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Abstract 
 

In 2010, Dijk et al. demonstrated a simple somewhat homomorphic encryption (HE) scheme 

over the integers of which this simplicity came at the cost of a public key size in Õ (λ
10

). 

Although in 2011 Coron et al. reduced the public key size to Õ (λ
7
), it is still too large for 

practical applications, especially for the cloud computing. In this paper, we propose a new 

form of somewhat HE scheme to reduce further the public key size and a variation of the 

scheme to optimize the ciphertext size. First of all, we propose a new somewhat HE scheme 

which is built on the hardness of the approximate greatest common divisor (GCD) problem of 

two integers, where the public key size in the scheme is reduced to Õ (λ
3
). Furthermore, we can 

reduce the length of the ciphertext of the new somewhat HE scheme by applying the modular 

reduction technique. Additionally, we give simulation results for evaluating ability of the 

proposed scheme. 
 

 

Keywords: Somewhat homomorphic encryption, fully homomorphic encryption, 

approximate-GCD problem, cloud computing 
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1. Introduction 

Nowadays, more and more sensitive data, such as medical records, are being outsourced into 

the cloud to relieve the burden of data storage and maintenance. However, since the data 

servers in the cloud are not possibly trustworthy, sensitive data will be stored in encrypted 

form to protect privacy. On the other hand, encrypting data with ordinary cryptosystem seems 

to nullify the advantages of cloud computing since the utilization of the encrypted data such as 

search and operation would be extremely difficult. Are there any encryption schemes which 

are able to securely and effectively use the data stored in the cloud? The answer is “yes”! Fully 

homomorphic encryption (FHE) schemes allow anyone to compute publicly arbitrary 

functions on encrypted data without knowing the secret decryption key. Therefore, FHE can 

be used not only in the cloud computing, but also in the multitude of other scenarios where it is 

beneficial to keep all data encrypted and to perform computations on encrypted data. For 

example, in the wireless sensors network or the smart grid, FHE can be employed to achieve 

privacy-preserving data aggregation [1][2][3]. In the outsourcing computation, FHE can be 

used to construct short non-interactive zero-knowledge proofs [4][5], while in the database 

applications, FHE is capable of evaluating encrypted database indexing functions [6]. 

Early in 1978, Rivest et al. [7] presented the concept of FHE, but they failed to find a 

secure scheme. For more than 30 years, the functions that all known HE schemes supported 

were only limited, not arbitrary (full), and this restricted their applicability. During the period, 

the best result was given by Boneh et al. [8]. They proposed an HE scheme which can support 

arbitrary number of additions and one multiplication. However, constructing an FHE scheme 

supporting arbitrary functions was still an open problem. 

In 2009, the old open problem was solved by the breakthrough work of Gentry based on 

ideal lattices [9]. However, Gentry’s FHE scheme was not practical for many applications, 

because the computation time and ciphertext size were high-degree polynomials in security 

parameter λ. Stehlé et al. presented optimizations to Gentry’s scheme that reduced its 

complexity from Õ (λ
6
) to Õ (λ

3.5
) for per-gate computation [10]. Recently, Brakerski et al. 

offered another choice of FHE schemes based on the ring learning-with-error problem in 

which the per-gate computation was reduced to Õ (λ
2
) [11]. Also, Gentry gave a construction 

framework [12] that an FHE scheme can be easily transformed by applying the bootstrapping 

theorem regularly from a somewhat HE scheme, which can merely evaluate low-degree 

polynomials homomorphically. However, to support bootstrappable encryption, Gentry’s 

framework has to squash the decryption circuit that results in the inefficiency of the 

construction. Therefore, recently a series of new works addresses methods that require no 

squashing. In particular, Brakerski and Vaikuntanathan [13] show how to obtain a direct 

construction of a bootstrappable encryption scheme without squashing. In a concurrent work, 

Gentry and Halevi [14] show how to get rid of squashing as well, using a completely different 

technique. 

Originally, Gentry’s somewhat HE scheme is constructed with ideal lattices over 

polynomial rings. In 2010, Dijk et al. proposed a very simple somewhat HE scheme using only 

addition and multiplication over the integers, which had merit of conceptual simplicity [15]. 

