇒

~γ<λ̃≤κ
≺~α,~γ≻∈ G({≺ ~β,~δ≻< κ | N |= ψ[π(g)(~δ)(~β)]})

⇐⇒ ≺~α,~γ≻∈ G(π({≺ ~β,~δ≻< κ̄ |M |= ψ[g(~δ)(~β)]}))

⇐⇒ ≺~α,~γ≻∈ π(F ({≺ ~β,~δ≻< κ̄ |M |= ψ[g(~δ)(~β)]}))

⇐⇒ ≺~α,~γ≻∈ π′(σ̄({≺ ~β,~δ≻< κ̄ |M |= ψ[g(~δ)(~β)]}))

⇐⇒ N ′ |= ψ[π′(σ̄(g))(γ)(~α)
︸ ︷︷ ︸

def
= τ(σ(f)(~α))

]

Remember that ~α < lh(G) and ~γ < λ̃. To see that τ is onto, let an arbitrary
element b of N ′ be given. It is of the form b = π′(f)(~γ), where f ∈ κ̃m

M ′ ∩M ′

and ~γ < λ̃. And f is of the form f = σ̄(g)(~α), where g ∈ κ̄n

M ∩M , ~α < λ(F ).
So

b = π′(σ̄(g))(π′(~α))(~γ)

= π′(σ̄(g))( π(~α)
︸︷︷︸

<lh(G)

)( ~γ
︸︷︷︸

<λ̃

).

This is clearly in the range of τ ; cf. its definition. So τ = id ↾ Ñ , hence Ñ = N ′,
and also:

σ(π(g)(~γ))(~α) = π′(σ̄(g))(~γ)(~α),

which readily implies that σπ = π′σ̄.

Lemma 3.3. Let M , M ′ be premice. Let σ̄ : M −→F M ′, where F = EM
top

and κ̄ = crit(F ). Let H be a long extender of length λ̃ on M , M ′ s.t., letting
π : M −→H N , π′ : M ′ −→H N ′, π ⊆ π′. Let G = EN

top and suppose that

κ̄ < crit(π) (= crit(π′)) and λ̃ ≤ lh(G) (so κ
def
= crit(G) = κ̄).

Let σ : M −→G Ñ . Then Ñ = N ′ and π′σ̄ = σ. The following diagram
illustrates the situation.

HH

σ

G

π

σ̄

N
′

N

M

π
′

F
M

′
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Proof. We proceed as in the previous lemma. So we define τ : Ñ −→Σ0
N ′ and

show that τ is surjective.
So let a ∈ Ñ be given. It’s of the form a = σ(f)(~α), where f ∈ κm

M ∩M
and ~α < λ(G). Let ψ be a Σ0 formula. We get:

Ñ |= ψ[σ(f)(~α)]

⇐⇒ ≺~α≻∈ G({≺ ~β≻< κ |M |= ψ[f(~β)]}
︸ ︷︷ ︸

def
= x⊆κ<crit(π)

)

⇐⇒ ≺~α≻∈ G(π(x))

⇐⇒ ≺~α≻∈ π(F (x))

⇐⇒ ≺~α≻∈ π′(σ̄(x))

⇐⇒ N ′ |= ψ[ π′σ̄(f)(~α)
︸ ︷︷ ︸

def
= τ(σ(f)(~α))

].

Note that ~α < λ(G). τ is designed to be Σ0 preserving. To see that it is onto,
let b be an arbitrary element of N ′. It has the form b = π′(f)(~α), for some
f ∈ κ̃M ′ ∩M ′ and ~α < λ̃ ≤ lh(G). And f is can be rendered as f = σ̄(g)(~γ),
where g ∈ κ̄m

M ∩M and ~γ < λ(F ). So

b = π′(σ̄(g))(π′(~γ))(~α)

= π′(σ̄(g))( π(~γ)
︸︷︷︸

<λ(G)

)( ~α
︸︷︷︸

<λ̃

),

which is in the range of τ . So τ = id ↾ Ñ , Ñ = N ′ and

π′σ̄(f)(~α) = σ(f)(~α),

which obviously implies that π′σ̄ = σ.

4 The Copying Construction

We are now ready to prove the main result of this article.
The iterability notions used in the statement of the following theorem are

defined in the Introduction.

Main Theorem 4.1. Let M be an active premouse. If M is separately α+ 1-
iterable, then M is coarsely normally α+ 1-iterable.

Proof. Fix a normal iteration strategy Σ for the αth top iterate of M . We shall
describe an iteration strategy Σ′ for coarse normal iterations of M .

The idea is that the iteration strategy for M will be as follows: If an iteration
tree on M of limit length is according to the strategy we are about to describe,
then construct a “copy” of the iteration tree onto the αth iterate of M , apply
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Σ to that iteration, and pull back the branch it gives. The iteration tree on the
αth top iterate of M is not allowed to use the top extender, since M is only
separately iterable. The idea is that we shift all the applications of the top
extender in the original tree to the beginning of the copied tree. It is here that
the two commutativity Lemmas of the previous section come in.

We shall now describe the copying process.
Let T be an iteration tree onM. Write Mi forMT

i .
Let N i

0 = 〈|N i
0|,∈, F

i
0〉 be the ith top iterate of M , κi

0 = crit(F i
0), λ

i
0 =

λ(F i
0), and let σ0

i,j : N i
0 −→ N j

0 be the iteration embedding (i ≤ j ≤ α). Let

N0 = (Nα
0 )

passive
.

