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Abstract 
 

In complicated environment, context information plays an important role in image 

segmentation/labeling. The recently proposed auto-context algorithm is one of the effective 

context-based methods. However, the standard auto-context approach samples the context 

locations utilizing a fixed radius sequence, which is sensitive to large scale-change of objects. 

In this paper, we present a scale invariant auto-context (SIAC) algorithm which is an improved 

version of the auto-context algorithm. In order to achieve scale-invariance, we try to 

approximate the optimal scale for the image in an iterative way and adopt the corresponding 

optimal radius sequence for context location sampling, both in training and testing. In each 

iteration of the proposed SIAC algorithm, we use the current classification map to estimate the 

image scale, and the corresponding radius sequence is then used for choosing context locations. 

The algorithm iteratively updates the classification maps, as well as the image scales, until 

convergence. We demonstrate the SIAC algorithm on several image segmentation/labeling 

tasks. The results demonstrate improvement over the standard auto-context algorithm when 

large scale-change of objects exists. 
 

 

Keywords: Image segmentation, image labeling, context information, auto-context, scale 

invariance 
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1. Introduction 

Context and high-level information plays a very important role in image 

segmentation/labeling [1-9]. Many types of information can be referred to as context: different 

parts of an object can be context to each other; different objects in a scene can be each other’s 

context. For example, a clearly visible horse’s head may suggest the locations of its tail and leg, 

which are often occluded. A boat might suggest the existence of water [1]. 

In vision, models like Markov Random Fields (MRFs) [4,5] and Conditional Random 

Fields (CRFs) [6-9] have been widely used to capture the context information. Though MRFs 

and CRFs have been successfully applied in many applications, they still have some 

weaknesses. The main shortcoming is that they use a fixed neighborhood structure with a 

fairly limited number of connections. This property constrains their modeling capability and 

only short-range context is used in most cases. 

The recently proposed auto-context algorithm [1] integrates image appearances together 

with the context information by learning a series of classifiers. There are two types of features 

for the classifier to choose from: (1) image appearance features computed on the local image 

patches, and (2) context features from a large number of sites on the classification maps. Given 

a set of training images and their corresponding label maps, the first classifier is learned based 

on image appearance features. The classification maps created by the learned classifier are 

then used as context information, along with image appearance features, to train the next 

classifier. The algorithm iterates to approximate the ground truth until convergence. In testing, 

the algorithm follows the same procedure by applying the sequence of learned classifiers to 

compute the classification maps. Compared to MRFs and CRFs, the auto-context algorithm is 

not limited to a fixed neighborhood structure. Each pixel can obtain support from a large 

number of neighbors (either short or long range), and the classifiers in different stages may 

choose different supporting neighbors. In [1], the auto-context algorithm was illustrated on 

several challenging vision tasks. The results demonstrated improved performance over many 

existing algorithms using MRFs and CRFs. 

Although the auto-context algorithm is a powerful method, it is sensitive to large 

scale-change of objects. This is mainly because it samples the context locations utilizing a 

fixed radius sequence. In this paper, we present a scale invariant auto-context (SIAC) 

algorithm. We attempt to approximate the optimal scale for the image and use the 

corresponding optimal radius sequence to sample context locations, both in training and 

testing. At each round of the SIAC algorithm, we use the classification map created by the 

current trained classifier to estimate the image scale, and the corresponding radius sequence is 

then used to extract context features, which will be applied to train the next classifier. The 

algorithm iterates until convergence. Finally, we can obtain the best scale for the image, and 

the best radius sequence for extracting context features. We demonstrate the SIAC algorithm 

on several image segmentation/labeling tasks. The results demonstrate improvement over the 

standard auto-context algorithm when large scale-change of objects exists. 

The main contribution of this paper is twofold. First, in order to achieve scale-invariance for 

the auto-context algorithm, we propose adopting different radius sequences to extract context 

features for images of different scales. Second, we use an iterative method to estimate and 

approximate the optimal scale for the image. 
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The remainder of this paper is structured as follows: Section 2 briefly reviews the standard 

auto-context algorithm. Section 3 describes the proposed SIAC algorithm in detail. Section 4 

shows some comparative experiments on two challenging vision tasks. Section 5 concludes 

the paper. 

2. Auto-context 

In this section, we briefly review the standard auto-context algorithm proposed by Tu [1]. The 

algorithm takes into account the posterior distribution directly and integrates image 

appearances together with the context information by learning a series of classifiers. 