Its security was based on the hardness of approximate GCD of many integers - i.e., if a list of 

integers is provided that were near-multiples of a hidden integer, it outputs the hidden integer. 

In order to preserve the intractability of the problem, the public key size would be set to Õ (λ
10

). 

Although Coron et al. reduced the public key size to Õ (λ
7
) by using encryption with a quadratic 
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form rather than with a linear form [16], it is still too large for most of practical applications. 

For example, in Coron et al.’s scheme, to achieve the security level of λ=72, the size of the 

public key becomes 802MB, while for the public key encryption over integers, usually the size 

of the public key should be no more than 1MB. 

 

Our Contributions. In this paper, we propose a new form of somewhat HE scheme to reduce 

the public key size and a variation of the scheme to optimize the ciphertext size as follows. 

 Firstly, we propose a new form of somewhat HE scheme to reduce the public key size 

to Õ (λ
3
). We build the scheme based on the hardness of approximate-GCD of two 

numbers, as opposed to that of many numbers. Consequently, our scheme can support 

the same level of security as Dijk et al.’s and Coron et al.’s, but with much smaller size 

of the public key. 

 Secondly, we provide a variation of the proposed somewhat HE scheme optimized by 

applying modular reduction to reduce the ciphertext size, and analyze its evaluating 

ability. 

 

Organization. The remainder of the paper is organized as follows. We present the related 

works in Section 2. Next, we introduce the notations and definitions in Section 3. Then, we 

propose a new somewhat HE scheme with security analysis, experiment simluation and 

performance comparison in Section 4. In Section 5, a variation of the new somewhat HE 

scheme is provided. Finally, we draw our conclusions in Section 6. 

2. Related Work 

After Gentry provides the construction framework of FHE [12], there are mainly two ways to 

construct the somewhat HE schemes. One uses ideal lattices [9] [10] [11], and the other is 

based on integers [15] [16] which have merit of conceptual simplicity. In this paper our work 

focuses on the latter, and thereby in this section we mainly review the construction techniques 

of the somewhat HE schemes adopted by Dijk et al. [15] and Coron et al. [16]. Furthermore, 

we briefly summarize our different ones in the somewhat HE schemes. 

In Dijk et al.’s scheme, the message m is encrypted with a linear form in the public key 

elements xi:  

 

c = m + 2r + 2∑i xi mod x0,                                               (1) 

 

where r is a random value. To thwart the attack to the underlying intractability problem, the 

bit-length and number of xi are both considerably large. Hence, Coron et al. improve the 

encryption with a quadratic form instead of a linear form: 

 

c = m + 2r + 2∑i, j b i, j ∙ xi,0 ∙ xj,1 mod x0,                                     (2) 

 

where only a smaller subset of the public key needs to be stored and the full public key is then 

generated on the fly by combining the elements in the small subset multiplicatively. Here we 

encrypt a message with a new form:  

 

c = m + 2r + 2r1∙x1 mod x0,                                              (3) 
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where r1 is a new random value. Therefore, there are only two public key elements x0 and x1 in 

our scheme. Consequently, its security needs only to be based on approximate-GCD of two 

numbers, while both the above two schemes must build the security on that of many numbers. 

In order to resist the lattice attack to approximate-GCD of two numbers, ρ/γ needs only to be 

larger than (η/γ)
2
, but for that of many numbers, setting γ/η

2 
= ω(logλ) is required.  As a result, 

for the same security level, the size of the public key in our scheme is much smaller than that in 

Dijk et al.’s and Coron et al.’s. 

 

Differences from conference version. Portions of the work presented in this paper have 

previously appeared as an extended abstract in [20]. This paper has improved many technical 

details as compared to [20]. The primary improvements are as follows: First, we provide a 

detailed security proof in Subsection 4.4, which is very important to public key encryption 

scheme. Second, we provide a big variant of the proposed somewhat HE scheme in Section 5, 

which substantially improves the efficiency of the original one. Finally, we provide a 

simulation result for the proposed somewhat HE scheme in Subsection 4.6, which shows that 

our scheme can achieve a good evaluating ability. 

 

3. Preliminaries 

In this section, we introduce the notations and definitions used throughout the remainder of 

this paper. 

