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Abstract

Answering a question of Sakai [7], we show that the existence of an
ω1-Erdős cardinal suffices to obtain the consistency of Chang’s Conjecture
with �ω1,2. By a result of Donder [3] this is best possible.

We also give an answer to another question of Sakai relating to the
incompatibility of �λ,2 and (λ+, λ)� (κ+, κ) for uncountable κ.

1 Introduction

Chang’s Conjecture is a model-theoretic principle asserting a strengthening of
the Löwenheim-Skolem Theorem [1]. Chang’s Conjecture was originally shown
to be consistent assuming the existence of a Ramsey cardinal by Silver (see
[6]) and this assumption was later weakened to the existence of an ω1-Erdős
cardinal [4]. This result is best possible, since Chang’s Conjecture implies that
ω2 is ω1-Erdős in the core model [3].

Chang’s Conjecture is known to be incompatible with Jensen’s square prin-
ciple �ω1

(see [9]) but was recently shown to be consistent with Schimmerling’s
square principle �ω1,2 by Sakai [7], assuming the existence of a measurable
cardinal. In light of this consistency upper bound, Sakai posed the following:

Question 1. What is the consistency strength of the conjunction of Chang’s
Conjecture with �ω1,2?

In Corollary 12 we show that the consistency of the given statement follows
from the existence of an ω1-Erdős cardinal, answering Sakai’s question. Section
2.1 of the paper will cover some basic preliminaries, such as the definition of
the relevant square principle and large cardinal. In Section 2.2 we describe
our forcing poset. In Silver’s consistency proof, he used what is now called a
Silver forcing poset–a modification of the Levy Collapse forcing which allows
larger supports [6]. Cummings and Schimmerling [2] have introduced another
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variant of the Levy Collapse forcing which collapses inaccessible κ to ω2 while
simultaneously adjoining a square sequence. Our forcing will be a hybrid of these
two posets–in other words it will be a “Silverized” Cummings-Schimmerling
poset.

Finally, in Section 2.3 we give the proof of our result, which is based on the
methods of [7] and [4].

In Section 3 we investigate the relation between weak square principles and
model theoretic transfer properties (i.e., generalizations of Chang’s Conjecture)
of the form (λ+, λ)� (κ+, κ) for κ ≥ ℵ1. Sakai proved the following:

Theorem 2 (Sakai, [7]). Suppose that (λ+, λ) � (κ+, κ), where κ is an un-
countable cardinal and λ is a cardinal > κ. Moreover, suppose that either of the
following holds:

(I) λ<λ = λ

(II) κ < ℵω1 , and there are strictly more regular cardinals in the interval
[ℵ0, κ] than in the interval (κ, λ].

Then �λ,κ fails.

Although Theorem 2 imposes substantial constraints on the interaction of
weak square principles and model theoretic transfer properties, there are many
instances where it does not apply. For example, it does not answer the question
of whether (ℵ4,ℵ3)� (ℵ2,ℵ1) is incompatible with �ω3,2 when 2ℵ2 > ℵ3.

In light of these limitations, Sakai posed the following question:

Question 3 (Sakai, [7]). Let κ be an uncountable cardinal and λ a cardinal
> κ. Does (λ+, λ)� (κ+, κ) imply the failure of �λ,2?

We answer this question in the affirmative in Corollary 20 (in fact we obtain
the failure of �λ,ω under these hypotheses and more under slightly stronger
hypotheses–see Corollaries 21 and 22). Taking κ = ℵ1, λ = ℵ3 in this theorem
shows that indeed (ℵ4,ℵ3)� (ℵ2,ℵ1) is incompatible with �ω3,2, regardless of
the value of 2ℵ2 .

2 The Consistency of Chang’s Conjecture and
�ω1,2 from an ω1-Erdős Cardinal

2.1 Preliminaries

In the following, for any cardinal θ we denote by H(θ) the collection of all sets
whose transitive closure has size < θ. We frequently confuse a structure and its
underlying set. I.e., ifM = 〈M, . . .〉 is a structure and α is an ordinal, we write
α ⊆ M to mean α ⊆ M . All structures we consider have at most countably
many symbols in their signature.