We shall construct a kind of copy of T onto N0. The resulting iteration
tree on N0 will be called U = c(T ). The models in that tree will be referred
to as Ni =MU

i . Along with U , we shall define a function ϕ : lh(T ) −→ lh(T )
and premice Nγ

i , for γ ≤ α and i + 1 < lh(U). The construction proceeds by
induction.

At stage i we shall define νUi , ϕ(i), MU
i , U(i), and the premice Nγ

i , for
γ ≤ α. Set:

1. Ni =MU
i .

2. Nγ
i = iU0,i(N

γ
0 ).

More precisely, |Nγ
i | = iU0,i(|N

γ
0 |), and Nγ

i = 〈|Nγ
i |,∈, F

γ
i 〉, where

F γ
i =

⋃

x∈|Nγ
0 | i

U
0,i(F

γ
0 ∩ x).

3. κj
i = crit(F j

i ), λj
i = λ(F j

i ), νj
i = ν(F j

i ).

We prove inductively at every stage i:

(1) Mi = N
ϕ(i)
i .

(2) If there are no truncations in [0, i]T , then, setting ξ = T̂ (i + 1), the
following hold true:

(a) ϕ(i) = ϕ(ξ) and ξ ≤T i.

(b) N
ϕ(ξ)+1
i = Ult(N

ϕ(ξ)
ξ , F

ϕ(i)
i ). Furthermore, setting

π′
ξ,i : N

ϕ(ξ)
ξ −→

F
ϕ(i)
i

N
ϕ(ξ)+1
i ,

and letting σξ

ϕ(ξ),ϕ(ξ)+1 be the embedding from N
ϕ(ξ)
ξ into its coarse

ultrapower by F
ϕ(ξ)
ξ , we have:

σξ

ϕ(ξ),ϕ(ξ)+1 : N
ϕ(ξ)
ξ −→

F
ϕ(ξ)
ξ

N
ϕ(ξ)+1
ξ

and π′
ξ,i = iUξ,iσ

ξ

ϕ(ξ),ϕ(ξ)+1.

10



(c) 〈Nγ
i | γ ∈ [ϕ(i) + 1, α]〉 are the models in the top iteration ofN

ϕ(i)+1
i .

Denoting the iteration embeddings by σi
µ,ν : Nµ

i −→ Nν
i , we have:

σi
µ,νi

U
ξ,i = iUξ,iσ

ξ
µ,ν .

(3) (a) Let j <T i. Then iTj,i = iUj,iσ
j

ϕ(j),ϕ(i).

(b) Let j <U i. Then iUj,iσ
j
γ,δ = σi

γ,δi
U
j,i, for ϕ(i) + 1 ≤ γ ≤ δ. If

T̂ (i+ 1) = i, then this holds for ϕ(i) ≤ γ ≤ δ as well.

A remark on condition (3)(a) is in order here: If γ
def
= ϕ(j) = ϕ(i), then we take

σj
γ,γ to be the identity. But if ϕ(j) < ϕ(i), then it is not at all clear that the

embedding σj

ϕ(j),ϕ(i) is defined. But in this case, T̂ (j + 1) = j, as we shall show

presently: Let k′ be minimal s.t. j ≤T k′ ≤T i and ϕ(k′) > ϕ(j). Then k′ will
be of the form k + 1, νh = ν̂h and ϕ(k + 1) = ϕ(k) + 1 = ϕ(j) + 1 (and hence
T (k+ 1) = T̂ (k+ 1)), as will follow from our construction. So j <T k+ 1 ≤T i.

We show that j = T̂ (k + 1). Otherwise, j <T ξ
def
= T (k + 1) and κk = κ̂k ≥ λj .

We know by Lemma 3.1 that κ̂k = κ̂ξ, and that ξ ≤T k. So we have: j <T ξ ≤T

k. But since T̂ (j + 1) < j, κ̂j < supγ<j λγ ≤ crit(iTj,ξ). But this means that

κ̂j = κ̂ξ < λj , a contradiction. So this shows that T̂ (k+1) = j. But this implies,

again by Lemma 3.1, that κ̂j = κ̂k, and hence that T̂ (j + 1) = T̂ (k + 1) = j,

which is what we wanted to show. So the existence of the embedding σj

ϕ(j),ϕ(i)

in (3)(a) is not problematic after all, since it follows from the items (2)(b) and
(2)(c) at stage j.

Turning to the construction, it is no surprise that we set ϕ(0) = 0. If
νT0 ∈M

T
0 , then νU0 = νT0 . Otherwise, νU0 is undefined; U is a padded tree.

If the stages j < i have been constructed already, we shall describe how to
define the ith stage.

First, consider the case that i is a successor.

Then we let νUi be undefined iff ET
i = E

MT

i

top and there were no truncations

in [0, i)T (so that ET
i is the “image of the top extender of MT

0 under the
embedding iT0,i).” Otherwise, we let νUi = νTi .

In order to define U(i), MU
i and ϕ(i), we distinguish two cases:

If νUi−1 is defined, then we set U(i) = T (i) (inductively, we will see that
MU

U(i) = MU
ξ where ξ is minimal s.t. either ξ = i − 1, or ξ < i − 1 and

κUi−1 < λUξ . In general, it does not have to be the case that ξ = U(i), though.
So U is not, verbatim, a padded normal iteration tree. But it is not far from
being such a tree; it is a liberally padded normal iteration tree, as we shall call
it).

