
Topological Spatial Relations and Operators

Zhexue Huang

Environmental and Natural Resources Information Systems
Department of Photogrammetry

Royal Institute of Technology
10044 Stockholm, Sweden

huang@fmi.kth.se

Abstract:

There is a growing interest in investigating the underlying topological relations of spatial objects, and defining
corresponding operators to check these relations. The investigation has recently resulted in a complete set of
eight different spatial relationships between two regions. To check these eight spatial relations between two
polygons, six fundamental topological spatial operators are required. More operators for checking specific spatial
relations between two objects can be created by combining the fundamental operators with other operators. These
operators provide a sound basis for designing a spatial query language and the query language with
implementation of such spatial operators can become a useful tool for spatial querying and analysis.

KEY WORDS: GIS, Spatial, Theory.

1. Introduction

A geographical information system (GIS) can be
considered as a spatial database system on which a set
of application programs operates. These application
programs provide tools for the GIS user to make
spatial queries and analyses about objects in the
database. The object-oriented (00) approach has
proved to be a powerful tool for designing spatial
databases, especially heterogeneous spatial databases
(Oosterom et al 1989, Kemp 1990).

An 00 spatial database consists of a collection of
spatial objects, which, together with their (spatial)
relations, represent spatial information about reality
(Molenaar 1991). An important feature of an 00
database system is that each object has an identity
which allows the user to distinguish and address it
(Unland et al 1990). Besides its identity a spatial
object also carries two kinds of data: spatial data,
which describe the location and geometry of the
object in space, and attribute data, which represent
non-spatial properties of the object.

Spatial relations of objects are an important part of
the spatial information. The complexity of spatial
relations among objects creates difficulties to
explicitly represent all kinds of spatial relations in a
database. An alternative is to define spatial functions
in the database query language to discover spatial
relations of objects.

There is a growing interest in investigating the
underlying topological relations of spatial objects
(Egenhofer et al 1990, 1991, Kainz 1989, 1990), and
defining corresponding operators to check these
relations (Svensson et al 1991). The investigation of
topological spatial relations of objects in a topological
space has recently resulted in a complete set of eight
different spatial relationships between two regions

,(Egenhofer et al 1990, 1991). To check these eight

273

spatial relations between two polygons, six
fundamental topological spatial operators are
required. The terminology used for polygons can also
be adopted for defining spatial operators for points
and lines and combinations of these. These operators
provide a sound basis for designing a spatial query
language and the query language with
implementation of such spatial operators can
become a useful tool for spatial querying and analysis
(Svensson et al 1991).

This paper is organized as follows. Section 2
discusses types of spatial objects. Spatial data types are
proposed for handling different types of objects in
databases. Functions operating on the spatial data
types are given in section 3. Section 4 discusses
topological spatial relations between two objects.
How to use given spatial functions and operators to
define new operators to detect detailed spatial
relations is demonstrated in section 5. Section 6 gives
some examples showing the use of these operators in
querying a spatial database. Some conclusions are
drawn in section 7.

2. Object types and spatial data types

Any object that is related to a location in space is said
to be spatial. Some spatial objects are complex, for
example, a road network. Others are simple, for
example, oil wells which are usually presented as
points in maps. The complex objects are composed of
simple objects.

Three basic types of spatial objects exist in the two
dimensional space. They are points, lines, areas,
which will be called polygons from now, and each of
these three basic types has a primitive form. Any
point is primitive. A line is primitive if it has no
loop between its two ends, excluding the simply
closed line whose two ends coincide. A polygon is

primitive if it is simple (Preparata et al 1985). A
primitive polygon may contain holes which are also
simple polygons. Examples of primitive and non­
primitive lines and polygons are shown in Figure 1.

(a)

(b)

Figure 1. (a) Primitive lines and polygons.
(b) Non-primitive lines and polygons.

Non-primitive objects can be decomposed into a set
of primitive objects.

To efficiently handle spatial objects in spatial
databases, spatial data types are used. A spatial data
type can be viewed as a data structure for storing
spatial data of objects. Each instance of the spatial
data types is a specific object which is uniquely
identified by its identifier. Operators upon the data
types are defined to alter or retrieve some
information from the structure. Spatial data types
can be either system-defined or user-defined.

The semantics of spatial data types can be described
using set and binary relation concepts (Stanat et al
1977). The structure of the data type POINT is a pair
< p,q >, where p and q are real numbers representing
coordina tes.

The data type POINTSET is defined as a countable set
of points (PO,Pl, ... Pn-l).

The data type LINESEGMENT is a pair <ps,pe> ,
where ps, pe represent the start and end points of a
line segment.

The data type LINE is defined as

< POINTSET, R >

where R is a binary relation on POINTSET
representing a set of line segments connected to
form a primitive line.

The data type LINESET is a set of lines (la, 11, ... ,lk-l).

