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Determinacy:

ωω is the set of infinite sequences of natural numbers.

Let A ⊂ ωω. Define Gω(A) to be the following game:

I a0 a2 a4 a6 a8 · · ·
II a1 a3 a5 a7 a9 · · ·

Players I and II alternate playing numbers an ∈ ω, forming tog-

ether an infinite sequence z = 〈a0, a1, a2, · · · · · · 〉 ∈ ωω.

If z belongs to A then player I wins.

If z does not belong to A then player II wins.

Gω(A) is determined if one of the players has a winning strategy.

(A strategy is a complete recipe that instructs the player precisely

how to play in each conceivable situation.)
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For Γ ⊂ P(ωω), det(Γ) is the statement that all sets in Γ are

determined.

Using the axiom of choice (just a wellordering of R) it is easy to

construct a non-determined set.

det(P(ωω)) is therefore false.

But determinacy for definable sets is: (1) true; and (2) useful.
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ω<ω is the set of finite sequences of natural numbers.

Ns = {x ∈ R | x extends s} (s ∈ ω<ω) are the basic open sets.

A ⊂ R is open if it is a union of basic open sets.

The Borel sets are those that can be obtained from open sets

using complementations and countable unions.

The projection of B ⊂ R × R is the set {x | (∃y)〈x, y〉 ∈ B}.

A set is analytic if it is the projection of a closed set.

A set is projective if it can be obtained from an open set using

complementations and projections.

{Borel sets} ( {analytic sets} ( {projective sets}.
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Theorem 3 (Martin 1970) All analytic sets are determined.

Theorem 4 (Martin–Steel 1985) All projective sets are deter-

mined.

Theorem 5 (Woodin 1985) All sets of reals in L(R) are de-

termined.

Theorems 1 and 2 are in ZFC, the basic system of axioms for

set theory.

Theorems 3, 4, and 5 require large cardinal axioms.
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Reduction for higher pointclasses cannot be settled in ZFC.

Blackwell (1967) obtained Π
1
1 and Σ

1
2 with a very elegant argu-

ment using det(open).

Inspired by his proof, Martin and Addison–Moschovakis proved

the reduction property for Π
1
3, assuming det(∆1

2).

In fact they did more. They obtained a fundamental property,

the prewellordering property, which implies reduction.
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Set aB = {x | I has a w.s. in Gω(Bx)}.

For a pointclass Γ set aΓ = {aB | B ∈ Γ}.

Easy to check aΠ
1
n = Σ

1
n+1, and (using determinacy) aΣ

1
n =

Π
1
n+1.

The pointclasses in Theorem 10 are therefore precisely the point-

classes a(n)Π1
1, n < ω.
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Let δ denote the supremum of the lengths of ∆ pwos on ∆ sets.

Theorem 11 Assume AD. Then δ11 = ω1, δ12 = ω2 (Martin), and

δ13 = ωω+1 (Martin). (Much more known.)

Values of δ1n are absolute between L(R) and V. So, e.g., δ12 =

(ω2)
L(R) assuming AD

L(R).

Theorem 12 (Steel–Van Wesep–Woodin) Assume AD
L(R).

Then it is consistent (with AD
L(R) and AC) that (ω2)

L(R) = ω2,

and hence δ12 = ω2.
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f : τ → κ. But then by elementarity π(f) is onto π(κ). Since

f ⊂ τ × κ ⊂ crit(π)2, π(f) = f . So π(κ) = κ, contradiction.

κ must be a limit cardinal. Otherwise have τ < κ so that κ = τ+.

But then by elementarity π(κ) = (π(τ)+)M . Yet π(τ) = τ , so

π(κ) = (τ+)M = κ, contradiction.

Similar arguments show κ must be inaccessible, and in fact can-

not be described from below in any absolute manner.

So the existence of non-trivial π : V → M ⊂ V cannot be proved

in ZFC, and the first ordinal moved by π must be very large.
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π is λ–strong if M has all bounded subsets of λ, and λ–strong wrt

D if in addition λ ∩ π(D) = λ ∩ D.

κ is <δ–strong if it is the critical point of a λ–strong embedding

for each λ < δ. Similarly wrt D.

δ is a Woodin cardinal if for every D ⊂ δ there is κ < δ which is

<δ–strong wrt D.
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Extenders are thus enough to capture strength as defined above.