Definition 4. Chang’s Conjecture is the assertion that for any structure N
with ω2 ⊆ N , there exists M� N such that |M| = ℵ1 and |M ∩ ω1| = ℵ0.
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We observe that to verify Chang’s Conjecture it suffices to verify it for models
with underlying set H(ω2):

Claim 5 (Folklore). Suppose that for all structures H = 〈H(ω2) , . . . 〉 there
exists M � H of cardinality ℵ1 such that |M ∩ ω1| = ℵ0. Then Chang’s Con-
jecture holds.

Proof. This is a standard model-theoretic argument. Suppose thatN = 〈N,R1, R2, . . . 〉
is any structure with ω2 ⊆ N . We may assume without loss of generality that
|N | = ℵ2. Let π : N → H(ω2) be any injection which is the identity on ω2. Let
H = 〈H(ω2) , Ñ , R̃1, R̃2, . . . 〉, where Ñ is a predicate representing membership
in π [N ] and R̃i is a predicate representing Ri in the natural way. By our as-
sumption there is M � H of cardinality ℵ1 such that |M ∩ ω1| = ℵ0. Pulling
back via π, we get the desired submodel of N .

Square properties are a family of “incompactness principles” regarding se-
quences of clubs.

Definition 6 ([8]). Suppose that κ is an infinite cardinal and λ is a nonzero (but

potentially finite) cardinal. A �κ,λ-sequence is a sequence ~C = 〈Cα : α < κ+〉
such that:

1. For all α < κ+, 1 ≤ |Cα| ≤ λ.

2. For all α < κ+ and C ∈ Cα, C is a club subset of α and otpC ≤ κ.

3. (Coherence) For all α < κ+, every C ∈ Cα threads 〈Cβ : β < α〉 in the
sense that C ∩ β ∈ Cβ for all β which are limit points of C.

We say that �κ,λ holds if such a sequence exists.

In this section we will be concerned only with �ω1,2. In order to obtain our
result, we will need to make use of a large cardinal hypothesis:

Definition 7. A cardinal κ is said to be ω1-Erdős if it is least such that for
any partition f : [κ]

<ω → 2, there is H ∈ [κ]
ω1 which is homogeneous for f .

Lemma 8 (Silver). If κ is ω1-Erdős, then for any structure M with κ ⊆ M,
there is a set of indiscernibles I ∈ [κ]

ω1 for M. Morever, if M has underlying
set H(κ) and includes among its predicates some C which is a well-ordering
of its universe, we may assume I consists of inaccessible cardinals which are
remarkable in the sense that for any γ ∈ I, I \ γ is a set of indiscernibles for
〈M, (δ)δ<γ〉.

Proof. See [5], [3].

2.2 The Poset

Our poset P is a “Silverized” version of the one appearing in [2] in the sense
that we modify their poset to allow conditions with ω1-sized support. We define
P = Pκ as follows: set p ∈ P iff p is a function so that
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(1) The domain of p is a closed ≤ ω1-sized set of limit ordinals less than κ.

(2) If cf α = ω and α ∈ dom p then 1 ≤ |p (α)| ≤ 2 and each set in p(α) is a
club subset of α with countable order type.

(3) If cf α = ω1 and α ∈ dom p then p(α) = {C} where C is a club subset of α
with order type ω1.

(4) If cf α ≥ ω2 then p(α) = {C} where C is a closed bounded subset of α with
countable order type such that maxC = sup (dom p ∩ α).

(5) If α ∈ dom p, C ∈ p(α) and β ∈ lim (C), then β ∈ dom p and C ∩ β ∈ p(β).

(6) The supremum of otpC taken over all C ∈ p(α), cf α ≥ ω2, is strictly below
ω1.

For two elements p, q ∈ Pκ, we set p ≤ q iff:

1. dom q ⊆ dom p

2. For all α ∈ dom q:

(a) If cf α ∈ {ω, ω1}, then p(α) = q(α).

(b) If cf α ≥ ω2, p(α) = {C} and q(α) = {D}, then C is an end-extension
of D in the sense that D = C ∩ (max (D) + 1).

Lemma 9. Suppose that κ is inaccessible. Then P = Pκ is κ-c.c. and countably
closed, and collapses κ to ℵ2 while adding a �ω1,2-sequence.

Proof. The proof is very similar to that of the corresponding result in [2]. The
fact that P is κ-c.c. follows from a standard ∆-system argument. If we can show
that P is countably closed, then the second conclusion follows immediately. So
suppose that 〈pn : n < ω〉 is a decreasing sequence of conditions.

