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Abstract 

Prostate cancer is a leading male malignancy worldwide, while the prognosis prediction remains 
quite inaccurate. The study aimed to observe whether there was an association between the 
prognosis of prostate cancer and genetic mutation profile, and to build an accurate prognostic 
predictor based on the genetic signatures. The patients diagnosed of prostate cancer from The 
Cancer Genomic Atlas were used for prognostic stratification, while the somatic gene mutation 
profiles were compared between different prognostic groups. The genetic features were further 
used for training machine-learning models to predict prostate cancer prognosis. No significant 
gene with somatic mutation rate difference was found between prognostic groups of prostate 
cancer. Total 43 atypical genes were screened for building a support vector machine model to 
predict prostate cancer prognosis, with an average accuracy of 66% and 64% for 5-fold 
cross-validation or training-testing evaluation respectively. When combined with the National 
Institute for Health and Care Excellence (NICE) features, the model could be further improved, 
with the 5-fold cross-validation accuracy of ~71%, much better than NICE itself (62%). To our 
knowledge, for the first time, the research studied the relationship of genome-wide somatic 
mutations with prostate prognosis, and developed an effective prognostic prediction model with 
the atypical genetic signatures. 
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Introduction 
Prostate cancer (PCa) is one of the most common 

malignancy in male worldwide, with ~ 1,000,000 cases 
diagnosed annually [1]. In developed countries, PCa 
is the second leading cause of cancer-related deaths 
among men [2]. Both genetics and demographic 
factors such as age, family history and race, are closely 
related with the incidence and progress of PCa [3-4]. 
As our understanding has been broadened gradually 
on the underlying biology of PCa, various treatment 
strategies have also been developed, such as radical 
prostatectomy, hormone deprivation therapy, 

radiation therapy and chemotherapy. However, the 
prognosis of PCa is still far away from being 
satisfying, and most tumors relapse in 2 years to the 
castration-resistant state [5]. 

 Currently, over 80% of PCa are localised or 
locally advanced non-metastatic diseases and the 
patients face the selection of the best treatment 
regimen from a wide array [6]. Risk stratification 
plays an important role in the clinical decision making 
and treatment options, which is mainly determined 
by a general impression currently, with the 
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combination of a couple of clinical parameters, such 
as PSA concentration, clinical stage, biopsy Gleason 
score, patient age, number of positive prostate 
biopsies and so on [7-10]. The most widely used 
stratification system for primary non-metastatic PCa 
is endorsed by the National Institute for Health and 
Care Excellence (NICE) guidelines, which use 
presenting PSA concentration, Gleason grade, and 
clinical T stage to classify PCa patients as low, 
intermediate, or high risk [11]. Some new methods 
were proposed on the basis of the NICE stratification 
system, which displayed improved prognostic power 
[6]. Despite the success of these risk stratification 
systems in prognosis prediction, the tumors within 
the same risk groups still showed remarkably 
different clinical courses [12-14]. Therefore, new 
prognostic prediction tools are still urgently needed to 
further improve the accuracy and sensitivity of 
classification of PCa. 

 Classically, the progression of various cancer 
types is ascribed to the sequential accumulation of 
genetic alterations. Somatic mutation signatures have 
been successfully applied in the development of 
prognostic prediction tools for various cancers, such 
as breast cancer, lung cancer, nasopharyngeal 
carcinoma, etc [15-17]. Gene signatures have also been 
attempted in PCa risk stratification [18-21]. For 
example, Irshad et al identified a three-gene panel, 
including FGFR1, PMP22 and CDKN1A, which could 
accurately predict the outcome PCa with low Gleason 
scores [20]. Berg et al found that over-expression of 
ERG was associated with an increased risk of disease 
progression during active surveillance for PCa 
patients [22]. In another study, a model with 100-gene 
signature, which classified PCa patients into five 
separate subgroups with distinct genomic alterations 
and expression profiles, showed better performance 
in prediction of diseases with poor prognosis than 
traditional predictors based on PSA and Gleason 
scores [23]. The above studies demonstrate that 
genetic variation plays an important role in the 
classification of PCa and may display immense 
potential of clinical prediction. However, the current 
widely-used risk stratification systems in PCa were 
almost exclusively based on routine 
clinic-pathological parameters, without attention to 
the genetic variation.  