Models Q, Q∗ agree past κ if PQ∗
(κ) = PQ(κ).

If E is an extender with critical point κ in a model Q, and Q∗

agrees with Q past κ, then E gives rise, again using ultrapowers,

to an embedding acting on Q∗.

This allows constructing iterated ultrapowers with non-linear

base orders.
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Constructed in stages, starting

from a base model M = M0.

E.g., having constructed
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nals and a measurable cardinal above them. Then all Π
1
n+1 sets

are determined.

Theorem (Woodin) Suppose there are ω Woodin cardinals and

a measurable cardinal above them. Then all sets in L(R) are

determined.

In both cases Woodin cardinals in iterable inner models (rather

than the actual universe V) are enough, and moreover necessary.
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Theorem 14 (Hjorth) Work in L(R) assuming AD. Let � be a

a(α–Π
1
1) prewellorder with α < ω · k. Then the ordertype of � is

smaller than ωk+1.

Theorem 15 (Neeman, Woodin) Assume AD
L(R). Then it is

consistent (with AD
L(R) and the axiom of choice) that δ

1
3 = ω2.
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Iterability crucial for making sense of minimality in the presence

of extenders.

Comparisons through iterated ultrapowers show that any two

ways to witness θ are compatible.
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has a w.s. in Gω(Bi)} is recursively isomorphic to the theory of

the sharp for n Woodin cardinals.

These theorems give tight connection between the theory of em-

beddings acting on models for large cardinals, and determinacy.

The connection (with analogues for ω Woodin cardinals) is cru-

cial for Theorems 13–15.
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Analogous connections exist for stronger large cardinal axioms,

and stronger forms of determinacy.

Reach as far as games of length ω1.

Let ~S = 〈Sa | a ∈ [ω1]
<ω〉 be a collection of mutually disjoint

stationary subsets of ω1.

(With a stationary set Sa associated to each tuple a ∈ [ω1]
<ω.)

Let [~S] denote the set

{〈α0, . . . , αk−1〉 ∈ [ω1]
<ω | (∀i < k) αi ∈ S〈α0,...,αi−1〉

}.
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Let ϕ(x0, . . . , xk−1) be a formula.
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following game:

Players I and II alternate playing ω1 natural numbers, producing

together a sequence r ∈ ωω1.

If there is a club C ⊂ ω1 so that (Lω1[r]; r) |= ϕ[α0, . . . , αk−1] for

all 〈α0, . . . , αk−1〉 ∈ [~S] ∩ [C]k then player I wins the run r.

If there is a club C ⊂ ω1 so that (Lω1[r]; r) |= ¬ϕ[α0, . . . , αk−1]

for all 〈α0, . . . , αk−1〉 ∈ [~S] ∩ [C]k then player II wins r.

If neither condition holds then both players lose.
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Theorem 18 (Neeman) Let ϕi be a recursive enumeration of

formulae. Suppose that these is a sharp π : M → M for the

statement “crit(π) is a Woodin cardinal.” Then:
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formulae. Suppose that these is a sharp π : M → M for the

statement “crit(π) is a Woodin cardinal.” Then:

1. The games Gω1(
~S, ϕ) are all determined.

2. Which player has a w.s. in Gω1(
~S, ϕ) depends only on ϕ, not

on ~S.

3. The set {i | I has a w.s. in Gω1(
~S, ϕi)} is recursively iso-

morphic to the theory of the sharp for “crit(π) is a Woodin

cardinal.”

The theorem establishes a precise analogue of Theorems 16 and

17, but for embeddings concentrating on Woodin cardinals and

for games of length ω1.
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Question How high in the large cardinal hierarchy can such tight

connections between games and the theories of embeddings be

found?

Theorem 18 is the frontier right now. But the large cardinals

involved are still low compared, for example, to superstrong.

Question What kind of games are tied to axioms higher up in

the large cardinal hierarchy?

Games motivated by Theorem 18 were used by Woodin in results

on Σ2
2 absoluteness. Other games similar to those in the theorem

are enough to capture the theory of superstrong cardinals. But

there are no determinacy proofs for these games from large

cardinals, and indeed there are some negative results (Larson).
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The End

Press Esc.

24