Let X be the set of α ∈
⋃
n<ω dom pn such that the value of pn(α) does not

eventually stabilize and let

Y = {sup
n<ω

max pn(α) : α ∈ X}

Observe that Y ∩
(⋃

n<ω dom pn
)

= ∅, since if α ∈ X the fact that max (pn(α)) ≥
sup (dom pn ∩ α) for every n gives

sup
n<ω

max pn(α) /∈
⋃
n<ω

dom pn

Let

Z =

(⋃
n<ω

dom pn

)
∪ Y
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where the overline indicates closure in the ordinal topology. We claim that
Z is closed. To show this it suffices to show that any limit point of Y lies
in
⋃
n<ω dom pn. Moreover, this will itself follow from the assertion that any

element of Y lies in
⋃
n<ω dom pn. But this is immediate by condition (4) in

the definition of P.
We will define a condition pω with domain Z which is a lower bound for

〈pn : n < ω〉. First, if α ∈
⋃
n<ω dom pn \X, let pω(α) be the eventual value of

the sequence 〈pn(α) : n < ω〉. If α ∈ X, then set

pω(α) =
⋃
n<ω

pn(α) ∪ {sup
n<ω

max pn(α)}

Next, if α ∈ Y then α = supn<ω max pn(β) for a unique β ∈ X, and we set

pω(α) =
⋃
n<ω

pn(β) ∪ {sup
n<ω

max pn(β)}

for this β. Finally, suppose α ∈
(⋃

n<ω dom pn
)
\
(⋃

n<ω dom pn
)

and pω(α) is
yet to be defined. Set

pω(α) = {max (dom (pn) ∩ α) : n < ω}

Clearly this set is unbounded in α. Moreover, this set has order-type ω, and
therefore has no limit points below α (and is club in α). Therefore we are in no
danger of violating coherence (condition (5) in the definition of P) by defining
pω(α) as such.

We refer to the condition pω defined above as the canonical lower bound of
〈pn : n < ω〉.

We also define a threading poset for a given �ω1,2-sequence. Supposing

that ~C = 〈Cα : α < ω2〉 is such a sequence, we let T = T~C be the poset of
closed bounded subsets C of ω2 of countable order type such that C threads
〈Cα : α ≤ maxC〉 in the sense that C ∩ α ∈ Cα for all α which are limit points
of C.

If C,D ∈ T, then we set C ≤ D if and only if C is an end-extension of D.
Finally, suppose that µ < κ are two inaccessible cardinals. If G is the generic

added by Pµ, then Q = Qµ,κ,G is the poset in V [G] defined by setting q ∈ Q iff
q ∈ V and:

(a) dom q is a closed ≤ ω1-sized set of limit ordinals in the interval (µ, κ).

(b) If cf α = ω and α ∈ dom q, then 1 ≤ |q(α)| ≤ 2 and each element of q(α) is
a club with countable order type.

(c) If cf α = ω1 and α ∈ dom q then q(α) = {C} where C is a club subset of α
with order type ω1.

(d) If cf α ≥ ω2, then q(α) = {C} where C is a closed bounded subset of α with
countable order type such that maxC = sup (dom q ∩ α).
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(e) If α ∈ dom q, C ∈ q(α), and β ∈ limC, then:

(A) If β > µ, then β ∈ dom q and C ∩ β ∈ q(β).

(B) If β < µ, then C ∩ β ∈ Cβ , where 〈Cβ : β < µ〉 is
⋃
G.

(f) The supremum of otpC taken over all C ∈ q(α), cf α ≥ ω2, is strictly below
ω1.

For two elements p, q ∈ Qµ,κ, we set p ≤ q iff:

(1) dom q ⊆ dom p

(2) For all α ∈ dom q:

(a) If cf α ∈ {ω, ω1}, then p(α) = q(α).

(b) If cf α ≥ ω2, p(α) = {C}, q(α) = {D}, then C is an end-extension of
D.

Claim 10. Suppose that µ, κ are inaccessible cardinals with µ < κ, and Ġ is
the canonical name for the Pµ-generic. Then if we let Ṫ = Ť⋃

Ġ, Q̇ = Q̌µ,κ,Ġ,
there is an isomorphism between a dense subset of Pκ and a dense subset of
Pµ ∗ Ṫ∗ Q̇. In particular these two forcings are equivalent, so informally we may
view them as being equal.