The data type POLYGON is defined by

274

<10, Lh >

where 10 is a simply closed line representing the
outer boundary and Lh is a set of simply closed lines
representing holes of a primitive polygon.

Spatial data types can be used in a way similar to
other data types such as INTEGER, REAL, TEXT. For
example, relations can be defined by spatial data
types in an extended relational database
management system (ERDBMS) (Huang et al 1992).
These relations become spatial because they contain
spatial objects. Since each object in the database is
uniquely identified, columns defined by spatial data
types can be used as a key to the relations.

Generally speaking, spatial objects are stored
independently in tuples in the spatial relations.
Relationships between objects are not explicitly
described. Spatial relationships, however, are
detected by spatial operators defined in the spatial
query language.

Some of the fundamental functions and operators
needed in the spatial query language will be
discussed in the following sections.

3. Functions on spatial data types

Based on the structures of spatial data types, a
number of necessary functions can be defined
(Svensson et al 1991). Some extract subsets of data or
components of objects, such as extracting coordinates
of a point or the outer boundary of a polygon. Some
compute new data from the existing data set of an
object instance, such as the length of a line. This
section introduces some functions which are used in
the following discussions.

XCOORD(p) and YCOORD(p) are functions to extract
values of x, y coordinates of point p. p can be a
specific identifier or the name of a relation column
defined by the data type POINT.

SP(l) and EP(I) return the start and end points of line
1.

LENGTH(l) returns a real number representing the
length of line 1.

AREA(pg) returns a real number representing the
area of polygon pg.

BOUNDARY(pg) returns a closed line representing
the boundary of polygon pg.

New functions can be built from compositions of the
functions or combinations of the functions by logical
operators.

For example, the function

PERIMETER (pg) =
LENGTH(BOUNDARY(pg»

computes the perimeter of polygon pg and the
function

CLOSED(I) =
(XCOORD(SP(l» = XCOORD(EP(I)))
AND
(YCOORD(SP(l» = YCOORD(EP(l»)

returns the logical value TRUE if and only if line I is
a closed line.

4. Topological spatial relations

Topological relations are such spatial relations that
are invariant under topological transformations
between two topologically equivalent spaces
(Armstrong 1979). Adjacency, overlapping, and
containment are typical examples. It is known that
totally eight different topological relations exist
between two regions (Egenhofer et alI990).

By disregarding orders of containment and coverage
and taking point and line objects into account, six
topological relations between two spatial objects can
be named (Svensson et al 1991). Table 1 presents the
topological relations with different combinations of
object types.

In some combinations of object types, one
topological relation may be implied by different
names. For example, MEETS, EQUALS, COVERS,
OVERLAPS indicate the same topological relation of
two points. In order to avoid ambiguity, only
EQUALS is defined.

Table 1. Topological relations between objects of different types

topological
relations

DISJOINT
MEETS
EQUALS
CONTAINS
COVERS
OVERLAPS

combination of object types

P-P P-L P-Pg L-L L-Pg Pg-Pg

Y Y Y Y Y Y
Y Y Y

Y Y Y
- Y Y Y

Y Y Y Y Y
Y Y Y

Y /- means the topological relationship exists/undefined.

Visualization of topological relationships between
two polygons is given in (Egenhofer et aI1990).

5. Topological operators

Spatial relations vary in the same topological
relations. For example, when two polygons meet,
they may meet at boundaries (meets-I), or they may
meet at a corner (meets-O). It is necessary to specify
the cases because the merging of two primitive
polygons which meet at boundaries produces a
primitive polygon, whereas the merging of two
primitive polygons which meet at a corner results in
a non-primitive polygon.

275

Spatial operators are needed to detect topological
spatial relations of two objects. In order to define
spatial operators, specific cases of spatial relations
should be investigated. Some operators, called
fundamental operators, must be defined and
implemented at the system level. Others can be
expressed by using fundamental operators and other
given functions.

Below, we use some examples to argue the necessary
fundamental operators needed for detecting some
general and specified topological relations, and to
show how to create new operators by combinations
of those fundamental operators and other functions
and operators.

Since the disjoint relation exists in any combination
of spatial object types (see Table I), the operator
DISJOINT is defined as a fundamental operator.

Example 1: Operators for checking topological
relations between two points p and q.

There are only two kinds of topological relations
between two points. They are either disjoint or not
disjoint. We define the operator EQUALS to describe
the not-disjoint relation.

P EQUALS q iff NOT(p DISJOINT q)

EQUALS is a non-fundamental operator defined by
the fundamental operator DISJOINT. EQUALS can
also be defined as

P EQUALS q
iff (XCOORD(p) = XCOORD(q» AND

(YCOORD(p) = YCOORD(q»

This example shows that non-fundamental
operators can sometimes be defined in several ways.

Exam pIe 2: Function for checking closedness of a
line 1.