Notations.  In the paper, we adopt the same notations as in [15]. Besides, the asymptotic 

notations [17], for example the big O, the big theta Θ, the small omega ω and etc., are used to 

analyze the algorithm efficiency. In addition, we write f(λ) = Õ (g(λ)) , if  f(λ) = O(g(λ)·log
k
g(λ)) 

for positive integer k.The notations are shown as in Table 1. 

 
Table 1. Notations 

Notation Meaning 

Greek letters Parameters (e.g., ρ, η, γ, etc.) 

λ Security parameter 

Lowercase English letters Real numbers and integers (e.g., p, x, etc.) 

log Logarithm of base-2
 

[x] p −p/2 < x mod p ≤ p/2 

x ←R S Choosing an element x randomly from a set S 

 

First, we introduce the definition of HE. 

Definition 1 (Homomorphic Encryption).  A homomorphic public key encryption 

scheme ε = (KG, Enc, Dec, Eval) has the following four algorithms.  

 KG(λ): The algorithm is to generate keys by taking input with a security parameter λ, 

and output with a public/private key pair (pk, sk). 

 Enc(pk, m): The algorithm is to encrypt a message by taking input with a public key 

pk and a message m, and output with a ciphertext c. 

 Dec(sk, c):  The algorithm is to decrypt a ciphertext by taking input with a private key 

sk and a ciphertext c, and output with a message m. 
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 Eval(pk, C, <c1,…, ct>):  The algorithm is to evaluate a circuit by taking input with a 

public key pk, an evaluating circuit C with t-input, and a tuple of ciphertexts <c1,…, 

ct>, and output with another ciphertext c. 

Roughly speaking, the somewhat HE scheme can only evaluate the limited circuits, while 

the FHE scheme can handle the arbitrarily computable ones. Here, we give the precise 

definition of somewhat HE scheme as follows, in which the Eval algorithm in Definition 1 

above can be treated as the Add and Mult algorithms to support the additive and 

multiplicative homomorphic operations, respectively. 

 

Definition 2 (Somewhat Homomorphic Encryption). A somewhat homomorphic 

encryption scheme consists of the five algorithms (KG, Enc, Dec, Add, Mult).  

 KG(λ): The same as in Definition 1. 

 Enc(pk, m): The same as in Definition 1. 

 Dec(sk, c): The same as in Definition 1. 

 Add(c1, c2):  The algorithm is to evaluate the additive homomorphic operation by 

taking input with two ciphertext c1 and c2, and output with another ciphertext c. 

 Mult(c1, c2):  The algorithm is to evaluate the multiplicative homomorphic operation 

by taking input with two ciphertext c1 and c2, and output with another ciphertext c. 

 

Then, we give definitions of the correctness and compactness of the HE scheme ε. 

Definition 3 (Correctness). ε is correct for a given t-input circuit C, if it is the case that: 

 

    1 1, , , ,..., ,...,t tsk pk C c c C m m  Dec Eval ,                                (4) 

 

for any public/private key pair  (pk, sk) generated from KG(λ), any t plaintext bits m1,…, mt, 

and any tuple of ciphertexts <c1,…, ct> with ci = Enc(pk, mi). 

Definition 4 (Compactness). ε is compact if there is a polynomial f such that, for every 

value of the security parameter λ, the decryption algorithm Dec can be expressed as a circuit 

Dε, if the circuit size is at most f(λ). 

 

Finally, we give the definition of approximate-GCD problem of two numbers which our 

somewhat HE scheme is built on. 

Definition 5 (Approximate-GCD). The (ρ,η,γ)-approximate-GCD problem of two 

numbers is: Output p, for a randomly chosen η-bit odd integer p, given two integers x0 and x1, 

where 2i i ix pl h  ,  0,2il p Z , and  -2 ,2ih   Z , for  0,1i . 