Proof. As in [2].

2.3 The Proof

Theorem 11. Suppose that κ is an ω1-Erdős cardinal. Let P = Pκ. Then for
any P-generic G, V [G] satisfies Chang’s Conjecture.

Corollary 12. The existence of an ω1-Erdős cardinal is equiconsistent with
“Chang’s Conjecture plus �ω1,2.”

Proof of Corollary 12. By Theorem 11 and Lemma 9 an ω1-Erdős cardinal suf-
fices for the consistency of Chang’s Conjecture plus �ω1,2. By [3], the consis-
tency of Chang’s Conjecture implies that of the existence of of an ω1-Erdős
cardinal.

Proof of Theorem 11. Suppose that G is a P-generic over V . Then ω
V [G]
2 = κ

and (H(κ))
V [G]

= H(κ)[G]. Let H = 〈H(κ),∈, Ṙ〉, which we view as a name for
a structureH[G] with underlying setH(κ)[G] and predicate R = ṘG ⊆ H(κ)[G].

We seek a condition p∗ ∈ P and a name Ȧ for an elementary substructure
A of H[G] such that p∗ forces |Ȧ| = ℵ1, |A ∩ ω1| = ℵ0. With this in mind, let
I = {ια : α < ω1} be a collection of remarkable indiscernibles for H. For each
α < ω1, let Iα = {ιδ : δ < ωα} be the set of the first ωα indiscernibles and let
γα = ιωα. Let Mα be the Skolem Hull of Iα in H.

We construct a sequence 〈p∗α : 1 ≤ α < ω1〉 by induction on α so that:

6



(a) If 1 ≤ α < β < ω1 then p∗β ≤ p∗α.

(b) p∗α is a master condition for P over Mα.

(c) p∗α is an element of Pγα .

We begin with the base case α = 1. Consider the set P ∩M1 = (PON)
M1 ,

which is a proper class in M1. Observe that since M1 is elementary in H,
M1 satisfies “P has the <-ON chain condition.” In other words, M1 be-
lieves that every antichain in P is a set. For each antichain A in M1, let
A↓ = {p ∈ P : (∃q ∈ A) p ≤ q} be the downwards closure of A. Let {Ai : i < ω}
enumerate the collection of all maximal antichains which are elements of M1.
By induction we may construct a descending sequence {ri : i < ω} of elements

of P such that ri ∈ A↓i ∩M1. Let p∗1 ∈ P be the canonical lower bound for the
sequence {ri : i < ω}. Then p∗1 is a master condition for P over M1 and is an
element of Pγ1 , as desired.

Next suppose that α is limit. Choose a sequence 〈αn : n < ω〉 cofinal in α,
and let p∗α be the canonical lower bound for

〈
p∗αn : n < ω

〉
. It should be clear

that properties (a)-(c) are satisfied, since P ∩ Mα =
⋃
n<ω (P ∩Mαn), and

P ∩Mα = (PON)
Mα has the <-ON chain condition in Mα.

Finally we consider the case where α = ᾱ + 1 is a successor ordinal. We
distinguish between the case where ᾱ is a nonzero limit ordinal and where ᾱ is
itself a successor ordinal, considering first the latter. Since p∗ᾱ was chosen to be
a master condition for P over Mᾱ, we have

p∗ᾱ 
Mᾱ[Ġ] � H[Ġ] ∧ON ∩Mᾱ[Ġ] = ON ∩Mᾱ

Consider Mα. By remarkability of the indiscernibles which generate Mα,
we have H(γᾱ)∩Mα =Mᾱ and Pγᾱ ∩Mα = P∩Mᾱ. Moreover, p∗ᾱ is a master
condition for the forcing Pγᾱ over the modelMα, since Pγᾱ has the γᾱ-c.c. and
therefore every antichain of Pγᾱ in Mα is an element of H(γᾱ) ∩Mα = Mᾱ.