This determines MU
i . In this case, we also set ϕ(i) = ϕ(T (i)).

If νUi−1 is undefined, we set U(i) = i− 1, and let ϕ(i) = ϕ(T (i)) + 1.
In the case that i is a limit, we wish to apply Σ to the part of the tree U

constructed so far (note that the copying procedure depends on the iteration
strategy Σ that we fixed in advance).

11



This tree will always be a liberally padded normal iteration tree; see the
next section, where it is also shown that the iteration strategy for N0 works for
such trees.

So if this tree is according to Σ, this iteration strategy can be applied,
yielding a cofinal well founded branch b through it.

Let L be the set of i such that νUi is undefined. Let

E = {j ∈ L | ∀ξ < j∃ζ ∈ [ξ, j) ζ /∈ L},

and set E + 1 = {i+ 1 | i ∈ E}. We shall define a putative branch b′ from b by
cases:

(⋆) If E + 1 ∩ b is bounded, say by ξ, then we let b′ be the <T -closure of
b \ (ξ + 1).

If not, we let b′ be the <T -closure of E + 1 ∩ b.

If b′ is a cofinal wellfounded branch of the part of T constructed so far, then
we extend T by b′ and set ϕ(i) = supj<T i ϕ(j). Otherwise the construction
breaks down.

We shall show that this is a successful coarse normal iteration strategy.
First, we are going to verify our inductive hypotheses (1)-(3).
For i = 0, nothing has to be shown.
Now suppose (1)-(3) hold for every j < i. We show they hold for i as well.

Main Case 1: i is a successor ordinal.

Proof of (1). Let ξ = T (i). If νUi−1 is defined, then EU
i−1 = ET

i−1 and ξ = U(i).

By induction hypothesis, Mξ = N
ϕ(ξ)
ξ . Now, ν

ϕ(ξ)
ξ is a regular cardinal in

Nξ (since it is the image of ν
ϕ(ξ)
0 under the elementary embedding iU0,ξ). So

iTξ,i = iUξ,i ↾ N
ϕ(ξ)
ξ , and thus

N
ϕ(ξ)
i = Ult(N

ϕ(ξ)
ξ , ET

i−1) = Ult(Mξ, E
T
i−1) = Mi.

But ϕ(ξ) = ϕ(i), so we are done.
Now suppose νUi−1 is undefined. So the top extender was applied in T in

the (i − 1)st step, ξ = T (i) = T̂ (i), ϕ(i) = ϕ(i − 1) + 1, and there was no
truncation in [0, i − 1]T . But now, (2) holds at stage i − 1. By (a), we know

that ϕ(ξ) = ϕ(i− 1), and by (b), N
ϕ(ξ)+1
i−1 = Ult(N

ϕ(ξ)
ξ , F

ϕ(i−1)
i−1 ). But by (1) at

stage i − 1, we know that Mi−1 = N
ϕ(i−1)
i−1 , so in particular, ET

i−1 = F
ϕ(i−1)
i−1 .

Putting these together, we see:

Mi = Ult(Mξ, E
T
i−1) = Ult(N

ϕ(ξ)
ξ , F

ϕ(i−1)
i−1 ) = N

ϕ(ξ)+1
i−1 .

But Ni−1 = Ni and ϕ(i) = ϕ(i − 1) + 1 = ϕ(ξ) + 1, so Mi = N
ϕ(i)
i , as was to

be shown. 2(1)
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Now we turn to the verification of (2). In fact, the proof given works for
limit i as well.

Proof of (2). So let ξ = T̂ (i+ 1). To verify (2)(a), note that ξ ≤T i by Lemma
3.1, part (a). Part (b) of that lemma shows that ϕ(i) = ϕ(ξ), because the only
stages at which ϕ(j) < ϕ(j′), where j = T (j′) are those with νTj′ = ν̂Tj′ . Such
stages don’t exist in (ξ, i], so ϕ(ξ) ≥ ϕ(i). But it is easy to verify that ϕ is
weakly monotonous along branches. So ϕ(ξ) = ϕ(i).

It also follows that
ξ = T̂ (ξ + 1).

This is because we know from Lemma 3.1 that κ̂ξ = κ̂i. Hence, T̂ (ξ + 1) =

T̂ (i) = ξ.
Case 1: ξ < i

Then, because ξ = T (ξ + 1), we know that 〈Nγ
ξ | γ ∈ [ϕ(ξ), α]〉 is the top

iteration of N
ϕ(ξ)
ξ . This is what our inductive hypothesis (2) at stage ξ gives us.

Set: λ̃
def
= sup{λj | j + 1 ∈ (ξ, i]T } ≤ λ̂i, and κ̃ = min{δ | λ̃ ≤ iUξ,i(δ)} (λ̃ ≤ λ̂i

because the former is a limit cardinal in Mi and the latter is the largest cardinal
in Mi. κ̃ exists because iTξ,i is cofinal).

