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ABSTRACT

Experiences with the classification of forest condition in Carinthia, one of the nine federal provinces of Austria, are described.
Three Landsat TM satellite scenes had to be mosaicked to cover all of Carinthia. Two such mosaicked scenes, one from
June and one from August, were used for classification to take into account the different phenological stages of the forest.
Additionally, the scenes were used to replace areas covered by clouds with cloud free data from the respective other scene. Very
much effort was put into this classification project to receive knowledge on choosing classifieres — we tried a statistical and a
neural network classifier — optimize the training process — true error rate approximation, generalization — and judge the final
performance ~ statistical or human expert. Criteria for the final classification result was not only the true error rate but also
the confusion matrix giving the desired importance for each class. An additional subjective criteria was the comprehensibility of
the training and the classification results and the visual appearance of the classification border lines of the individual Landsat
TM images of one scene of Carinthia.

KURZFASSUNG

Fiir das Bundesland Karnten wurde eine flichendeckende Klassifikation des Waldzustandes aus Satellitenbilddaten durchgefiihrt.
Um ganz Karnten abdecken zu konnen muBten drei Landsat TM Szenen zu einem Mosaik zusammengesetz werden.
Der Artikel beschreibt wesentliche Aspekte der Datenaufbereitung, der Merkmalsauswahl, der Klassifikation unter beson-
derer Berlcksichtigung verschiedener Klassifikatoren, der Mosaikbildung aus mehreren Landsat TM Szenen sowie der
Qualitatsbeurteilung der Klassifikationsergebnisse.

1 INTRODUCTION
ODUCTIO Table 1: Satellite images.

Scene

192-27 quarter
191-27/28 floating
191-27/28 floating
190-27/28 quarter, flt.
190-27/28 quarter, flt.

Acquisition date
August 9, 1992
June 15, 1992
August 18, 1992
June 22, 1991
August 14, 1993

Sensor
Landsat TM

In support of the forestry framework for the province of
Carinthia a forest classification based on satellite images has
been performed. This shall record the actual state of the for-
est for the whole province. Satellite images serve particularly
well for this type of problem because they allow to derive
forestry parameters that are not — or at least not in a suitable
scale — available from maps or other sources. The parameters
which had to be recorded by means of the classification were
the actual edge of the forest, the forest type (4 classes), the
stand age (3 classes), and the stand density (2 classes).

not be covered completely by a singel scene. Nearly cloudless
Landsat TM images covering all of Carinthia were available
for the peroid of 1991 to 1993 (tab. 1), in which floating scene
191-27/28 coveres nearly all of Carinthia except of relatively
small parts in the East and West. For preprocessing of the
satellite images - geocoding and topographic normalization -

The classification results afterwards shall be integrated into a
geographic information system (GIS) together with other in-
formation that is required for the forestry framework, such as

digital elevation models (DEMs) and geological maps. There
they shall be jointly processed and overlayed for planning and
analysis purposes. In this connection the classification results
present themselves as the most actual GIS layer.

The work steps necessary for realising the task and the em-
ployed methods shall be presented in the following exposition.

2 DATA SPECIFICATION
2.1 Satellite Data and DEM

The area to be classified covered approximately 15.000 km?.
Lansat TM data were suitable for giving an overview of the
forest condition over such a large area. Furthermore, neither
SPOT nor Russian KFA data was available with blanket cov-
erage within an acceptable period. Therefore, the analysis
was based on Landsat TM data. It was necessary to form
a mosaic of several satellite scenes, because Carinthia could

a digital elevation model (DEM) was necessary. This DEM
was available in a 50 m raster and was resampled to a 25 m
raster.

2.2  Ground Truth

The forest condition is mainly defined by three parameters:
Forest type, stand age, and stand density. For these and
some additional forest parameters ground truth derived by
field work of the client was available. It was more or less
equally distributed all over Carinthia. Ground truth had to
undertake extensive post-processing and selection by visual
control before it could be used as training set. Following
selection criteria were applied:

e location within the central satellite scene
e cloud coverage
e location error due to image distortion
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e location error due to mapping

e sufficient size of stand

e homogenity of area

e clear assignement to one forest class

e representativity for all classes

e variation of grey values within one class

e overlay of spectral feature space.

Finally, 299 of 583 stands from ground truth data could be
used for training and verification. The training areas were
more or less equally distributed all over Carinthia, but not
equally distributed concerning the forest classes. This was
one reason, why classification hadto be performed in three in-
dependent steps, classifying each forest parameter separately.
Furthermore, the ground truth data covering the smaller east
and west images did not allow to classify these images in-
depentently from the larger central scene (compare section
6).