4. Proposed Somewhat HE Scheme 

In this section, we construct a somewhat HE scheme with a new encrypting form, analyze its 

correctness, prove its security based on the approximate-GCD problem of two numbers, and 

give an efficiency comparison with the other somewhat HE schemes over integers. Finally, the 

simulation results for the evaluating ability of the proposed scheme are provided. To begin, we 

give the parameter set used in our scheme.  
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4.1 Parameters 

The parameters in our scheme are similar to those in [15], and thus firstly we recall those 

parameters (all polynomials in the security parameter λ): 

 ρ is the bit-length of the noise 

 ρ' is the bit-length of the second noise 

 η is the bit-length of the private key 

 γ is the bit-length of the integer in the public keys 

 τ is the number of integers in the public keys 

 

However, there are two important different aspects in our parameter set, which result in 

more efficient construction: 

 The parameter τ is not necessary because the public key in our construction contains 

only two integers x0 and x1. 

 To foil various lattice-based attacks [15], for the approximate-GCD problem of many 

numbers, Dijk et al. set parameter  2 log     . However, for the problem of two 

numbers, we need only to set parameter     23 8O    where the lattice 

reduction yields nothing useful against security. 

 

Remark 1. Howgrave-Graham attempted to solve the approximate-GCD problem of two 

numbers by using lattices and gave the following bound [18]: 

 

     2
0 0 0 0 01 1 2 1 1 2 ,h           .                                 (5) 

 

According to the definition of Algorithm 14 in [18], we have 0   and 0  . 

Therefore, if we ignore  0,h  , we have 

 

     23 8 2       .                                               (6) 

  

As a result, in our construction, parameters of ρ, ρ', η, and γ must be set under the following 

constraints:  

  log     

  log       

  2log       

     23 8O     

 

Then, a convenient parameter set is   , 2   ,  2O  , and  3O  . 

 

4.2 Construction 

The proposed somewhat HE scheme is consisted of four algorithms KG, Enc, Dec and Eval as 

shown from Fig. 1 to Fig. 4. 
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Algorithm  KG  

Input: a security parameter λ. 

Output: a public/private key pair (pk, sk). 

Steps: 

1. Choose randomly   12 1 [2 ,2 )Rp    Z . 

2. Choose randomly  0 1, 0,2Rl l p Z  and 0 1, (-2 ,2 )Rh h   .  

3. Compute 2i i ix pl h    for 0,1i  and assume that 0 1x x .  

4. Set  0 1,pk x x  and sk p . 

 Fig. 1.  Key Generation Algorithm 

 

Algorithm  ,pk mEnc  

Input: a public key pk and a bit message  0,1m . 

Output: a ciphertext c. 

Steps: 

1. Choose randomly  -2 ,2Rr     and  1 -2 ,2ρ ρ
Rr  . 

2. Compute 1 1 02 modc m r r x x   . 

Fig. 2. Encryption Algorithm 

 

Algorithm  ,sk cDec  

Input: a private key sk and a ciphertext c. 

Output: a bit message  0,1m . 

Steps: 

1. Compute  mod mod 2m c p , where  modc p  gets a result 

of the integer in  - 2, 2p p . 

Fig. 3. Decryption Algorithm 

 

Algorithm Eval(pk, C, <c1,…, ct>) 

Input: a public key pk, an evaluating circuit C with t-input, and a tuple of 

 ciphertexts <c1,…, ct>. 

Output: another ciphertext c. 

Steps: 

1. Apply the integer addition and multiplication gates of the circuit 

C to the tuple of <c1,…,ct>, performing all the operations over 

the integers, and return the resulting ciphertext c. And the 

addition and multiplication on two ciphertexts are as follows: 

  1 2 1 2, :c c c cAdd .  

  1 2 1 2, :c c c cMult . 

Fig. 4. Evaluation Algorithm 
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Remark 2. In the public key  0 1,pk x x , x0 and x1 cannot both be even integers. 

Otherwise, the message m and the ciphertext c have the same parity. 

Remark 3. Note that while the Enc algorithm reduces the length of the ciphertext by 

applying modulo x0, we cannot do the same in the Eval algorithm, which results in significant 

expansion of ciphertext size with the complexity of the evaluating circuit C. To ensure the 

compactness (Definition 4), the optimizing techniques of modular reduction in the variant are 

adopted in Section 5. 

4.3 Correctness 

As mentioned in Definition 3, for an HE scheme, the correctness needs to be preserved. 