We have the following situation: σξ

ϕ(i),ϕ(i)+1 : N
ϕ(i)
ξ −→

F
ϕ(i)
ξ

N
ϕ(i)+1
ξ ,

and N
ϕ(i)
i is the ultrapower of N

ϕ(i)
ξ by the long extender iUξ,i ↾ κ̃, κ̂

ϕ(i)
i =

crit(F
ϕ(i)
i ) = κ̂i = κ̂ξ = crit(F

ϕ(ξ)
ξ ) = κ̂

ϕ(ξ)
ξ < crit(iUξ,i) and λ̃ ≤ λ̂i =

lh(F
ϕ(i)
i ) = κ̂

ϕ(i)
i . So Lemma 3.3 can be applied and gives (2)(b).

The corresponding argument, but applying Lemma 3.2, gives (2)(c). To see
this, argue by induction on γ ≥ ϕ(i) + 1. Assume that we inductively know
that 〈N δ

i | δ ∈ [ϕ(i) + 1, γ]〉 are the models in an initial segment of the top

iteration of N
ϕ(i)+1
i . Call the iteration embeddings σi

µ,ν (ϕ(i)+1 ≤ µ ≤ ν ≤ γ).

Then we have the situation σξ
γ,γ+1 : Nγ

ξ −→F
γ

ξ
Nγ+1

ξ , and Nγ
i , Nγ+1

i are the

ultrapowers of Nγ
ξ , Nγ+1

ξ , resp., by the long extender iUξ,i ↾ P(κ̃). We have

just seen in the previous paragraph that λ̃ ≤ λ̂
ϕ(i)
i . But λ̂

ϕ(i)
i = κ̂

ϕ(i)+1
i ≤

σi
ϕ(i)+1,γ(κ̂

ϕ(i)+1
i ) = κ̂γ

i (note that, inductively, the embedding σi
ϕ(i)+1,γ exists).

This is all that’s required in order to be able to apply Lemma 3.2. It gives
that Nγ+1

i = Ult(Nγ
i , F

γ
i ) and that, denoting the ultrapower embedding by

σi
γ,γ+1, σ

i
γ,γ+1i

U
ξ,i = iUξ,iσ

ξ
γ,γ+1. Defining σi

µ,γ+1 = σi
γ,γ+1σ

i
µ,γ and σi

γ+1,γ+1 =

id, it’s obvious that these embeddings commute nicely: σi
µ,νi

U
ξ,i = iUξ,iσ

ξ
µ,ν , for

ϕ(i)+1 ≤ µ ≤ ν ≤ γ+1. We will make use of this commutativity when dealing
with the limit case.

So let γ be a limit ordinal. Let

〈Ñ , σi
µ,λ〉 = dir lim (〈Nµ

i | ϕ(i) + 1 ≤ µ < γ〉, 〈σi
µ,ν | ϕ(i) + 1 ≤ µ ≤ ν < γ〉).

We derive how to define an embedding τ : Ñ −→Σ0
Nγ

i . Let ψ be a Σ0 formula
which holds in Ñ of a = σi

µ,λ(ā). Letting ā = iUξ,i(f)(~α), where f ∈ κ̃m

Nµ
ξ ∩N

µ
ξ
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and ~α < λ̃, we get:

Ñ |= ψ[a] ⇐⇒ Nµ
i |= ψ[ā]

⇐⇒ ≺~α≻∈ iUξ,i({≺
~β≻< κ̃ | Nµ

ξ |= ψ[f(~β)]})

⇐⇒ ≺~α≻∈ iUξ,i(σ
ξ
µ,λ({≺ ~β≻< κ̃ | Nµ

ξ |= ψ[f(~β)]}) ∩ κ̃);

the last equivalence is because κ̃ ≤ λ̂ξ = κ̂
ϕ(i)+1
ξ ≤ κ̂µ

ξ (we already know that

λ̃ ≤ λ̂
ϕ(i)
i . So iUξ,i(λ̂ξ) = λ̂i ≥ λ̃. Now κ̃ = min{δ | λ̃ ≤ iTξ,i(δ)}, i.e., κ̃ ≤ λ̂ξ.).

Hence, we get:

Ñ |= ψ[a] ⇐⇒ ≺~α≻∈ iUξ,i({≺
~β≻< κ̃ | Nλ

ξ |= ψ[σξ
µ,λ(f)(~β)]})

⇐⇒ Nλ
i |= ψ[iUξ,i(σ

ξ
µ,λ(f)(~α)

︸ ︷︷ ︸

def
= τ(a)

].

That τ is well defined follows from the commutativity properties mentioned
above. To see that it is onto, note that every element b of Nλ

i is of the form

iUξ,i(f)(~α), for some f ′ ∈ κ̃m

Nλ
ξ ∩ N

λ
ξ and ~α < λ̃. Now f ′ = σξ

µ,λ(f), for

some µ ∈ [ϕ(i) + 1, λ), f ∈ Nµ
ξ . Then, setting b′ = σi

µ,λ(iUξ,i(f
′)(~α)), we have:

b = τ(b′), and this shows that Nλ
i = Ñ . Moreover, since τ is the identity, this

means, for a as above:

a = σi
µ,λ(iUξ,i(f)(~α))

= σi
µ,λ(iUξ,i(f))(~α)

= iUξ,i(σ
ξ
µ,λ(f)(~α),

which clearly implies that σi
µ,λi

U
ξ,i = iUξ,iσ

ξ
µ,λ, as wished.

Case 2: ξ = i.