So if we let Ġγᾱ be the canonical name for the Pγᾱ -generic, then

p∗ᾱ 
Mα[Ġγᾱ ] � H[Ġγᾱ ] ∧ON ∩Mα[Ġγᾱ ] = ON ∩Mα

Working in V , let Ṫ = Ť⋃
Ġγᾱ

be the canonical name for the threading forcing

associated to Gγᾱ . Let {Ḃi : i < ω} enumerate all names in Mα which are

forced by p∗ᾱ to be maximal antichains of Ṫ. By induction we may construct a
descending sequence

{
ťi : i < ω

}
of “check-names” (by which we mean canonical

names for elements of V ) for elements of T = ṪGγᾱ such that

p∗ᾱ 
 ťi ∈ Ḃ
↓
i ∩Mα[Ġγᾱ ]

where Ḃ↓i is a name for the downwards closure of Bi = Ḃ
Gγᾱ
i in T. Observe that

we may take canonical names for elements of V ťi rather than merely arbitrary
names ṫi since p∗ᾱ is a master condition for Pγᾱ over Mα.
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Still working in V , we let

t =
⋃
i<ω

ti

p∗∗ᾱ = p∗ᾱ ∪ {(sup (Mᾱ ∩ κ), {t})}

Then p∗ᾱ ∗ ť is a master condition for Pγᾱ ∗ Ṫ over Mα. Now observe that Q̇ =
Q̌γᾱ,ON,Ġγᾱ

is definable over 〈Mα[Gγᾱ ],∈,Mα〉 (i.e. the structure Mα[Gγᾱ ]

with signature expanded to include a predicate for membership in Mα). So we
may proceed as above to find q̇ ∈ Q̇ such that p∗ᾱ ∗ ť ∗ q̇ is a master condition for
Pγᾱ ∗ Ṫ∗ Q̇ overMα. Thus if we set p∗α = p∗∗ᾱ ∗ ť∗ q̇, we may view p∗α as a master
condition for P over Mα which extends p∗ᾱ. We note that p∗α(sup (Mᾱ ∩ κ)) =
{t}.

For nonzero limit ᾱ, the construction is exactly as above, except we mod-
ify p∗α(sup (Mᾱ ∩ κ)) to be {t, F}, where t is a master condition for the threading
poset associated to the generic for Pγα (as above) and F = {sup (Mδ ∩ κ) : δ < ᾱ},
rather than merely taking p∗α(sup (Mᾱ ∩ κ)) to be {t}.

Observe that this is the only place in the proof where we use the allowed
“two-ness” of the square sequence. Moreover, in adding F we preserve the
coherence property since its initial segments of limit length were put on the
square sequence at earlier successor of limit stages.

Finally, at the end of the construction we set

p∗ =
⋃
α<ω1

p∗α ∪
{

(sup (
( ⋃
α<ω1

Mα

)
∩ κ), F ∗)

}
where F ∗ = {sup (Mα ∩ κ) : α < κ}. The construction ensures that this is a
condition in P = Pκ. In particular, successor of limit stages ensure that the
initial segments of limit length of F ∗ appear on the square sequence, and so
when adding F ∗ there is no danger of violating coherence. Moreover, p∗ is a
master condition for P over M =

⋃
α<ω1

Mα. Thus p∗ forces that M[G] is the
desired elementary submodel of H[G].

3 Higher Chang’s Conjectures vs. Weak Squares

In this section we concern ourselves with generalizations of Chang’s Conjecture
to higher cardinals.

Definition 13. Suppose that τ ≤ κ < λ are cardinals. We write (λ+, λ) �
(κ+, κ) if for every structure N with λ+ ⊆ N , there exists M � N such that
|M| = κ+ and |M ∩ λ| = κ.

Similarly, we write (λ+, λ)�τ (κ+, κ) if for every structure N with λ+ ⊆ N ,
there exists M� N such that |M| = κ+, |M ∩ λ| = κ, and τ ⊆M.

Observe that Chang’s Conjecture is equivalent to (ℵ2,ℵ1) � (ℵ1,ℵ0) and
that (λ+, λ) � (κ+, κ) is equivalent to (λ+, λ) �ω (κ+, κ) for any infinite
cardinals κ < λ. Moreover, we also have:
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Lemma 14. Suppose that τ ≤ κ < λ are infinite cardinals and there are at
most τ many cardinals between κ and λ. Then (λ+, λ) �τ (κ+, κ) implies
(λ+, λ)�κ (κ+, κ).

Proof. The lemma is implicit in [7]. Specifically, the conclusion of the lemma
holds by following the argument of Case (2) of Lemma 4.15 in [7].

Lemma 15. Suppose that τ ≤ κ < λ are infinite cardinals such that λτ = λ.
Then (λ+, λ)� (κ+, κ) implies (λ+, λ)�τ (κ+, κ).