In this research, an extensive comparison was 
performed on the somatic mutation profiles in PCa 
with different prognosis, with the prostate 
adenocarcinoma (PRAD) data from The Cancer 
Genome Atlas (TCGA). No gene was found with 
significant somatic mutation rates between groups 
(False Positive Rate, FDR < 0.05). However, a 
combined filtering strategy generated 43 genes, which 

were further used as features for prognostic model 
development and reached good classification 
performance. With a 5-fold cross validation, the 
genetic model based on the 43 features showed an 
average AUC (Area Under Curve) of ROC (Receiver 
Operating Characteristic) curves and accuracy of 
~0.70 and ~0.66 receptively, better than NICE 
(accuracy: ~0.62). A combined model with both the 
genetic signatures and NICE could reach better 
average performance (AUC: ~0.75; accuracy: ~0.71). 
Taking together, the study suggested that the somatic 
mutation signatures could largely facilitate the 
prognostic prediction of PCa, independently or 
combined with other clinical features.  

Materials and Methods 
Datasets, stratification and somatic mutation 
rate comparison 

The clinical data for the patients with PCa were 
downloaded from TCGA (The Cancer Genome Atlas) 
website. The somatic mutation data between 
tumor-normal pairs of each PCa case were also 
downloaded. The mutations causing codon changes, 
frame-shifts, and premature translational 
terminations were retrieved for further analysis. 
Cases were stratified based on either ‘tumor status’ or 
‘biochemical recurrence’. For ‘tumor status’, ‘with 
tumor’ group included the patients detected with 
residual or recurrent tumors before death or at last 
follow-up; the rest were classified into ‘tumor free’ 
group. For ‘biochemical recurrence’ stratification, two 
groups were designated with ‘recurrence’ and 
‘non-recurrence’ representing the cases with or 
without recurrence respectively. The clinical 
examination results were also used for NICE risk 
stratification (‘low’, ‘medium’ and ‘high’ risks) [11]. 
To compare the somatic gene mutation frequency 
between prognostic groups, a matrix was prepared to 
record the mutations of all the genes for each case, 
followed by counting the number of cases with 
mutations for each gene in each group. Both 
Chi-square test with Benjamini & Hochberg correction 
and EBT were used for rate comparisons, and a False 
Discovery Rate (FDR) or p value < 0.05 was set as the 
significance level for Chi-square or EBT test 
respectively [24, 25].  

Feature selection 
A multi-factor filtering strategy was proposed to 

select the genetic features for prognosis-prediction 
model training. The genes were filtered when any of 
the following criteria was met: (1) the mutation rates 
in both groups were lower than 5%; (2) the absolute 
difference between the mutation rates of two groups 
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was lower than 5%; (3) the significance of Chi-square 
test without FDR correction was higher than 0.1. Both 
TopN and mRMR strategy were also used for feature 
selection and model comparison [25, 26]. For TopN 
strategy, the top N genes with smallest p values (EBT) 
for mutation rate comparison were selected as the 
features [25]. The mRMR software package was 
downloaded, installed and used for mRMR feature 
selection [26]. 

Training of Support Vector Machine models 
The n genes were selected as genetic features for 

model training. For each case Pj (j = 1, 2, …,mi) 
belonging to a certain category Ci, where i equaled to 
1 or 0, and mi represented the total number of cases of 
the category Ci, the genetic features were represented 
as a binary vector Fj (g1,g2,…,gn) in which gk (k = 1, 2, 
…, n) represented the kth genetic feature, taking the 
value of 1 if the corresponding gene was mutated and 
0 otherwise. There was an mi*n matrix for category Ci. 
When NICE was used as an additional feature, the 
size of matrix was enlarged to mi*(n+1), and the NICE 
feature was also represented in a binary form in the 
additional column, for which 1 and 0 represented 
‘high’ and ‘low’/’medium’, respectively. 