3 DATA PRE-PROCESSING

For mosaicking as well as for overlay of the satellite images
high-precision geocoding with subpixel accuracy was essen-
tial. This was reached by using a parametric, sensor-specific
mapping model taking into consideration image distortions
caused by topographic relief by using a DEM. With this ap-
proach, subpixel accuracy could be reached. Furthermore,
preprocessing of satellite images included atmospheric cor-
rection based on LOWTRAN7 and meteorological data as
well as radiometric correction of topographic effects in each
separate band. For example, the influence of relief on the sig-
nature of satellite images is described by [Schardt, 1990] for
spruce and beech stands in the Black Forest, Germany. The
results are shown for band TM 4 in fig. 1. Due to different
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Figure 1: Signature of closed beech (+) and spruce (e) stands
in Landsat TM band 4 depending on illumination [Schardt,
1990].

ilumination the spectral signature of the same class changes
significantly with varying slope and aspect in mountainous
areas. 1hus the radiometric correction is even more impor-
tant for alpine regions as is characteristic for Carinthia. The
topographic influence was reduced by radiometric correction
using the Minneart model ([Colby, 1991]).

4 SIGNATURE ANALYSIS AND FEATURE
SELECTION

In order to assess the feasibility of the task, first, results of
earlier signature analyses were consuited. In general, the best
suitable features for the classification of various forest param-
eters are well known from literature (e.g. [Coenradi, 1992,
Horler & Ahern, 1986, Schardt, 1990]). The Landsat TM
spectral bands TM 1 and TM 3 show a greater chlorophyll
absorption, thus, the reflection is decreasing with increasing
vegetation cover, whereas it is increasing in bands TM 2 and
TM 4. The bands TM 5 and TM 7 are more sensitive to the
biomass in general and to the leaf water content then to the
green vegetation. Here the reflection also is decreasing with
increasing vegetation cover. Band TM 1 is less suitable due
to its sensitivity to atmospheric effects and bands TM 5 and
TM 7 are strongly correlated.. Therefore, the Landsat TM
bands TM 2, TM 3, TM 4, and TM 5 are contain the most
information for forest applications.

Besides that, the feature selection was based on further inves-
tigations such as the analysis of cluster diagramms, the calcu-
lation of correlations between features and forest parameters,
and the analysis of statistical results from classification tests
with diverse feature combinations, taking into consideration
the most suitable phenological stages.

5 CLASSIFICATION

The classification was based on ground truth, which served
as training as well as verification data sets. It had to be
performed separately for each forest parameter due to un-
derrepresentation of some classes in the ground truth data.
The advantage of this approach was the selection of the most
suitable feature combination for each forest parameter.

The actual edge of the forest, that is the separation of forest
from non-forest areas, was classified by using a combination of
thresholds in band TM 2 of the August scene (for separation
of forest from other vegetation and non-vegetation) and TM 4
of the June scene (for 'separation from water). The forest
type (4 classes from coniferous over two mixed forest classes
to deciduous) were best separated in TM bands TM 3, TM 4,
and TM 5 of June. The stand age (3 classes) also influenced
mainly the TM bands TM 4 and TM 5, best classification
results were derived by using band TM 5 and the ratio of
band TM 4 and TM 3 of June. Finally, the stand density (2
classes) was classified using TM bands TM 2, TM 3, TM 4,
and TM 5 of August as features.

As age of treee stand and tree speciec composition both in-
fluence the same features or spectral signatures respectively,
it would be meaningful to classify these parameters jointly.
Due to the unfavourable distribution of training sites within
the subclasses defined by that this was not possible. For
the same reason it was also impossible to take into account
further factors such as the altitude or the ground cover.

5.1 Classifiers

In a broad variety of applications we acquired much expe-
rience with Maximum Likelihood [Bahr, 1985], a statistical
classifier widely used in remote sensing applications. It is very
important to find the best features — be that single channels
or combinations ~ for Maximum Likelihood to yield in good
performance. Therefore preprocessing is demanding both in
terms of knowledge and time. On the other hand there is no
necessity to care of overlearning (bad generalisation). The
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theoretical drawback is that Maximum Likelihood assumes
the classes being normally distributed.

