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Abstract: 

There is a growing interest in investigating the underlying topological relations of spatial objects, and defining 
corresponding operators to check these relations. The investigation has recently resulted in a complete set of 
eight different spatial relationships between two regions. To check these eight spatial relations between two 
polygons, six fundamental topological spatial operators are required. More operators for checking specific spatial 
relations between two objects can be created by combining the fundamental operators with other operators. These 
operators provide a sound basis for designing a spatial query language and the query language with 
implementation of such spatial operators can become a useful tool for spatial querying and analysis. 
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1. Introduction 

A geographical information system (GIS) can be 
considered as a spatial database system on which a set 
of application programs operates. These application 
programs provide tools for the GIS user to make 
spatial queries and analyses about objects in the 
database. The object-oriented (00) approach has 
proved to be a powerful tool for designing spatial 
databases, especially heterogeneous spatial databases 
(Oosterom et al 1989, Kemp 1990). 

An 00 spatial database consists of a collection of 
spatial objects, which, together with their (spatial) 
relations, represent spatial information about reality 
(Molenaar 1991). An important feature of an 00 
database system is that each object has an identity 
which allows the user to distinguish and address it 
(Unland et al 1990). Besides its identity a spatial 
object also carries two kinds of data: spatial data, 
which describe the location and geometry of the 
object in space, and attribute data, which represent 
non-spatial properties of the object. 

Spatial relations of objects are an important part of 
the spatial information. The complexity of spatial 
relations among objects creates difficulties to 
explicitly represent all kinds of spatial relations in a 
database. An alternative is to define spatial functions 
in the database query language to discover spatial 
relations of objects. 

There is a growing interest in investigating the 
underlying topological relations of spatial objects 
(Egenhofer et al 1990, 1991, Kainz 1989, 1990), and 
defining corresponding operators to check these 
relations (Svensson et al 1991). The investigation of 
topological spatial relations of objects in a topological 
space has recently resulted in a complete set of eight 
different spatial relationships between two regions 

,(Egenhofer et al 1990, 1991). To check these eight 
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spatial relations between two polygons, six 
fundamental topological spatial operators are 
required. The terminology used for polygons can also 
be adopted for defining spatial operators for points 
and lines and combinations of these. These operators 
provide a sound basis for designing a spatial query 
language and the query language with 
implementation of such spatial operators can 
become a useful tool for spatial querying and analysis 
(Svensson et al 1991). 

This paper is organized as follows. Section 2 
discusses types of spatial objects. Spatial data types are 
proposed for handling different types of objects in 
databases. Functions operating on the spatial data 
types are given in section 3. Section 4 discusses 
topological spatial relations between two objects. 
How to use given spatial functions and operators to 
define new operators to detect detailed spatial 
relations is demonstrated in section 5. Section 6 gives 
some examples showing the use of these operators in 
querying a spatial database. Some conclusions are 
drawn in section 7. 

2. Object types and spatial data types 

Any object that is related to a location in space is said 
to be spatial. Some spatial objects are complex, for 
example, a road network. Others are simple, for 
example, oil wells which are usually presented as 
points in maps. The complex objects are composed of 
simple objects. 

Three basic types of spatial objects exist in the two 
dimensional space. They are points, lines, areas, 
which will be called polygons from now, and each of 
these three basic types has a primitive form. Any 
point is primitive. A line is primitive if it has no 
loop between its two ends, excluding the simply 
closed line whose two ends coincide. A polygon is 



primitive if it is simple (Preparata et al 1985). A 
primitive polygon may contain holes which are also 
simple polygons. Examples of primitive and non­
primitive lines and polygons are shown in Figure 1. 

(a) 

(b) 

Figure 1. (a) Primitive lines and polygons. 
(b) Non-primitive lines and polygons. 

Non-primitive objects can be decomposed into a set 
of primitive objects. 

To efficiently handle spatial objects in spatial 
databases, spatial data types are used. A spatial data 
type can be viewed as a data structure for storing 
spatial data of objects. Each instance of the spatial 
data types is a specific object which is uniquely 
identified by its identifier. Operators upon the data 
types are defined to alter or retrieve some 
information from the structure. Spatial data types 
can be either system-defined or user-defined. 

The semantics of spatial data types can be described 
using set and binary relation concepts (Stanat et al 
1977). The structure of the data type POINT is a pair 
< p,q >, where p and q are real numbers representing 
coordina tes. 

The data type POINTSET is defined as a countable set 
of points (PO,Pl, ... Pn-l). 

The data type LINESEGMENT is a pair <ps,pe> , 
where ps, pe represent the start and end points of a 
line segment. 

The data type LINE is defined as 

< POINTSET, R > 

where R is a binary relation on POINTSET 
representing a set of line segments connected to 
form a primitive line. 