Proof. Take B = τ in Case (1) of Lemma 4.15 in [7].

In the argument below we make use of the following claim without comment:

Claim 16. Suppose that for all sufficiently large θ and all structures H =
〈H(θ),∈, . . . 〉 there exists M� H such that |M ∩ λ+| = κ+, |M ∩ λ| = κ, and
τ ⊆M. Then (λ+, λ)�τ (κ+, κ).

The proof is entirely analogous to that of Claim 5.

Lemma 17 (Folklore). Suppose that κ < λ are infinite cardinals and θ is
a sufficiently large regular cardinal. Let M be an elementary substructure of
〈H(θ) ,∈〉 such that |M ∩ λ+| = κ+ and |M ∩ λ| = κ. Then the order type of
M ∩ λ+ is κ+.

Proof. Suppose otherwise for a contradiction. Since |M ∩ λ+| = κ+, the order
type of M ∩ λ+ must be strictly greater than κ+. Let α be the κ+ element of
M ∩λ+. Observe that α ≥ λ (since there are only κ many elements of M below
λ) and hence by elementarity λ = |α| is an element of M . Applying elementarity
again, there is f ∈M which is a bijection from α to λ. In particular,

f“ (M ∩ α) ⊆M ∩ λ

which is a contradiction since the left hand side has cardinality κ+ (since f is a
bijection) whereas the right hand side has cardinality κ.

Lemma 18 (Folklore). Suppose that M is an elementary substructure of 〈H(θ) ,∈〉
for some sufficiently large θ and α ∈ M . Letting µ = cf α, if f ∈ M is an in-
creasing function from µ into α whose range is cofinal in α, then

sup (f“ (M ∩ µ)) = sup (M ∩ α)

Proof. Clearly sup (f“(M ∩ µ)) ≤ sup (M ∩ α), since f ∈ M and f : µ → α.
For equality, suppose for a contradiction that

sup (f“(M ∩ µ)) < sup (M ∩ α)

and choose β ∈M ∩ α such that β > sup (f“ (M ∩ α)). By elementarity

M |= (∃ ξ ∈ µ) (f(ξ) > β)
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and so choosing ξ0 ∈M ∩µ to witness the existential statement above we have:

sup (f“(M ∩ µ)) < β < f(ξ0)

an obvious contradiction.

Theorem 19. Suppose that κ < λ are uncountable cardinals and τ ≤ κ is
infinite. Suppose moreover that �λ,τ holds. Then (λ+, λ)�τ (κ+, κ) fails.

Corollary 20. Suppose that κ < λ are uncountable cardinals and (λ+, λ) �
(κ+, κ) holds. Then �λ,ω fails.

Proof. Immediate from the theorem and the fact that (λ+, λ) � (κ+, κ) is
equivalent to (λ+, λ)�ω (κ+, κ).

Corollary 21. Suppose that κ < λ are uncountable cardinals and there are
at most countably many cardinals between κ and λ. Then (λ+, λ) � (κ+, κ)
implies the failure of �λ,κ.

Proof. This follows immediately from Theorem 19 and Lemma 14 by taking
τ = ω.

Observe that the same argument shows that if there are at most τ many
cardinals between κ and λ then (λ+, λ)�τ (κ+, κ) implies the failure of �λ,κ.

Corollary 22. Suppose that κ < λ are uncountable cardinals and τ ≤ κ is
some infinite cardinal with λτ = λ. Then (λ+, λ) � (κ+, κ) implies the failure
of �λ,τ .

Proof. Immediate from Theorem 19 and Lemma 15.

Proof of Theorem 19. Suppose for a contradiction that �λ,τ held in conjunction

with (λ+, λ)�τ (κ+, κ), and let ~C = 〈Cξ : ξ < λ+〉 be a �λ,τ sequence. Choose

M an elementary substructure of 〈H(θ) ,∈, ~C〉 (for sufficiently large θ) such that
|M ∩ λ+| = κ+, |M ∩ λ| = κ, and τ ⊆M .

Fix a club C∗ ∈ Csup (M∩λ+). By Lemma 17, we may choose a club D in
sup (M ∩ λ+) of ordertype κ+. We assume moreover that D consists only of
limits of ordinals in M .

Claim 23. For all sufficiently large α ∈ C∗, the ordertype of C∗ ∩ α is not an
element of M .