An R package, ‘e1071’, was used for training 
Support Vector Machine (SVM) models using each 
training dataset (http://cran.r-project.org). For each 
training-testing experiment, the training dataset was 
used for both kernel selection and parameter 
optimization as described previously [25]. Four 
kernels, including ‘radial’ (Radial Base Function, 
RBF), ‘linear’, ‘polynomial’ and ‘sigmoid’, were 
individually tested for the best-optimized parameters 
with a 10-fold cross-validation grid search strategy. 
The performance of different kernels with 
best-optimized parameters was then compared and 
the best kernel (with optimal parameters) was 
selected for further model training and prediction on 
the testing dataset. 

Model performance assessment 
 A 5-fold cross validation and training-testing 

strategy were used for model performance evaluation. 
For 5-fold cross validation, the original 
feature-represented matrix for each category were 
randomly split into five parts with identical size. 
Every four parts of each category were combined and 
served as a training dataset while the rest one of each 
category was used for testing and performance 
evaluation. For the training-testing strategy, 2/3 of 
the original cases belonging to each category were 
randomly selected for mutation frequency 
comparison or feature selection and consequential 
representation, and served as the training datasets. 

Matrices were prepared for the rest 1/3 of the cases 
with the features newly identified with corresponding 
training datasets, and used for testing.  

The relatively balanced items, Receiver 
Operating Characteristic (ROC) curve, the area under 
ROC curve (AUC) and Accuracy, were utilized to 
assess the predictive performance. An ROC curve is a 
plot of Sensitivity versus (1 - Specificity) and is 
generated by shifting the decision threshold. AUC 
gives a measure of classifier performance. Accuracy 
was defined as (TP + TN)/(TP+FP+TN+FN), where 
TP, TN, FP and FN represented true positives, true 
negatives, false positives and false negatives 
respectively. The performance of genetic or combined 
models was recorded as the average 5-fold 
cross-validation or training-testing results, while that 
of pure NICE model was represented as the average 
10-fold bootstrapping results. Students’ t-tests were 
performed for the performance comparison with a 
preset significance level of 0.05. 

Results 
Prognostic stratification of PCa 

The post-operation survival rate is high for PCa 
patients, so the biochemical recurrence or 
non-recurrence and other indicators have been used 
as more effective prognostic statistics [23]. Two 
indicators, biochemical recurrence / non-recurrence, 
and tumor status of the last follow-up (with tumor / 
tumor free), were also adopted to stratify the TCGA 
PCa patients (Fig 1a). A significant dependence was 
observed between the two stratification criteria, with 
apparent enrichment of ‘with tumor’ patients in the 
‘recurrence’ group (i.e., ‘tumor free’ patients in the 
‘non-recurrence’ group) (Fig 1a; p = 5.8E-12, 
Chi-square test). NICE has been widely used for 
guiding the prognostic assessment for PCa in clinical 
practice. The TCGA cases were also evaluated with 
NICE, followed by comparison with the stratification 
results based on recurrence or tumor status (Fig 1b-c). 
With each type of stratification, NICE levels showed 
significant association with the prognostic groups (Fig 
1b-c; p = 3.2E-4 and 2.3E-7 for NICE vs. recurrence 
status, and NICE vs. tumor status, respectively). 
Taking together, the results suggested that both 
recurrence status and tumor status could be 
considered as indicators used for prognostic 
stratification of PCa. 

Classification of PCa prognosis with atypical 
somatic mutation signatures  

 A majority of the TCGA PCa cases were also 
profiled for the tumor somatic mutations. To observe 
whether there is an association between PCa 
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prognosis and somatic mutation profiles, the cases 
with somatic mutation data were stratified according 
to the prognostic indicators (Table 1). Statistical 
comparisons were further performed between 
prognostic groups per gene for the mutation rates. 
However, with either strategy of stratification, no any 
gene with significant mutation rate difference was 
called between prognostic groups (Table 1; 
Supplemental file 1-4). 