The data type LINESET is a set of lines ( la, 11, ... ,lk-l ). 

The data type POLYGON is defined by 
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<10, Lh > 

where 10 is a simply closed line representing the 
outer boundary and Lh is a set of simply closed lines 
representing holes of a primitive polygon. 

Spatial data types can be used in a way similar to 
other data types such as INTEGER, REAL, TEXT. For 
example, relations can be defined by spatial data 
types in an extended relational database 
management system (ERDBMS) (Huang et al 1992). 
These relations become spatial because they contain 
spatial objects. Since each object in the database is 
uniquely identified, columns defined by spatial data 
types can be used as a key to the relations. 

Generally speaking, spatial objects are stored 
independently in tuples in the spatial relations. 
Relationships between objects are not explicitly 
described. Spatial relationships, however, are 
detected by spatial operators defined in the spatial 
query language. 

Some of the fundamental functions and operators 
needed in the spatial query language will be 
discussed in the following sections. 

3. Functions on spatial data types 

Based on the structures of spatial data types, a 
number of necessary functions can be defined 
(Svensson et al 1991). Some extract subsets of data or 
components of objects, such as extracting coordinates 
of a point or the outer boundary of a polygon. Some 
compute new data from the existing data set of an 
object instance, such as the length of a line. This 
section introduces some functions which are used in 
the following discussions. 

XCOORD(p) and YCOORD(p) are functions to extract 
values of x, y coordinates of point p. p can be a 
specific identifier or the name of a relation column 
defined by the data type POINT. 

SP(l) and EP(I) return the start and end points of line 
1. 

LENGTH(l) returns a real number representing the 
length of line 1. 

AREA(pg) returns a real number representing the 
area of polygon pg. 

BOUNDARY(pg) returns a closed line representing 
the boundary of polygon pg. 

New functions can be built from compositions of the 
functions or combinations of the functions by logical 
operators. 

For example, the function 

PERIMETER (pg) = 
LENGTH(BOUNDARY(pg» 



computes the perimeter of polygon pg and the 
function 

CLOSED(I) = 
(XCOORD(SP(l» = XCOORD(EP(I))) 
AND 
(YCOORD(SP(l» = YCOORD(EP(l») 

returns the logical value TRUE if and only if line I is 
a closed line. 

4. Topological spatial relations 

Topological relations are such spatial relations that 
are invariant under topological transformations 
between two topologically equivalent spaces 
(Armstrong 1979). Adjacency, overlapping, and 
containment are typical examples. It is known that 
totally eight different topological relations exist 
between two regions (Egenhofer et alI990). 

By disregarding orders of containment and coverage 
and taking point and line objects into account, six 
topological relations between two spatial objects can 
be named (Svensson et al 1991). Table 1 presents the 
topological relations with different combinations of 
object types. 

In some combinations of object types, one 
topological relation may be implied by different 
names. For example, MEETS, EQUALS, COVERS, 
OVERLAPS indicate the same topological relation of 
two points. In order to avoid ambiguity, only 
EQUALS is defined. 

Table 1. Topological relations between objects of different types 

topological 
relations 

DISJOINT 
MEETS 
EQUALS 
CONTAINS 
COVERS 
OVERLAPS 

combination of object types 

P-P P-L P-Pg L-L L-Pg Pg-Pg 

Y Y Y Y Y Y 
Y Y Y 

Y Y Y 
- Y Y Y 

Y Y Y Y Y 
Y Y Y 

Y /- means the topological relationship exists/undefined. 

Visualization of topological relationships between 
two polygons is given in (Egenhofer et aI1990). 

5. Topological operators 

Spatial relations vary in the same topological 
relations. For example, when two polygons meet, 
they may meet at boundaries (meets-I), or they may 
meet at a corner (meets-O). It is necessary to specify 
the cases because the merging of two primitive 
polygons which meet at boundaries produces a 
primitive polygon, whereas the merging of two 
primitive polygons which meet at a corner results in 
a non-primitive polygon. 
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Spatial operators are needed to detect topological 
spatial relations of two objects. In order to define 
spatial operators, specific cases of spatial relations 
should be investigated. Some operators, called 
fundamental operators, must be defined and 
implemented at the system level. Others can be 
expressed by using fundamental operators and other 
given functions. 

Below, we use some examples to argue the necessary 
fundamental operators needed for detecting some 
general and specified topological relations, and to 
show how to create new operators by combinations 
of those fundamental operators and other functions 
and operators. 

Since the disjoint relation exists in any combination 
of spatial object types (see Table I), the operator 
DISJOINT is defined as a fundamental operator. 

Example 1: Operators for checking topological 
relations between two points p and q. 

There are only two kinds of topological relations 
between two points. They are either disjoint or not 
disjoint. We define the operator EQUALS to describe 
the not-disjoint relation. 