Then κ̂i ≥ λj , for all j < i. So letting λ̃
def
= sup{λj | j + 1 ≤T i} ≤ λ̂i, and

κ̃ = min{δ | λ̃ ≤ iTξ,i(δ)} ≤ λ̂0 = κ̂1
0. So we can apply Lemma 3.2 to the long

extender iU0,i ↾ P(κ̃), whose generators are bounded by λ̃ ≤ κ̂
ϕ(i)
i . Of course,

〈Nγ
0 | γ ∈ [ϕ(i), α]〉 are the models in the top iteration of N

ϕ(i)
0 , by definition.

The argument is just like in case 1. We get that 〈N i
γ | γ ∈ [ϕ(i), α]〉 are the

models in the top iteration of N i
ϕ(i), which shows (2)(b) and (2)(c) at once.

Note that (2)(a) is trivial in this case. 2(2)

Proof of (3).
We omit the proof of (3)(b) because as a matter of fact, it is implicit in the

proof of (2)(b) in case 1. Replace ξ there by an arbitrary j <U i. The proof
goes thru.

To prove (3)(a), we again distinguish two subcases. Let ξ = T (i).
Case 1: νUi−1 is defined.
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Then ξ = U(i), ϕ(ξ) = ϕ(i), σξ

ϕ(ξ),ϕ(i) is the identity, and iTξ,i = iUξ,i ↾ N
ϕ(ξ)
ξ .

So we have trivially:
iTξ,i = iUξ,iσ

ξ

ϕ(ξ),ϕ(i).

This shows one instance of (3)(a). Now let j <T i. If j = ξ, we have just shown
what there is to show. Otherwise, j <T ξ <T i. We know that (3)(a) holds at
stage ξ, giving us:

iTj,ξ = iUj,ξσ
j

ϕ(j),ϕ(ξ).

Hence,

iTj,i = iTξ,ii
T
j,ξ

= iUξ,ii
U
j,ξσ

j

ϕ(j),ϕ(ξ)

= iUj,iσ
j

ϕ(j),ϕ(ξ),

which is what is claimed in (3)(a).
Case 2: νUi−1 is undefined.

So in this case, ϕ(i) = ϕ(i−1)+1, U(i) = i−1, νi = ν̂i and T̂ (i) = T (i) = ξ.
We first put (2)(a) and (b) at stage i− 1 to use. By (2)(a), ϕ(ξ) = ϕ(i− 1) and
ξ ≤T i− 1.

Noting that iTξ,i : N
ϕ(ξ)
ξ −→

F
ϕ(i−1)
i−1

N
ϕ(i)
i = N

ϕ(ξ)+1
i−1 , i.e., iTξ,i = π′

ξ,i−1, (2)(b)

says that
iTξ,i = iUξ,i−1σ

ξ

ϕ(ξ),ϕ(ξ)+1.

But iUξ,i−1 = iUξ,i and ϕ(ξ) + 1 = ϕ(i), so this says:

iTξ,i = iUξ,iσ
ξ

ϕ(ξ),ϕ(i),

which is one instance of (3)(a). To prove the full property (3)(a), let j <T i. If
j = ξ, we’re done. So let j <T ξ. Applying (3)(a) at stage ξ gives:

iTj,ξ = iUj,ξσ
j

ϕ(j),ϕ(ξ).

Finally, ξ = T̂ (ξ + 1) and hence κ̂ξ = κ̂
ϕ(ξ)
ξ ≥ λ̃ = supl<ξλl

. So Lemma 3.2 can
be applied to give

iUj,ξσ
j

ϕ(ξ),ϕ(ξ)+1 = σξ

ϕ(ξ),ϕ(ξ)+1i
U
j,ξ.

Putting the last three displayed equations together, we get:

iTj,i = iTξ,ii
T
j,ξ

= iUξ,iσ
ξ

ϕ(ξ),ϕ(i)i
U
j,ξσ

j

ϕ(j),ϕ(ξ)

= iUξ,ii
U
j,ξσ

j

ϕ(ξ),ϕ(ξ)+1σ
j

ϕ(j),ϕ(ξ)

= iUj,iσ
j

ϕ(j),ϕ(i),

as wished. We used that ϕ(i) = ϕ(ξ) + 1 here. 2(3)
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Main Case 2: i is a limit ordinal.
In this case, it suffices to prove (1) and (3), as the proof of (2) given in the

successor case works in the limit case just as well.
The proof of (1) is where property (3) will come in. We will define a Σ0

preserving embedding τ : MT
b′ −→ N

ϕ(i)
i . Remember that ϕ(i) = supj∈b ϕ(j).

So let a ∈MT
b′ . We will describe where a should be mapped. Being an element

of the direct limit, a has a preimage ā = (iTj,b′)
−1(a) in some Mj , where j ∈ b′.

Set:
τ(a) = iUj,λσ

j

ϕ(j),ϕ(λ)(ā).

Note that this makes sense since at least one of the following hold: a) ϕ(j) =
ϕ(λ), or b) j = T̂ (j+1). For if a) fails, then b) holds, because j has T -successor
(cf. the remark after the statement of property (3)(a)). In any case, σj

ϕ(j),ϕ(λ) is

defined, and all of this is indeed a definition of a function since the embeddings
involved commute as described in (3)(b). A routine verification shows that τ
is onto, and hence that (1) is satisfied at stage i. That τ is surjective indeed
means that τ is the identity, and hence, it follows from the definition of τ that

iTj,λ(ā) = a = τ(a) = iUj,λσ
j

ϕ(j),ϕ(λ)(ā),

which is precisely what is demanded in (3)(a). (3)(b) is again implicit in the
proof of (2)(c) in the successor case.