Therefore, in this subsection, we check the correctness of the Eval algorithm based on the 

analysis of the noise of a fresh ciphertext. Then, the evaluating ability of our somewhat HE 

scheme is given. 

 

 Firstly, we consider the noise of a fresh ciphertext output by the Enc algorithm. 

According to Enc, 1 1 02 modc m r r x x   . And since 0 1x x , we have that  

 

1 1 02c m r r x kx    , 1k r .                                          (7) 

 

Since 2i i ix pl h  for 0,1i  , we have that 

 

   1 1 0 1 1 02 2 2c p rl kl m r rh kh       .                                (8) 

 

With regard to the noise 1 1 02 2 2m r rh kh   , its parity is the same as m. According to the 

parameters in our scheme,  

 
1

1 1 02 2 2 2 2 2 2 2 2 2 2 3 2ρ ρ ρ ρ ρ ρm r rh kh                ,                    (9) 

 

and thus the noise is at most 13 2 in absolute value.  For the simplicity, we write 

1 1 02 2 2m r rh kh    as 2m b  for a certain integer b. 

 

 Secondly, let us check that  the ciphertext output by the Eval algorithm can be 

decrypted correctly. 

Let C' be the generalized circuit corresponding to C, which operates over the integers 

rather than modulo 2. Let  1, , tc C c c , where the noise of ci is 2i im b  for   1, ,i t , 

which has the same parity as the message mi. We have that  

 

 1 12 , , 2t tc C m b m b p    Z .                                          (10) 

 

If the noise is small enough as  

 

  4
1 12 , , 2 2 8t tC m b m b p     ,                                    (11) 
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we have that 

 

    1 1 1
2

2 , , 2 , ,t t tp
C m b m b C m m m      .                        (12) 

 

Remark 4. The bound 22 2p   would be sufficient for correct decryption. However, in 

order to make the squashed decryption circuit shallower [15], here the noise may remain 

below 8p . 

 

 Finally, we consider the degree of polynomials which our somewhat HE scheme ε can 

evaluate. We have the following theorem. 

Theorem 1. Let C be a boolean circuit with t inputs, and C' be the same circuit as C, but 

with boolean gates replaced by integer operations. Let  1, , tf x x be the multivariate 

polynomial corresponding to C', and d be its degree. If  

 

   1 4
1,..., 3 2 2 8

d

tf x x f p      ,                                  (13) 

 

where ii
f b , and ib  is the coefficient of f , then ciphertexts output by Eval can be 

decrypted correctly.  

Proof. Equation (13) could be derived immediately from Equations (9) and (11): Since 

fresh ciphertexts output by the Enc algorithm have noise at most 13 2 , the ciphertext output 

by the Eval algorithm applied to a circuit has noise at most 42 8p  . Furthermore, by 

considering the multivariate polynomial  1, , tf x x , we can get Equation (13).                  □ 

 

In particular, ε can handle f as long as  

4 log

1 log3

f
d





 


  
.                                           (14) 

 

4.4 Security 

Our security proof to Theorem 2 is similar to that of Dijk et al.’s. The main difference is that 

our construction of  the somewhat HE scheme is on the approximate-GCD of two numbers, not 

on that of many numbers. 

Theorem 2. Let A  be an attacker with advantage ò  against our somewhat HE scheme 

with parameters (ρ,ρ',η,γ) of polynomials in the security level λ. There exists an algorithm B  

for solving the (ρ,η,γ)-approximate-GCD problem of two numbers that succeeds with 

probability at least 2ò . The running time of B  is polynomial in the running time of A , λ, 

and 1 ò . 

Proof. Given an algorithm A  that breaks the above somewhat HE scheme, we show how 

to construct an algorithm B  that solves the approximate-GCD problem. The two integers

2 , 0,1i i ix pl h i    are given to the solver B , for a randomly chosen η-bit odd integer p, 
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where  0,2il p Z and  -2 ,2ih   Z ; its goal is to find p. Here, for an integer z, 

we use  pq z  and  pr z  to denote the quotient and remainder of z with respect to p, i.e., 

   p px q z p r z   ,    - 2, 2pr z p p . 

 

Step 1: Key Generation.  