P EQUALS q iff NOT(p DISJOINT q ) 

EQUALS is a non-fundamental operator defined by 
the fundamental operator DISJOINT. EQUALS can 
also be defined as 

P EQUALS q 
iff (XCOORD(p) = XCOORD(q» AND 

(YCOORD(p) = YCOORD(q» 

This example shows that non-fundamental 
operators can sometimes be defined in several ways. 

Exam pIe 2: Function for checking closedness of a 
line 1. 

CLOSED(l) iff SP(l) EQUALS EP(l) 

This example shows that spatial operators can be 
used to define spatial functions. 

Example 3: Operators for checking spatial relations 
between a point p and a line 1. 

Two general topological relations are disjoint and 
not disjoint. We describe the not-disjoint relation by 
the operator COVERS defined as 

1 COVERS P iff NOT(p DISJOINT 1) 

Under the COVERS relation, two cases must be 
distinguished. The point p is either located at the 
end points, or on the other place of the line 1. We 
define the operator P-AT-ENDS to describe the first 
case. 

P P-AT-ENDS 1 iff (l COVERS p) AND 
«p EQUALS SP(l» OR 



(p EQUALS EP(l») 

Example 4: Operators for checking spatial relations 
between a point p and a polygon pg. pg is a 
primitive polygon without holes. 

There are three kinds of spatial relations. The point 
p is either disjoint from the polygon pg ! or on the 
boundary of, or inside of the polygon pg. The first 
kind is checked by the operator DISJOINT. We 
define the operator COVERS to check the second 
kind. 

pg COVERS P 
iff BOUNDARY(pg) COVERS p 

The third kind can be checked by the operator 
CONTAINS defined as 

pgCONTAINS P 
iff NOT(pg DISJOINT p ) AND 

NOT(pg COVERS p ) 

Example 5: Operators for checking spatial relations 
between two lines Ii and lk. 

When two lines are not disjoint, they can be 
topologically connected in different ways. Figure 2 
shows some simple, but fundamental examples. In 
group 1, two lines are connected at a point. We 
define the operator MEETS as a fundamental 
operator to detect these relations. To distinguish the 
relation la, the operator INTERSECTS is defined as 

Ii INTERSECTS Ik 

1a 

iff (Ii MEETS lk ) AND 

2a 

3 

(Ii DISJOINT SP(lk» AND 
(li DISJOINT EP(lk» AND 
(lk DISJOINT SP(li» AND 
(lk DISJOINT EP(li» 

1b 1c 

~ 

~ 
4 

Figure 2. Topological relations between two lines. 

The relation lc can be checked by the operator 
MEETS-AT-ENDS defined as 

Ii MEETS-AT-ENDS lk 
iff (Ii MEETS lk) AND 

«SP(li) EQUALS SP(lk» AND 
NOT (SP(li) EQUALS EP(lk») OR 
«SP(li) EQUALS EP(lk» AND 
NOT (SP(li) EQUALS SP(lk») OR 
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«EP{li) EQUALS SP(lk» AND 
NOT (EP{li) EQUALS EP{lk») OR 
«EP(li) EQUALS EP{lk» AND 
NOT (EP{li) EQUALS SP{lk») 

We consider the situations in group 2 as the 
overla pping relation in which two lines partly 
intersect. The operator OVERLAPS is defined as a 
fundamental operator to detect the overlapping 
relation. Specific cases of the overlapping relation 
can be distinguished by combining the operator 
OVERLAPS with other predefined operators. The 
relation 2a is detected by the operator 

Ii OVERLAPS-AT-ENDS Ik 
iff (Ii OVERLAPS lk) AND 

((Ii COVERS SP(lk» OR 
(Ii COVERS EP(lk») AND 
«lk COVERS SP(U» OR 
(lk COVERS EP(li») 

The relation 2b is detected by the operator 

Ii OVERLAPS-IN-MIDDLE lk 
iff (Ii OVERLAPS lk ) AND 

(Ii DISJOINT SP(lk» AND 
(Ii DISJOINT EP(lk» AND 
(lk DISJOINT SP(li» AND 
(lk DISJOINT EP(li» 

We call the situations in group 3 and 4 the covering 
relation. The operator COVERS is a fundamental 
operator to check the covering relation. 

The group 4 is a special case of covering relation in 
which two lines are equal. To detect this special 
relation, the operator EQUALS is defined as 

Ii EQUALS lk 
iff (Ii COVERS Ik ) AND 

«SP(li) EQUALS SP(lk» AND 
(EP(li) EQUALS EP(lk») OR 
«EP(li) EQUALS SP(lk» AND 
(SP(li) EQUALS EP(lk») 

Example 6: Operators for checking spatial relations 
between a line 1 and a polygon pg. 