This finishes the construction.
Let us look back and see what we have achieved so far: We fixed an iteration

strategy Σ for the passive version of the top iterate N of M of stage α. Then
we described a partial function c on coarse normal iteration trees on M . The
α-iteration strategy Σ′ for M , which is claimed to exist by the theorem, is
described as follows: Given a coarse normal iteration tree T of limit length on
M , form the copy U = c(T ), which is a padded tree on N . If this is defined,
then it is a liberally padded normal coarse iteration tree on N (this notion is
defined in the next section). If U is according to Σ, and is of limit length, then
let b = Σ(U). Let b′ be defined from b as described in (⋆). If this is a cofinal
well founded branch of T , then set Σ′(T ) = b′. Otherwise, Σ′(T ) is undefined.

In order to see that this is a successful coarse normal α-iteration strategy
for M , the following has to be shown: If T is a coarse normal iteration tree on
M which is according to Σ′ and has length < α, then

1. If T has length θ + 1, ν indexes an extender in MT
θ with critical point

κ, and ν > νTi , for any i < θ, then, letting ξ be least s.t. κ < λTξ and ζ

be maximal s.t. F = E
MT

θ
ν is total on M∗ =MT

ξ ||ζ, then Ult(M∗, F ) is
well-founded.

2. If T has limit length, then c(T ) exists and is according to Σ, in a sense
which is made precise in the next section.

3. Further, if b = Σ(c(T )), and b′ is defined from b as in (⋆), then b′ is a
cofinal well-founded branch of T .
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We shall postpone these points to the end of the next section. Modulo these,
the proof of the Main Theorem is complete.

Corollary 4.2. If M is coarsely separately α-iterable, for every α, and if the se-
quence of the corresponding iteration strategies 〈Σα | α <∞〉 is definable, where
Σα is an α+ 1-iteration strategy of the coarse top iterate of stage α of M , then
M is coarsely iterable.

Proof. The proof of the Main Theorem shows how to convert the α+1-iteration
strategy Σα of the αth top iterate of M into a coarse α-iteration strategy Σ′

α of
M , in a uniform way. So the sequence 〈Σ′

α | α <∞〉 is definable. We can now
define a coarse normal∞-iteration strategy Σ for M , as follows: Given a coarse
normal iteration tree on M , we let α(T ) be the least ordinal α with the property
that b = Σ′

α(T ) is defined and for unboundedly many α′, Σ′
α′(T ) = b, if such

an α exists. If α(T ) exists, we let Σ(T ) = Σ′
α(T )(T ). It is straightforward to

check that Σ is a successful coarse normal iteration strategy.

5 The relationship between T and its “copy”

The following definition captures the kind of iteration tree our “copy” c(T ) of
T is.

Definition 5.1. A liberally padded strongly normal iteration tree T is a padded
iteration tree of some length θ with a set L of “lazy points” (this is just the set
of i such that νTi is undefined), in which the indices of extenders applied are
strictly increasing, and the rules for choosing predecessors are as follows:

A If i is not lazy, then let ξ = min({i} ∪ {j < i | j /∈ L ∧ κTi < λTj }). We

demand that MT
T (i+1) =MT

ξ .

B If i is lazy, then T (i+ 1) = i.

There is a subtle difference between this notion of a padded tree and that
given in [MS94b]. There, if α ∈ L, then α <T β iff β = α + 1 or α + 1 <T β,
whereas in the case of liberal padding it is possible that the tree branches at
α ∈ L.

This is only a mild difference, though, and it is quite easy to see that a
normal iteration strategy Σ for a premouseM can be extended to an iteration
strategy which works for liberally padded iteration trees on M. For given an
iteration tree T on M which is liberally padded, we can form a “condensed”
version T ′ of T , which can be viewed as indexed by equivalence classes of the
equivalence relation on lh(T ) which identifies ordinals indexing the same models.
Enumerating those equivalence classes in such a way that predecessors in the
tree order come first, the resulting tree is a coarse normal iteration tree. So
Σ can be applied to that tree, giving a cofinal well-founded branch b through
T ′. The interesting case now is that T ′ has limit length. In that case, one can
convert b into a cofinal branch through the original tree T as follows: Let c be
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the the set of T -predecessors of least members of equivalence classes of b, and
then let c′ be the branch generated by c. It is cofinal, andMT

c =MT ′

b .
This justifies the application of Σ to U in the proof of Theorem 4.1, since it

is clear that U is liberally padded. So at this point, the construction of c(T ) is
really done.

We shall need some more observations in order to prove the remaining three
points mentioned at the end of the proof of Theorem 4.1.

For this section, fix a coarse normal tree T and U = c(T ). Set

L = {i < θ | νTi = ν̂Ti and there are no drops in [0, i)T }.

This happens to be the set of lazy points of U . Let I be the set of maximal
intervals consisting of points i ∈ L. In order to gain a better understanding of
U , let’s introduce

S = {θ ∩ (I ∪ {lub I}) | I ∈ I}.

Here, we use lubA for the strict supremum of A, i.e., the least ordinal strictly
greater than all members of A, if A is nonempty, 0 otherwise. It follows that S

is pairwise disjoint. Hence we can define, for i < θ,

Ii
def
=

{
I if I is the unique I ∈ S s.t. i ∈ I,
{i} if no such I exists.