When x0 and x1 are given to the solver B , it relabels them as 0 1x x . B  then outputs a 

public key  0 1,pk x x . Clearly, if x0 and x1 are not both even integers, the distribution 

induced on the public key in the simulation is identical to that in the original scheme. 

 

Step 2: Prediction for Least-Significant Bit (LSB).  

B  produces an integer z by “encryption of zero.”  Then B  attempts to recover p by using 

A  to learn the LSB of  pq z , where we denote the parity of z by  zparity . The procedure of 

prediction is shown in Fig. 5.  

 

Subroutine  ,z pkLearn - LSB  

Input:  0,2z   with   2ρ
pr z  and a public key  0 1,pk x x . 

Output: LSB of  pq z . 

Steps: 

1. Choose randomly  -2 ,2Rr    ,  1 -2 ,2ρ ρ
Rr  , and a bit 

 0,1Rm . 

2. Set 1 1 02 modc z m r r x x    . 

3. Call A  to get a prediction  ,a pk cA . 

4. Set  b a z m  parity . 

5. Output b. 

Fig. 5. Learn-LSB Subroutine 

 

Remark 5. Since z can be represented as    p pz q z p r z   ,  and a = [[c]p]2, we have 

 pa r z m  . Furthermore, we have  b a z m  parity . So, b is the parity of  pq z . 

Additionally, to predict b with the noticeable advantage,  B  could choose many random zi’s 

corresponding to bi’s and take majority of votes among bi’s [15]. 

 

Step 3: Binary GCD and Recovering p. 

After obtaining the parity of  pq z  by utilizing A , we recover p by the binary GCD 

algorithm described as in [19]. 

 

The Success Probability of B  

Let G  denote the event that x0 and x1 cannot both be even integers. Conditioned on G  in 

our reduction, the distribution of the public key that B  creates is identical to the right 

distribution from our scheme. It is easy to know that the event G  happens with probability 

3 4 . Similarly, we define P  and pPK .  
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Let P  denote the set of odd integers in  12 ,2   for which A  has over 2ò  advantage:  

 

    12 ,2  :  conditioned on is at least 2p sk p   AdvantageP A ? .           (15) 

 

Let pPK  be the set of public keys for which A  has advantage at least 3 8ò : 

 

{  for :  ( ) conditioned on  is at least 3 8}p pk p pk AdvantagePK A ? .               (16) 

 

Then, we analyze the distribution of ciphertexts produced in step 2 of the subroutine 

Learn-LSB. In our scheme, 1 1 02 modc m r r x x   , while in the security reduction, 

 
0

*
1 12

x
c x m r r x    . According to parameter choices,  1 -2 ,2ρ ρ

Rr   and  1 0,2x  . 

Therefore, whatever the binary GCD algorithm operations,  0,2x  , and thus the 

distribution of 1 1r x  is close to that of *
1 1x r x . Hence, the ciphertext in the reduction produces 

a distribution which is statistically close to that of our scheme. As a result, with the probability 

3 8neglò (we denotes the amount neglectable in λ by negl ) the ciphertext-generation in the 

reduction “works” for this public key. 

Finally, if x0 and x1 are given, B  recovers the hidden secret pP  in a single run with 

probability at least  1
2 3 8 neglò . By repeating it for    16 3 log ò  times, we will 

recover such p with overwhelming probability. Hence, the overall success probability of B  is 

at least 2ò  with complexity which is polynomial in λ and 1 ò .                                                        □ 

4.5 Comparision 

As shown in Table 2, considering the evaluating degree of the polynomial, our scheme is 

similar to Dijk et al.’s [15] and Coron et al.’s [16]. However, the public key size in our scheme 

is much smaller than theirs. The public key size in our scheme is Õ (λ
3
), while it is Õ (λ

10
) and 

Õ (λ
7
) in Dijk et al.’s and Coron et al.’s, respectively. This is mainly due to the based hardness 

problem. We construct our somewhat HE scheme on the approximate-GCD of two numbers as 

opposed to that of many numbers in other schemes. 