  

Table 1. Sample size summary and comparison of somatic 
mutation profiles between PCa prognostic groups  

Recurrence Status Tumor Status 
Recurrence # 58 With Tumor # 80 
Non_recurrence # 366 Tumor Free # 308 
Sign. Genes # 0 Sign. Genes # 0 
Note: Rate comparisons were performed with both Chi-square tests with FDR 
correction and EBT. 

 
 
To further observe whether the atypical somatic 

mutation profiles were associated with PCa prognosis 
and therefore useful for classification with machine 
learning strategies, an integrated feature-filtering 
pipeline was adopted to screen the possibly more 
meaningful signatures. The prognosis data stratified 
by tumor status was used for further analysis since 
the ‘poor prognosis’ group (‘With Tumor’) contained 
more samples than the corresponding group stratified 

by recurrence status (‘Recurrence’) (Table 1). In total, 
43 genes with subtle mutation difference between 
prognostic groups were identified with the filtering 
pipeline (Table 2). 

 

Table 2. The list of 43 genes used for PCa prognosis classification  

Signature genes   
AHNAK2 FAM47C MUC2 SACS 
ANKRD30A FAT2 MUC4 SALL1 
ANKRD36C FAT4 MYH11 SCN5A 
APOB FBN3 MYT1L SPOP 
ATP13A5 FLG2 NOD1 SRCAP 
BAI3 FRG1B PCDHA12 TP53 
CACNA1A HSPG2 PIK3CA TRPM6 
CACNA1E KMT2D PTEN USH2A 
CDH23 KRTAP4-9 PTH2 ZNF208 
CNTNAP5 LPHN3 PTPRC ZNF91 
EPB41L3 MUC16 RYR1  

 
 
SVM models were trained with the 43 features 

represented by their somatic mutation profile. The 
SVM models based on the 43 atypical features could 
well discriminate prognosis of PCa, achieving an 
average AUC of 0.696 and accuracy of 0.662 with a 
5-fold cross-validation strategy (Fig 2a-b). When the 
feature size was reduced, the model performance also 
declined strikingly (Fig 2a-b). Interestingly, the 
models also performed much better than the ones 

based on the same size 
of genes with smallest 
p value for mutation 
rate comparison 
between prognostic 
groups (topN), or 
those based on 43 
genes with smallest 
redundancy filtered 
with mRMR (Fig 2c).  

 Training-testing 
evaluations were also 
performed to test the 
effectiveness of the 
models and the feature 
selection strategy. 
With the size of 
features varying from 
29 to 47, the models 
averagely reached an 
AUC of 0.653, only 
slightly lower than the 
5-fold cross-validation 
results, but better than 
the neutral, topN or 
mRMR models (Fig 
2d). 

 

 
Figure 1. Prognostic stratification of TCGA PCa cases. (a) Stratification of PCa cases based on biochemical 
recurrence status and tumor status at last follow-up and the relationship. (b) Stratification of PCa cases based on biochemical 
recurrence status and NICE criteria and the relationship. (c) Stratification of PCa cases tumor status at last follow-up and 
NICE criteria and the relationship. The accumulative bar diagrams were shown with the sum percentage of 100%. The number 
of cases for each subgroup was indicated. Chi-square tests were performed, with the p values indicated at the right upper 
corner. 
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Figure 2. Prediction of PCa prognosis with models based on genetic features. (a) ROC curves of 5-, 10, 20, 30 and 43-gene genetic models (f5, f10, f20, 
f30 and f43, respectively). The average results of 5-fold cross validations were shown. (b) AUC and general accuracy of prognosis prediction models with varied 
feature size. (c) Comparison of AUC and general accuracy of the f43 model and those based on topN and mRMR feature selection strategies. (d) Performance of 
models based on 5-fold cross validation (CV) and 5-fold training-testing (TT). 