Set i ≃ j iff Ii = Ij . Hence,MU
i =MU

j iff i ≃ j, and Ii is the equivalence class
of i with respect to ≃.

This gives an alternative definition of the set E introduced in the course of
the proof of Theorem 4.1, to wit:

E = {min I | I ∈ S}.

So E consists of lazy points that begin a new interval of lazy points. We shall
also set:

E + 1 = {i+ 1 | i ∈ E}.

Suppose for the rest of this section that T is a coarse normal simple iteration
tree onM which is in accordance with the strategy Σ′ described in the previous
section. For the reader’s convenience we restate the choice of the branches on
the T -side: If i is a limit ordinal, then, letting b = [0, i)U = Σ(U ↾ i), we have
that [0, i)T = b′, where b′ is defined as follows:

If E + 1 ∩ [0, i)U is bounded, say by ξ, then b′ is the closure of b \ (ξ + 1)
under <T .

Otherwise, b′ is the closure of E + 1 ∩ b under <T .

Lemma 5.2. Let i+ 1 < θ = lh(U).

(a) If i /∈ L, then U(i+ 1) = T (i+ 1).

(b) If i ∈ L and i /∈ E, then T (i+ 1) = i = U(i+ 1).
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So, if j < θ is a successor ordinal which is not a member of E + 1, then
T (j) = U(j).

Proof. Claim (a) is obvious.
For (b), assume the contrary. Let i be the minimal counterexample.
If i is a successor, we know that i − i ∈ L, so κ̂i−1 = κ̂T (i), by Lemma 3.1.

Hence κTi = κ̂i = λ̂i−1 = λTi−1. So T (i+ 1) = i = U(i+ 1).

Now let i be a limit. Since i ∈ L but i /∈ E , ξ
def
= min Ii < i. Obviously then,

every α ∈ Ii ∩ i is a <U -predecessor of i. By the translation of branches from U
to T , every α ∈ Ii ∩ i which is greater than ξ, is also a T -predecessor of i.

Now we show that κi ≥ λα for every α ∈ (i ∩ Ii) \ {ξ}. Let such an α be

given. Then α <T α + 1 <T i, as we now know. So κ̂α+1 = iTα,α+1(κ̂α) = λ̂α,

by Lemma 3.1. So κ̂i ≥ iTα+1,i(κ̂α+1) ≥ λ̂α. But κTi = κ̂i and λTα = λ̂α, so we
are done.

In the following, we shall adopt the common convention of writing [0, i)T for
the set of all j such that j <T i, and analogously for U .

Lemma 5.3. <T ⊆<U .

Proof. We show by induction on i < lh(T ) that [0, i)T ⊆ [0, i)U .
This is obvious for i = 0.
Suppose we have shown the claim for all j ≤ i. We prove it for i+ 1. To do

this, we first check that T (i+ 1) <U i+ 1:
Case 1: i ∈ L.
Then T (i + 1) = T̂ (i + 1) ≤T i. By induction hypothesis, it follows that

T (i+ 1) ≤U i. Since i ∈ L, i <U i+ 1, so T (i+ 1) <U i+ 1, as claimed.
Case 2: i /∈ L.
Then T (i+ 1) = U(i+ 1) <U i+ 1.
Now [0, i + 1)T = {T (i + 1)} ∪ [0, T (i + 1))T . By induction hypothesis,

[0, T (i + 1))T ⊆ [0, T (i + 1))U . But since T (i + 1) <U i + 1, [0, T (i + 1))T ⊆
[0, i+ 1)U , and, finally, {T (i+ 1)} ∪ [0, T (i+ 1))U ⊆ [0, i+ 1)U .

Now let i be a limit ordinal. Let b = [0, i)U and b′ = [0, i)T . Since U = c(T ),
we know that b′ is the <T -closure of some subset of b. But then, the inductive
hypothesis yields that b′ ⊆ b, so we are done.

We now need some kind of a converse to the fact that <T ⊆<U . The following
will do:

Lemma 5.4. If i ≤U j and (E + 1) ∩ (i, j]U = ∅, then i ≤T j.

Proof. This follows from Lemma 5.2, by induction on j. Or, put differently,
deny, and let j be the least counterexample. Then i <U j.

From the abovementioned Lemma it follows that j cannot be a successor
ordinal. For if it were, then by Lemma 5.2, T (j) = U(j), and since (E + 1) ∩
(i,U(j)] = ∅, it follows by minimality of j that i ≤T U(j). But U(j) = T (j) <T

j, so i <T j, contradicting our assumption of the contrary.
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So j is a limit. Let b = [0, j)U . Since E + 1 ∩ b is bounded by i + 1 in j, it
follows that b′ = [0, j)T is the closure of b \ i + 1 under <T . So, in particular,
i <T j after all: Letting h be the immediate <U -successor of i in b, i is a
successor not in E + 1, so i = U(h) = T (h) ∈ b′.

Lemma 5.5. Let i0 ∈ E, and i0 + 1 ≤U i1 ∈ E. Further, assume that E + 1 ∩
(i0 + 1, i1] = ∅. Then T (i1 + 1) > i0.

Proof. By Lemma 5.4, it follows that i0 + 1 ≤T i1. So

κ̂i0+1 ≤ κ̂i1 .