Proof. These ordertypes are distinct elements of λ, and since |M ∩ λ| = κ, at
most κ of them can belong to M . Since the cofinality of supC∗ = sup (M ∩ λ+)
is κ+, the result follows immediately.

Claim 24. For all sufficiently large α ∈ LimC∗, α /∈M .

Proof. Choose α ∈ LimC∗ and note that C∗ ∩ α ∈ Cα. If α ∈ M , then Cα ⊆
M (since |Cα| ≤ τ and τ ⊆ M) and so in particular C∗ ∩ α ∈ M , giving
otp (C∗ ∩ α) ∈ M . By Claim 23, this may happen for only boundedly many
α ∈ C∗.
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For each α below sup (M ∩ λ+), let α↑ denote the least element of M which
is ≥ α.

Claim 25. For all sufficiently large α ∈ Lim (C∗ ∩D), α↑ is strictly greater
than α.

Proof. Immediate from Claim 24.

Now define:

Z =
{
µ ≤ λ : µ = cf (α↑) for unboundedly many α in Lim (C∗ ∩D)

}
Claim 26. |Z| ≤ κ.

Proof. For each α ∈ Lim (C∗ ∩D), α↑ is an element of M below λ+, and there-
fore its cofinality is an element of M ∩ (λ+ 1), which has cardinality κ.

Claim 27. There is µ ∈ Z with µ ≥ κ+.

Proof. By Claim 26, it is enough to find unboundedly many α ∈ Lim (C∗ ∩D)
such that cf (α↑) ≥ κ+.

Fix any α ∈ Lim (C∗ ∩D) large enough for Claim 25, with cf (α) = κ.
Observe that there are unboundedly many such α since the ordertype of C∗∩D
is κ+. By choice of α, sup(M ∩ α↑) = α < α↑. Then:

κ = cf α < cf α↑

by Lemma 18.

Claim 28. |Z| ≥ 2.

Proof. By Claim 26, it suffices to find disjoint A1, A2 ⊆ Lim (C∗ ∩D) such that

A1, A2 are unbounded and for any α1 ∈ A1, α2 ∈ A2, we have cf (α↑1) 6= cf (α↑2).
To do so, choose distinct regular η1, η2 ≤ κ. Observe that this is possible

since κ is uncountable. Now let

A1 = {α ∈ Lim (C∗ ∩D) : cf α = η1}
A2 = {α ∈ Lim (C∗ ∩D) : cf α = η2}

Clearly A1, A2 are disjoint and unbounded. Moreover, for any α1 ∈ A1, α2 ∈ A2,
we have cf (α↑1) 6= cf (α↑2) by Lemma 18.

Now to prove the theorem:
Fix distinct µ1, µ2 ∈ Z with µ1 > µ2 and µ1 ≥ κ+. Fix α1, α2 ∈ Lim (C∗ ∩D),

large enough for Claims 23 and 24 and with α1 < α2, so that cf (α↑1) = µ1 and

cf (α↑2) = µ2. Fix E ∈M cofinal in α↑2 of ordertype µ2.
Let

U =
{

sup (C ∩ α↑1) + 1: C ∈
⋃
ξ∈E

Cξ with sup (C ∩ α↑1) < α↑1
}
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Claim 29. sup (C∗ ∩ α↑1) + 1 ∈ U .

Proof. Note first that C∗ ∩α↑1 is bounded in α↑1, since otherwise we would have

α↑1 ∈ LimC∗, and as α↑1 > α1 is an element of M this would contradict choice of

α1. Now since E is club in α↑2 and belongs to M , we have α2 = sup (M ∩ α↑2) ∈
E, where the equality follows from Lemma 18. Since C∗ ∩ α2 ∈ Cα2

, and

since C∗ ∩ α2 ∩ α↑1 = C∗ ∩ α↑1 is bounded in α↑1, it follows by definition that

sup (C∗ ∩ α↑1) + 1 is in U .

We have U ∈ M by elementarity and since the parameters used are in
M . U has cardinality < µ1 by definition and since µ1 > max (µ2, κ). Since

cf (α↑1) = µ1, it follows that U is bounded in α↑1.

Moreover, since U ∈M we have supU ∈M , and since supU < α↑1 it follows
that supU ≤ α1. But this contradicts Claim 29, since α1 ∈ C∗ and therefore

sup (C∗ ∩ α↑1) + 1 ≥ α1 + 1 > α1
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