One Neural Network method that is a non-parametric clas-
sifier is Learning Vector Quantization (LVQ) by Kohonen
[Hertz, 1991, Kohonen, 1989, Kohonen, 1995]. It looks very
promising because of the efficient training process and its
capability to learn non-normally distributed classes. The pur-
pose of the training process of LVQ is to find a “codebook”
which is a quantization of the training data. This codebook
can be used to classify the entire image by performing a near-
est neighbour labeling process.

5.2 True error rate approximation

Having no extended ground truth the performance criteria for
training is true error rate approximation.

In a first step we divided all training pixels randomly into
reference and testing sets. The sets are given in table 2. 10-

Table 2: Ground truth

forest type | stand age | stand density
all 3145 4598 4631
reference 2661 4088 4142
test 484 510 489

fold cross validation was used to get approximations of the
true error rates of the classifiers. A further statistical mean
of estimating the performance was to carry out one design
and test step to obtain the confusion matrices.

5.3 Verification

Two experts from the Carinthian government and the most
experienced collegue from the institute verified the results vi-
sually. This step was very important because the quality of
the ground truth was not known. Furthermore, our experi-
ence with LVQ was limited at that point of time.

6 MOSAICKING

Due to the spatial distribution of the training areas all over
of Carinthia a seperate training for all satellite scenes was
not possible. For the scenes covering the eastern and west-
“ern part of Carinthia respectively, the ground truth was not
covering all classes sufficiently. Thus, first the main scene,
which covers most part of Carinthia, was trained with the
ground truth and classified. In order to establish a classifica-
tion mosaic of all satellite scenes, the classification results of
the main scene within the scene overlay were used as train-
ing areas for the classification of the edge scenes. These had
to be classified separately and combined to a classification
mosaic afterwards.

Table 3: Statistical results
Classification True error rate

Forest type 69.51% + 0.78%
Stand age 65.29% =+ 0.96%
Stand density | 83.57% =+ 0.65%

Furthermore, some small areas covered by clouds had to be
replaced by classification results of cloud free scenes. Wher-
ever possible, the edge scenes were used for this purpose.
However, for some parts the central scene had to be brought

in using the image not empoloyed in the original classification
of the respective forest parameter.

7 RESULTS

The final approved classifications were done with Maximum
Likelihood for forest type and stand age, and LVQ for stand
density. While the statistical results were better for LVQ in
all three classifications, the experts found problems with the
LVQ results. Small classes tended to be underrepresented, the
overall result was too smooth in appearance. While training
with LVQ problems were encountered with repeatability of
the training results with identical sample sets. Furthermore,
we are suspicious that we did not obtain optimal results with
LVQ: As Song and Lee [Song, 1996] point out in their very
recent paper, mean problems of LVQ are:

1. good initial values for the codebook
2. no garantee for optimal codebook

3. optimal stopping point.

The CV results of the approved classifications are given in ta-
ble 3, the confusion matrices in table 4.to 6. The mosaicking
resulted in complete classified images where the cutting line
remained invisible.

Table 4: Forest type: confusion matrix
(@) | (b) | (c) | (d) | < classified as
77 | 10 | 12 5 | (a): deciduous
31 | 21 | 20 | 5 | (b): mixed deciduous
8 | 12 | 56 | 27 | (c): mixed coiferous
7 9 | 12 | 172 | (d): coniferous

Table 5: Stand age: confusion matrix

(a) | (b) | (c) | < classified as
103 | 45 | 18 | (a): young stands
58 | 183 | 36 | (b): mature stands
11 15 | 41 | (c): old stands

Table 6: Stand density: confusion matrix

(a) | (b) | < classified as
54 | 40 | (a): 0 —60%
43 | 352 | (b): > 60%

8 CONCLUSION

As to chosing the best classifier it is very important to
examine the confusion matrix and - additionally - to verify
the results to obtain the desired outcome. This process was
carried out together with the client which may not be practi-
cal in general, however, this approach was the only possibility
to provide the client with adequate results due to the prob-
lems mentioned.

Neural Network classifiers do have tempting features but also
unexpected drawbacks. We do not recommend to experiment
with new classifiers when there is existing experience, because
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collecting the necessary new experience is very time consum-
ing. Furthermore, we doubt that the results will be signifi-
cantly better simply because some hidden problems with the
new classifier will be overlooked easily.

As to the mosaicking, in general we would prefer to have
a separate training set for each separate satellite image. In
our case, the applied approach was the only possibility of
composing a classification mosaic due to unsufficient ground
truth in the Eastern and Western scene. The results of the
overlaping area proved the approach to be successful.
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