In training, each image X comes with a ground truth Y . Given a set of training images and 

their corresponding label maps, {( , ), 1.. }j jY X j m , where m  denotes the number of training 

images. The algorithm first constructs a training set 

 

{( , ( )), 1.. , 1.. }ji j iS y X N j m i n   ,                                       (1) 

 

where m  is the number of training images, n  is the number of pixels in each image, and 

( )j iX N  denotes the local image patch centered at pixel i  in image 
jX . The first classifier is 

learned based on the image appearance features computed on the local image patches ( )j iX N . 

For each training image 
jX , the classification maps 

jP  are then computed by the learned 

classifier. The algorithm then constructs a new training set 

 

' {( , ( ( ), ( ))), 1.. , 1.. }ji j i jS y X N P i j m i n   ,                                (2) 

 

where ( )jP i  is the classification map centered at pixel i  for image j . A new classifier is then 

trained, not only on the image features extracted from ( )j iX N , but also on the context features 

extracted from ( )jP i . Once a new classifier is learned, the algorithm repeats the same 

procedure until convergence. Finally, the algorithm outputs a sequence of learned classifiers 

 
( ) ( 1)( | ( ), ( ))t t

i ip y X N P i ,                                                (3) 

 

where (0)P  is a uniform distribution, and thus the context features are not selected by the first 

classifier, i.e., (1) (0) (1)( | ( ), ( )) ( | ( ))i i i ip y X N P i p y X N . In testing, the algorithm follows the 

same procedure by applying the sequence of learned classifiers to compute the classification 

maps. The auto-context algorithm iteratively updates the classification maps to approximate 

the marginal distribution ( | )ip y X . The convergence has been proved in [1]. 

In the auto-context algorithm, there are two types of features for the classifier to choose 

from: (1) image appearance features extracted from the local image patches, and (2) context 

features obtained from a large number of sites on the classification maps. In [1], a set of Haar 

features was employed as the main image appearance features, and a fixed image patch size 21

×21 was used for their 2D application experiments. The context features are obtained from 

the classification maps from the previous iterations. For each pixel of interest, 8 rays in 45°
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intervals are stretched out from the current pixel and a fixed radius sequence is then used for 

sparsely sampling the context locations on each ray. The classification probabilities on these 

locations are used as context features (both individual probabilities and the mean probabilities 

within a 3×3 window). Fig. 1 gives an illustration.  

 
Fig. 1. An illustration of context features. 

 

Regarding the choice of classifier, although the auto-context algorithm is not restricted to 

any specific choice of classifier, a boosting-based auto-context was adopted in [1], due to the 

natural feature selection and fusion capability of the boosting algorithms. 

The auto-context algorithm makes an attempt to recursively select and fuse context 

information, as well as appearance, in a unified framework. The first trained classifier is based 

purely on the local appearance; objects with strong appearance cues are often correctly 

classified even after the first round. These probabilities then start to influence their neighbors, 

especially if there are strong correlations between them. In [1], the auto-context algorithm was 

illustrated on several challenging vision tasks. The results demonstrated improved 

performance over many existing algorithms using MRFs and CRFs. 

3. Scale Invariant Auto-context 

3.1 Motivation 

Although the auto-context algorithm is a powerful method, it is sensitive to large scale-change 

of objects. This is mainly because it samples the context locations utilizing a fixed radius 

sequence, which can cause obvious feature inconsistency when large scale-change of objects 

exists. Fig. 2 gives an illustration of feature inconsistency. 
 

  
Fig. 2. An illustration of feature inconsistency. For example, by sampling the context locations 

according to a fixed radius sequence, Feature 1 is falsely matched to Feature 2. Actually, Feature 1 

should be matched to Feature 3. 
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A direct method to tackle such a problem is trying to find the scale of objects beforehand. 

Then, for images of different scales, radius sequences of different sampling intervals are used 

for context location sampling. Fig. 3 gives an illustration. 

 

  
Fig. 3. For example, by adopting radius sequences of different sampling intervals to sample the context 

locations, Feature 1 is correctly matched to Feature 3. 
 

However, in many cases, it is difficult to acquire the image scale through the image 

appearance directly without human interference. Notice that if we know the label map for an 

image, the scale of the image can be easily estimated. Since the auto-context algorithm is an 

iterative algorithm and produces an intermediate classification map at each round, we can 

iteratively estimate the image scale through these intermediate classification maps. 

 

3.2 SIAC 

In this section, we present a scale invariant auto-context (SIAC) algorithm, which is an 

improved version of the auto-context algorithm [1]. In order to achieve scale-invariance, we 

attempt to approximate the optimal scale for the image and use the corresponding optimal 

radius sequence to sample context locations, both in training and testing. 