Spatial relations under the not-disjoint condition 
can be classified into four groups (Figure 3). We 
define operators MEETS, CONTAINS, COVERS and 
OVERLAPS as fundamental operators to detect the 
spatial relations of the respective groups. 

The relations in group 1 can be distinguished by the 
following operators. 

I MEETS-AT-END pg 
iff (l MEETS pg) AND 

(l MEETS BOUNDARY(pg» 



pgMEETS-PART 1 
iff (pg MEETS I ) AND 

(BOUNDARY(Pg) OVERLAPS I ) 

1a 1b 2 

3a 3b 4a 4b 

Figure 3. Topological relations between a line and a polygon. 

The relation 3a is described by the operator 

pgCOVERS-PART 1 
iff (pg COVERS 1 ) AND 

(BOUNDARY(Pg) OVERLAPS 1 ) 

and the relation 3b is detected by the operator 

pg BOUND-COVERS I 
iff (pg COVERS I ) AND 

(BOUNDARY(Pg) COVERS I ) 

The relations in group 4 can be respectively 
distinguished by the operators ENTERS and 
PASSING defined as 

I ENTERS pg 
iff (pg OVERLAPS I ) AND 

«pg CONTAINS SP(l) OR 
(pg CONTAINS EP(l») 

I PASSING pg 
iff (pg OVERLAPS I) AND 

(pg DISJOINT SP(l) AND 
(pg DISJOINT EP(l» 

Example 7: Operators for checking topological 
relations between two polygons pg1 and pg2. 

All the topological relations in table 1 are defined as 
fundamental operators for two polygons. Two 
polygons, however, can meet, cover, or overlap in 
different ways. These specific relationships can be 
distinguished by combinations of fundamental 
operators and other predefined operators and 
functions. The following is the meets-O and meets-l 
examples (Figure 4). 
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MEETS-O MEETS-1 

Figrue 4. Two specific cases of the MEETS relation. 

pg1 MEETS-O pg2 
iff (pg1 MEETS pg2) AND 

(BOUNDARY(pg1) MEETS 
BOUNDARY(pg2» 

pg1 MEETS-l pg2 
iff (pg1 MEETS pg2) AND 

(BOUNDARY(pg1) OVERLAPS 
BOUNDARY(pg2) ) 

6. Spatial queries 

Suppose that a spatial database consists of three 
spatial relations: 

Towns(Pt:POINT, 
Name:TEXT, 
Population:INTEGER) 

Roads(Li: LINE, 
Class:INTEGER, 
No:INTEGER) 

Provinces(Pg:POL YGON, 
Name:TEXT, 
Population:INTEGER) 

Here, POINT, LINE and POLYGON are spatial data 
types. 

Query 1: Find towns inside province B passed by 
second class roads. 

Roads2 <- *(a:Roads,b:Provinces) 
WHERE[(a.Class = 2) AND 

(b.Name = 'B') AND 
«b.Pg OVERLAPS a.Li) OR 
(b.Pg COVERS a.Li) OR 
(b.Pg CONTAINS a.Li»] 

[Li:a.Li,No:a.No]; 

Townsl <- *(a:Towns,b:Provinces) 
WHERE[(b.Name = 'B') AND 

(b.Pg CONTAINS a.Pt)] 

[Pt:a.Pt,N ame:a.N ame, 
Population:a.Population]; 

Towns2 <- *(a:Townsl,b:Roads2) 
WHERE[b.Li COVERS a.Pt] 

[Pt:a.Pt,N ame:a.N ame, 
Population:a.Population]; 



Relation Towns2 contains information about towns 
in province B which are passed by second class roads. 

Query 2: Find towns in province B which are passed 
by second class road No.3. 

Towns3 <- *(a:Towns2,b:Roads2) 
WHERE[(b.No = 3) AND 

(b.Li COVERS a.Pt)] 

7. Conclusions 

[Pt:a.Pt,N ame:a.N arne, 
Population:a.Popula tion]; 

Spatial information is carried by spatial objects and 
their relations. Points, lines and polygons are three 
distinct types of spatial objects in the two 
dimensional space. Spatial data types are a useful 
mechanism for describing spatial objects in spatial 
databases. 

Information about instances of spatial data types are 
extracted by using functions defined on the data 
types. These functions are used either to extract 
subsets of data or to calculate new data from the 
instances. The composition and combination of 
existing functions can form new functions. 

To check the spatial relations of two objects in the 
database, a few system-defined fundamental 
topological operators are necessary. More operators 
can be built from the fundamental operators and 
other functions. By including spatial operators in 
the query language, spatial analyses can be 
performed as a number of queries to the spatial 
database. 

Implementation of operators and functions 
discussed here as well as others included in the 
spatial query language GeoSAL (Svensson et al 1991) 
is going on at the National Defence Research 
Establishment in Stockholm, Sweden. 
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