 
Table 2. Comparison of somewhat HE schemes 

Scheme Hardness problem Public keys size Evaluating degree 

Dijk et al.’ 
approximate-GCD 

of many Numbers 
 10O   

4 log

2

f



 

 
 

Coron et al.’ 
approximate-GCD 

of many Numbers 
 7O   

3 log

2 2log

f

 

 

  
 

Ours 
approximate-GCD 

of two Numbers 
 3O   

4 log

1 log3

f



 

  
 

 
 

 

 



2508                                                              Yang et al.: An Efficient Somewhat HE scheme over Integers and Its Variation 

4.6 Simulation Experiments 

In this subsection, we give the simulation results for the proposed somewhat HE scheme.  We 

run the experiments on a Thinkpad Notebook, featuring an Intel CPU P8400 (2.26GHz), with 

3GB of random access memories. Our implementation uses Shoup's NTL library [21] version 

5.5.2 for high-level numeric algorithms. We consider the evaluating degree d of the 

polynomial, which represents the evaluating ability of the somewhat HE scheme. As shown in 

Table 3, on one hand, the degree d increases with the security parameter λ. It means the 

evaluating ability of our scheme can grow normally with λ. On the other hand, d is almost the 

same even if the different message length l is considered. It means that our scheme can achieve 

steady evaluating ability with respect to l. Consequently, our scheme can provide a good 

evaluating ability. 

 
Table 3. Evaluating ability of our scheme 

(λ: security parameter, l: message length, d: evaluating degree) 

d l = 64 l = 112 l = 160 l = 208 l = 256 

λ=42 21 21 22 21 21 

λ=52 28 28 26 26 26 

λ=62 31 31 33 31 34 

λ=72 39 36 37 37 36 

 

5. Variation and Optimization 

Dijk et al. also considered a variation of somewhat HE scheme by applying modular reduction 

into the Eval algorithm to reduce the ciphertext size [15]. However, they did not give the 

evaluating ability of the variation. Obviously, the degree d of the variation is lowered due to 

the introduction of the additional noises.  In this section, we analyze the evaluating ability of 

the variation of our scheme. Here, we denote the optimized Eval algorithm by Opt-Eval.  

5.1 Opt-Eval 

We apply the modular-reduction into Eval of our basic scheme. Firstly, the 1   random 

elements 2i i ix pl h    , 0,1,...,i  are added to the public key, in which 

 12 ,2i i
i Rl p p    Z  and  -2 ,2i Rh   Z .  Then, we have  12 ,2i i

ix     .  

In the basic Eval algorithm,  1 2,c cAdd  increases the magnitude of the integers by at 

most a factor of 2. However,  1 2,c cMult  may square the magnitude of the integers. 

Therefore, we optimize them differently in the Opt-Eval algorithm as shown in Fig. 6. 

Algorithm Opt-Eval(pk, C, <c1,…, ct>) 

Input: a public key pk, an evaluating circuit C with t-input, and a tuple of ciphertexts <c1,…, ct>. 

Output: another ciphertext c. 

Steps: 

1. The optimized addition and multiplication on two ciphertexts are as follows: 

     1 2 1 2 0, modc c c c x Opt Add .  

        1 2 1 2 1 0, mod mod mod .c c c c x x x       Opt Mult  

Fig. 6.  Optimized Evaluation Algorithm 
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5.2 Additional Noises in Opt-Eval 

Let c1 and c2 be ciphertexts of m1 and m2, respectively: 

 

1 1 01 11 1 0 2 2 02 12 1 02 mod , 2 mod .c m r r x x c m r r x x                        (17) 

 

We have 

 

1 1 01 11 1 1 0 2 2 02 12 1 2 02 , 2 .c m r r x k x c m r r x k x                          (18) 

 

Let kAdd be a multiple of x0, and ,Mult ik be a multiple of ix  , 0,1,...,i  . Let n1 and n2 be 

noises of c1 and c2, respectively. Let nAdd and nMult be additional noises introduced in 

  1 2,c cOpt Add and   1 2,c cOpt Mult , respectively. We analyze nAdd and nMult as below. 