At each round of the SIAC training process, the classification maps ( )t

jP  created by the 

current trained classifier are used to estimate the image scale ( )t

ja  for each training image 
jX , 

and the corresponding radius sequence ( )( )t

jR a  is then used to extract context features, which 

will be used to train the next classifier. Here, ( )t

ja  denotes the estimated scale for image 
jX  at 

round t , ()R  is a function of scale, and thus ( )( )t

jR a  denotes the chosen radius sequence for 

image 
jX  at round t . The algorithm iterates until convergence. Fig. 4 outlines the training 

procedure of the SIAC algorithm. 
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Fig. 4. The training procedure of the SIAC algorithm. 
 

In testing, the algorithm follows the same procedure by applying the sequence of learned 

classifiers to compute the classification maps. Fig. 5 gives an illustration of the testing 

procedure of the SIAC algorithm. 

 

 
Fig. 5. An illustration of the testing procedure of the SIAC algorithm. The SIAC algorithm iteratively 

updates the classification maps, as well as the image scales, to approach the ground truth. 

 

3.3 Scale Estimation and Radius Sequence Selection 

In this section, we discuss several important implementation issues of the SIAC algorithm. 

A. Scale space 

Since the standard auto-context algorithm is only sensitive to large scale-change of objects, it 

Given a set of training images together with their label maps, {( , ), 1.. }j jY X j m : For each image 

jX , construct initial classification maps (0)

jP  with uniform distribution on all the labels; Set the 

initial scale 
(0)

j inita a  for all the images. For 1,...,t T : 

 Construct a training set ( 1){( , ( ( ), ( ))), 1.. , 1.. }t

t ji j i jS y X N P i j m i n   . 

 Extract image appearance features from ( )j iX N . 

 Extract context features from ( 1) ( )t

jP i  utilizing the radius sequence ( 1)( )t

jR a  . 

 Train a classifier on both image and context features. 

 Use the trained classifier to yield new classification maps ( )t

jP  for each training image 
jX . 

 Use the classification maps ( )t

jP  to estimate new scale ( )t

ja  for each training image 
jX . 

The algorithm outputs a sequence of trained classifiers for 
( ) ( 1)( | ( ), ( ))t t

i ip y X N P i
, 1,...,t T . 
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is not necessary to estimate the exact scale. In this paper, we simply consider three types of 

scales: “small”, “medium”, and “large”, i.e., the scale {" "," ", '' "}a small medium large , and we 

let " "inita medium . 

B. Scale estimation 

The SIAC algorithm iteratively updates the estimated scale to approximate the optimal scale 

for the image, both in training and testing. At each round of the algorithm, the intermediate 

classification map is used to estimate the image scale. Here, the image scale refers to the scale 

of foreground objects in the image. In this paper, we simply use the total number of foreground 

pixels to measure the image scale. Fig. 6 outlines the scale estimation procedure at each round 

of the SIAC algorithm. 

Fig. 6. The scale estimation procedure at each round of the SIAC algorithm. 

 

C. Radius sequence selection 

At each round of the SIAC algorithm, we choose appropriate radius sequences to extract 

context features. For images of different scales, we adopt different radius sequences. 

Specifically, in this paper, we have 

 

(" ") [0,2,4,6,8,10,12,16,20,24,30,36,42,50,60,70,80,90,100,120,140,160,180,200];

(" ") (" ") / 2

[0,1,2,3,4,5,6,8,10,12,15,18,21,25,30,35,40,45,50,60,70,80,90,100];

(" ") (" "

R medium

R small R medium

R large R medium







 ) 2

[0,4,8,12,16,20,24,32,40,48,60,72,84,100,120,140,160,180,200,240,280,320,360,400];





 

 

The procedures of the SIAC algorithm described in Section 3.2 are generic. The settings and 

the scale measurement described in this section will be applied to all experiments in this paper. 

However, one can slightly modify these settings to satisfy other different applications. 

3.4 Understanding SIAC 

The standard auto-context algorithm is sensitive to large scale-change of objects. In order to 

achieve scale-invariance, we proposed the scale invariant auto-context (SIAC) algorithm. By 

introducing the steps of scale estimation and radius sequence selection in each iteration, the 

algorithm makes an attempt to approximate the optimal scale for the image and use the 

corresponding optimal radius sequence to extract context features. For images of different 

scales, the algorithm adopts different radius sequences to extract context features, which can 

decrease the intra-class variation effectively. In theory, the smaller the intra-class variation is, 

Given the intermediate classification maps for an image: 

 Obtain the label map through the intermediate classification probability maps. 

 Count the total number, FN , of pixels labelled as foreground objects using the label map. 