 

 
Figure 3. Prediction of PCa prognosis with models based on the combined NICE and genetic features. (a) The classification performance of NICE on 
PCa prognosis stratified by tumor status or recurrence. Bootstrapping analysis was performed and the results were represented as mean ± sd. (b) ROC curves of 
43-gene genetic models (f43) and models based on the combined NICE and genetic features (f43+NICE). The average results of 5-fold cross validations were shown. 
(c) Comparison of the general accuracy of different prognosis prediction models. Students’ t-tests were performed, and asterisk represented p < 0.05. 
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Improvement of prognostic prediction of PCa 
with a combination of NICE and somatic 
mutation signatures 

 Currently, NICE was most often used for PCa 
prognosis prediction. NICE was also used to predict 
the prognosis of TCGA PCa cases, but only with 
accuracy of 55.3% and 61.5% for recurrence and tumor 
status stratification respectively (Fig 3a). The 
performance was even worse than the 5-fold 
cross-validation or training-testing models. 

 The NICE stratification results were also 
considered as an independent feature and combined 
with the 43 genetic signatures. A new SVM model was 
built, which showed apparent improvement for the 
performance compared with NICE or models based 
on genetic signatures solely (Fig 3b-c). The 5-fold 
cross-validation AUC and accuracy achieved 0.746 
and 0.713 respectively (Fig 3b-c). 

Discussion 
 PCa is an important cancer type, with a high 

worldwide morbidity. The 5-year survival has been 
improved significantly recently. However, there is 
still a big challenge to reduce the long-term mortality 
and recurrence, and to increase the percentages of 
tumor-free survival. NICE has been for a long time 
used as risk stratification of PCa patients on 
prognosis. However, the accuracy needs to be 
improved. With TCGA PCa data, we also found that 
NICE stratification could only correctly predict the 
prognosis for ~ 60% of the patients (Fig 3a). 

 The somatic mutations have been well 
characterized for PCa patients [4,21]. However, it 
remained largely unknown whether the prognosis of 
PCa was also related with genetic background. One 
major objective of the current research was to answer 
the question. Prognostic groups were stratified by 
either ‘tumor status’ or ‘recurrence’; however, no gene 
was discovered that showed significant somatic 
mutation rate difference between groups with 
different prognosis. There could be no association 
between prognoses of PCa with somatic mutation 
profiles, but alternatively, other factors could also 
explain the observations. For example, the prognosis 
of PCa could be further improved with new 
stratification criteria. The small number of PCa cases 
and the general low somatic gene mutation rates in 
PCa could also have led to the dramatic low power 
[25]. Therefore, no solid conclusions could be drawn 
before more objective-targeted studies are performed 
with enlarged size of cases and observation of 
elongated period of survival. In fact, with the atypical 
mutation rate difference between prognostic groups, 
the models trained in this research could still well 

distinguish the prognosis, with accuracy even higher 
than NICE (Fig 3c). The results indirectly suggested 
the dependency of prognosis with genetic mutation 
profile. 

In total, 43 atypical features were used for the 
model predicting PCa prognosis. Although many of 
the genes have been reported to function in different 
tumor types and progresses, a functional clustering 
analysis showed a significant enrichment of genes 
participating in calcium ion binding and transporting 
(GO:0015085, p = 2.59e-02; GO:0005509, p = 3.15e-02; 
PANTHER Overrepresentation Test, http:// 
pantherdb.org/; data not shown). The combination of 
these genetic features with NICE factors appeared to 
improve the prognosis prediction significantly when 
compared with models based only on genetic features 
or NICE (Fig 3c). A tool was also developed to 
facilitate the testing of the new method in PCa 
prognosis prediction (http://www.szu-bioinf.org/ 
PCpp). There are several drawbacks with the current 
model that need to be improved in the future. First of 
all, the current model was only evaluated with a 
single dataset from TCGA since it is difficult to find 
another dataset with both full genomic information 
and clinical data. 5-fold cross validation and 
training-testing were performed to correct the 
overfitting problem; however, new independent 
datasets are still in need to make more accurate 
evaluation. The size of genetic features was also a 
little large, and new experiments with enlarged size of 
cases could assist the finding of fewer more effective 
features.  
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