 

 For   1 2,c cOpt Add : 

Firstly, nAdd can be represented as 1 2 02Add Addn n n k x   . Then, since 

1 2 0 1 2 0 0 0mod Add Addc c x c c k x k x x      , we have 1Addk  . Thus we have the condition 

 
1

1 2 2Addn n n    .                                                  (19) 

 

 For   1 2,c cOpt Mult : 

 To analyze the noise in   1 2,c cOpt Mult ,  firstly we consider modulo x   . We have 

 1 2 1 2 ,mod Multc c x c c k x       . Since one multiplication operation on two ciphertexts at 

most doubles the bit length of one ciphertext,  we have ,Multk x     

   1 2 1 2modc c x c c    2x  , which means that , 2Multk   . Secondly, we consider 

modulo 1x   . We have  1 2 1 1 2 , , 1 1mod mod Mult Multc c x x c c k x k x               . Since 

  2 1
1 2 1mod 2 2 2c c x x x

  


       and   1 2 1 1mod mod 2c c x x x       , we 

have , 1 2Multk    . Similarly, we have , 2, 0,1,..., 2Mult ik i    . And since nMult can be 

represented as 1 2 ,0
2Mult Mult i ii

n n n k r



    , we have 

 

  2
1 2 1 2Multn n n       .                                           (20) 

 

As analyzed above, the additional noises are introduced from   1 2,c cOpt Add  and 

  1 2,c cOpt Mult  , which could lower the evaluating ability of our variation. In the 

following, we further consider the degree d of the evaluated polynomial. 
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5.3 Evaluating Ability of Opt-Eval 

For the sake of the convenience, let 13 2X    be the noise in the fresh ciphertext, 12A   

be the additional noise in   1 2,c cOpt Add , and 2( 1) 2B      be the additional noise in 

  1 2,c cOpt Mult . 

Firstly, we analyze the noise in the monomial of degree d: 
1 2 3 di i i ix x x x   . For 

  1 2,c cOpt Mult , we have 1 2| | | | | |Multn n n B   . Hence, the noise of 
1 2 3 di i i ix x x x    is 

( ((( ) ) ) )X X B X B X B X B          . By “Mathematical Induction” method, we have 

 
1

1
1

.
1

d
d d d

X
X BX BX B X B

X





       


                               (21) 

 

Then, we consider any polynomial of degree d: 1( ,..., )tf x x . There are at most f  

monomials of degree d in 1( ,..., )tf x x . Thus, we have  

 

 
1

4

1
4

4

1
( ) 1 2 8

1

1
( ) 2

1

2
(1 ) .

( 1) 1

d
d

d
d

d

X
f X B f A p

X

X
f X B f A A

X

B A B
X A

X X Xf
















     




     




    

 

                              (22) 

 

Furthermore, we can get 

 
42

log( ) log(1 )
1 ( 1)

log

A B B
A

X X Xf
d

X

 
   

 
 .                              (23) 

 

Since 13 2X   , 12A  , 2( 1) 2B     , we have  

 

1

1

1 3 2

B

X 







 
 and 

3

1

( 1) 9 2

B

X X 

 


 
,                                      (24) 

 

which can be both omitted according to the parameter setting of our scheme.  

 

Finally, we have 

 
4 1

1
2 2

log( 2 )

1 log3

f
d

 




 






  

.                                             (25) 
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Remark 6. As analyzed, the proposed variation is effective and efficient. With respect to the 

effectiveness, we have focused on the correctness of the proposed variation. As shown in Section 5, by 

analyzing the evaluating ability of the variation, we have checked the correctness of the variation, based 

on the analysis of additional noises of ciphertexts. Therefore, the variation of our scheme can achieve 

the effectiveness. On the other hand, we have considered the efficiency. As we know, if the technique of 

the modular-reduction is not used, the operations on ciphertexts would increase significantly the size of 

the ciphertext as shown in original scheme, since just one multiplication the ciphertext doubles the 

bit-length. While in the proposed variation, the size of the ciphertext is no more than that of the modulus 

due to the modular-reduction. As a result, the variation of our scheme could optimize the ciphertext size 

greatly. 

6. Conclusion 

In this paper, we proposed a new somewhat HE scheme over integers with small public key 

size Õ (λ
3
). Its security is based on approximate-GCD of two integers. Besides, we gave a 

variation of our scheme and analyzed its evaluating ability. In the future work, we will further 

improve the efficiency of the FHE scheme to be practical for cloud computing and other 

related applications. 
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