 Set the image scale 

" " 4

" " / 4

" "

F

F

large if N

a small if N

medium otherwise








 



, where   is the mean number of 

foreground pixels, which is calculated from the known label maps of all the training images. 
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the better classification accuracy the classifier can achieve. Thus our SIAC can outperform the 

standard auto-context algorithm when large scale-change of objects exists. 

4. Experiments 

In this section, we illustrate the SIAC algorithm on two challenging vision tasks: horse 

segmentation and human body configuration. 

4.1 Horse segmentation 

We use the Weizmann dataset consisting of 328 gray scale horse images [10]. The dataset also 

contains manually annotated label maps. Because the horses in the dataset have almost the 

same size, we randomly choose the sampling ratio to upsample or downsample all the images 

(and the corresponding label maps) in the dataset to create a new dataset, in which large 

scale-change of objects exists. Some images in the new dataset are shown in Fig. 7. 

 

    

                                 

          
Fig. 7. Some images in the new dataset. 

 

We randomly split the new dataset into two parts: half for training and half for testing. In 

this experiment, we employ Haar features as the image appearance features and AdaBoost [11] 
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as the basic classifier for both auto-context and our SIAC algorithms. Fig. 8.a shows the 

values of the F-measure [12] at different stages of both auto-context and our SIAC algorithms 

for horse segmentation and Fig. 8.b gives the corresponding overall precision-recall curves. 

Fig. 9 shows some segmentation results. As we can see, by introducing the steps of scale 

estimation and radius sequence selection, our SIAC algorithm outperforms the standard 

auto-context algorithm when large scale-change of objects exists. Fig. 10 shows the estimated 

scale at each iteration of the SIAC algorithm for horse segmentation. The initial estimated 

scale is “medium” and the SIAC algorithm iteratively updates the estimated scale to 

approximate the optimal scale for the image. 

 
       (a)                                                                   (b) 

Fig. 8. (a) shows the values of the F-measure at different stages of both auto-context and our SIAC 

algorithms for horse segmentation. (b) gives the corresponding overall precision-recall curves. 
 

 
Fig. 9. The first row displays some test images. The second, third and forth row shows the classification 

maps by the first, third and fifth stage of the auto-context and SIAC algorithms. 
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Fig. 10. The estimated scale at each iteration of the SIAC algorithm for horse segmentation. 

 

4.2 Human Body Configuration 

To further illustrate the effectiveness of our SIAC algorithm, we apply it on another problem, 

human body configuration. Each body part is assigned with a label and Fig. 11 shows the 

template. 

 

 
Fig. 11. A human body template, in which body parts are colored into 14 labels. 
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We collect around 80 images of baseball players and randomly upsample or downsample all 

the collected images to create a dataset. Similarly, the dataset is split into two parts: half for 

training and half for testing. In this experiment, we use the same set of features as in the horse 

segmentation problem, and adopt the one-vs-all strategy [13] to directly combine two-class 

AdaBoost classifiers into a multi-class classifier. Fig. 12 shows the estimated scale at each 

iteration of the SIAC algorithm for human body labeling. The initial estimated scale is 

“medium” and the SIAC algorithm iteratively updates the estimated scale to approximate the 

optimal scale for the image. Fig. 13 shows some labeling results at different stages of the 

auto-context and SIAC algorithms. In Fig. 13, for the baseball player on the left, the standard 

auto-context algorithm can not recognize the leg, while the proposed SIAC algorithm can label 

the leg well. For the player in the middle, the proposed SIAC algorithm can label the upper 

body and the head well, while the standard auto-context algorithm does not work. For the 

player on the right, the proposed SIAC algorithm can achieve better labeling results of the 

upper body than the standard auto-context algorithm. As we can see, our SIAC algorithm 

improves the results over the standard auto-context algorithm. The overall pixel-wise accuracy 

by 5 stages of SIAC is 78.9% which is better than 75.2% achieved by auto-context. 

 

 

 
Fig. 12. The estimated scale at each iteration of the SIAC algorithm for human body labeling. 
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Fig. 13. The first row displays some test images. The second, third and forth row shows the 

classification maps by the first, third and fifth stage of the auto-context and SIAC algorithms. 

 

5. Conclusions 

In this paper, we have presented a scale invariant auto-context (SIAC) algorithm for image 

segmentation and labeling. By introducing the steps of scale estimation and radius sequence 

selection in each iteration, the algorithm makes an attempt to approximate the optimal scale 

for the image and use the corresponding optimal radius sequence to extract context features. 

We illustrate the SIAC algorithm on two challenging vision tasks. The results demonstrate 

improvement over the standard auto-context algorithm when large scale-change of objects 

exists. The future research directions include adopting different patch sizes to extract image 

features for images of different scales and achieving orientation invariance by orientation 

estimation.  
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