Since i0 ∈ E , λi0 = λ̂i0 = κ̂i0+1 (we used Lemma 3.1 here). And i1 ∈ E , so
κi1 = κ̂i1 .

Hence, κi1 ≥ λi0 , or, in other words, T (i1 + 1) > i0.

Lemma 5.6. Let i0+1, i1+1 ∈ E+1 and i0+1 ≤U i1+1. Then i0+1 ≤T i1+1.

Proof. Deny. Fix i0 and let i1 be the least counterexample.
Then (i0 + 1, i1 + 1]U ∩ E + 1 6= ∅. Because otherwise, by Lemma 5.5, it

follows that T (i1 + 1) ≥ i0 + 1. But by Lemma 5.3, T (i1 + 1) <U i1 + 1. So,
both i0 + 1 and T (i1 + 1) are <U -predecessors of i1 + 1, and i0 + 1 ≤ T (i1 + 1).
This implies that

i0 + 1 ≤U T (i1 + 1).

But E + 1 ∩ (i0 + 1, T (i1 + 1)]U = ∅, so by Lemma 5.4, i0 + 1 ≤ T (i1 + 1). Of
course, T (i1 + 1) <T i1 + 1, so we get that i0 + 1 ≤T i1 + 1, after all.

Moreover, E + 1 ∩ (i0 + 1, i1]U has no maximal element. For suppose µ + 1
were maximal in that set. Note that since i1 ∈ E , i1 /∈ E +1. So µ+1 < i1, and

E + 1 ∩ (µ+ 1, i1]U = ∅.

By the argument in the previous paragraph, replacing i0 with µ, it follows that

µ+ 1 <T i1 + 1.

And since i1 is the least counterexample for the claim of the lemma, we have
that

i0 + 1 ≤T µ+ 1,

which shows that i0 + 1 <T i1 + 1 after all.
So let σ = sup(E + 1 ∩ (i0 + 1, i1]U ). Let c = [0, i1]U ∩ σ. Since σ is a limit

of c, σ <U i1, and hence, c = [0, σ)U . It follows that, letting c′ be the <T -hull
of c ∩ (E + 1), c′ = [0, σ)T . So,

i0 + 1 <T σ <U i1 + 1.

But since (σ, i1] ∩ E + 1 = ∅, we know by Lemma 5.4 that σ ≤T i1. So,

i0 + 1 <T i1.
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Now, repeating the argument from Lemma 5.5, we show that

T (i1 + 1) ≥ σ.

For otherwise we could pick h+ 1 ∈ E + 1 ∩ (i0 + 1, σ)U so that κi1 < λh. But
κi1 = κ̂i1 and, since h + 1 ∈ E + 1, λh = κ̂h+1, which, since h + 1 <T i1, is at
most κ̂i1 . So κi1 ≥ λh, a contradiction.

So, both σ and T (i1 + 1) are <U -predecessors of i1 + 1, and σ ≤ T (i1 + 1),
which shows that σ ≤U T (i1 + 1). But (σ, T (i1 + 1)] ∩ E + 1 = ∅, so

i0 + 1 <T σ ≤T T (i1 + 1) <T i1 + 1,

which contains the claim to the failure of which i1 was chosen to be a witness.

Now we are ready to verify that the strategy Σ′ described in the proof of
the Main Theorem is a successful coarse normal α-iteration strategy forM. So
we have to verify the points mentioned at the end of that proof; we reproduce
them here, for the reader’s convenience. If T is a coarse normal iteration tree
on M which is according to Σ′ and has length < α, then we have to show:

1. If T has length θ + 1, ν indexes an extender in MT
θ with critical point

κ, and ν > νTi , for any i < θ, then, letting ξ be least s.t. κ < λTξ and ζ

be maximal s.t. F = E
MT

θ
ν is total on M∗ =MT

ξ ||ζ, then Ult(M∗, F ) is
well-founded.

2. If T has limit length, then c(T ) exists and is according to Σ.

3. Further, if b = Σ(c(T )), and b′ is defined from b as in (⋆), then b′ is a
cofinal well-founded branch of T . (The definition of b′ will be repeated in
the proof below.)

The first of these points is clear, since the construction of c(T ) shows that
c(T ′) exists, where T ′ is the one-point extension described in that point.

The second point is clear as well, since for every limit λ < lh(T ), the branch
[0, λ)T was picked by Σ′, which means that [0, λ)c(T ↾λ) was picked by Σ.

For the last point: We have to show that b′ is a cofinal well-founded branch
of T , where b′ is defined by cases, as follows.

The first case is that [0, i)U ∩ (E + 1) is bounded in i. In that case, if ξ is
such a bound, then b′ is the closure of b \ (ξ + 1) under <T . For α, β ∈ b such
that α <U β, it follows from Lemma 5.4 that α <T β. So b′ is a cofinal branch
of T .

In the second case, [0, i)U ∩ (E + 1) is cofinal in i. In that case, b′ is the <T -
closure of b∩ (E + 1). By Lemma 5.6, if α < β both are elements of b∩ (E + 1),
then α <T β. So in that case too, b′ is a cofinal branch.

That b′ is well-founded follows from the construction of T and U : The
universe of the limitMT

b′ is the same as that of N
ϕ(i)
i , in the terminology of the

proof of the main theorem.
This completes the proof of Theorem 4.1.
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