CLOSED(l) iff SP(l) EQUALS EP(l)

This example shows that spatial operators can be
used to define spatial functions.

Example 3: Operators for checking spatial relations
between a point p and a line 1.

Two general topological relations are disjoint and
not disjoint. We describe the not-disjoint relation by
the operator COVERS defined as

1 COVERS P iff NOT(p DISJOINT 1)

Under the COVERS relation, two cases must be
distinguished. The point p is either located at the
end points, or on the other place of the line 1. We
define the operator P-AT-ENDS to describe the first
case.

P P-AT-ENDS 1 iff (l COVERS p) AND
«p EQUALS SP(l» OR

(p EQUALS EP(l»)

Example 4: Operators for checking spatial relations
between a point p and a polygon pg. pg is a
primitive polygon without holes.

There are three kinds of spatial relations. The point
p is either disjoint from the polygon pg ! or on the
boundary of, or inside of the polygon pg. The first
kind is checked by the operator DISJOINT. We
define the operator COVERS to check the second
kind.

pg COVERS P
iff BOUNDARY(pg) COVERS p

The third kind can be checked by the operator
CONTAINS defined as

pgCONTAINS P
iff NOT(pg DISJOINT p) AND

NOT(pg COVERS p)

Example 5: Operators for checking spatial relations
between two lines Ii and lk.

When two lines are not disjoint, they can be
topologically connected in different ways. Figure 2
shows some simple, but fundamental examples. In
group 1, two lines are connected at a point. We
define the operator MEETS as a fundamental
operator to detect these relations. To distinguish the
relation la, the operator INTERSECTS is defined as

Ii INTERSECTS Ik

1a

iff (Ii MEETS lk) AND

2a

3

(Ii DISJOINT SP(lk» AND
(li DISJOINT EP(lk» AND
(lk DISJOINT SP(li» AND
(lk DISJOINT EP(li»

1b 1c

~

~
4

Figure 2. Topological relations between two lines.

The relation lc can be checked by the operator
MEETS-AT-ENDS defined as

Ii MEETS-AT-ENDS lk
iff (Ii MEETS lk) AND

«SP(li) EQUALS SP(lk» AND
NOT (SP(li) EQUALS EP(lk») OR
«SP(li) EQUALS EP(lk» AND
NOT (SP(li) EQUALS SP(lk») OR

276

«EP{li) EQUALS SP(lk» AND
NOT (EP{li) EQUALS EP{lk») OR
«EP(li) EQUALS EP{lk» AND
NOT (EP{li) EQUALS SP{lk»)

We consider the situations in group 2 as the
overla pping relation in which two lines partly
intersect. The operator OVERLAPS is defined as a
fundamental operator to detect the overlapping
relation. Specific cases of the overlapping relation
can be distinguished by combining the operator
OVERLAPS with other predefined operators. The
relation 2a is detected by the operator

Ii OVERLAPS-AT-ENDS Ik
iff (Ii OVERLAPS lk) AND

((Ii COVERS SP(lk» OR
(Ii COVERS EP(lk») AND
«lk COVERS SP(U» OR
(lk COVERS EP(li»)

The relation 2b is detected by the operator

Ii OVERLAPS-IN-MIDDLE lk
iff (Ii OVERLAPS lk) AND

(Ii DISJOINT SP(lk» AND
(Ii DISJOINT EP(lk» AND
(lk DISJOINT SP(li» AND
(lk DISJOINT EP(li»

We call the situations in group 3 and 4 the covering
relation. The operator COVERS is a fundamental
operator to check the covering relation.

The group 4 is a special case of covering relation in
which two lines are equal. To detect this special
relation, the operator EQUALS is defined as

Ii EQUALS lk
iff (Ii COVERS Ik) AND

«SP(li) EQUALS SP(lk» AND
(EP(li) EQUALS EP(lk») OR
«EP(li) EQUALS SP(lk» AND
(SP(li) EQUALS EP(lk»)

Example 6: Operators for checking spatial relations
between a line 1 and a polygon pg.

Spatial relations under the not-disjoint condition
can be classified into four groups (Figure 3). We
define operators MEETS, CONTAINS, COVERS and
OVERLAPS as fundamental operators to detect the
spatial relations of the respective groups.

The relations in group 1 can be distinguished by the
following operators.

I MEETS-AT-END pg
iff (l MEETS pg) AND

(l MEETS BOUNDARY(pg»

pgMEETS-PART 1
iff (pg MEETS I) AND

(BOUNDARY(Pg) OVERLAPS I)

1a 1b 2

3a 3b 4a 4b

Figure 3. Topological relations between a line and a polygon.

The relation 3a is described by the operator

pgCOVERS-PART 1
iff (pg COVERS 1) AND

(BOUNDARY(Pg) OVERLAPS 1)

and the relation 3b is detected by the operator

pg BOUND-COVERS I
iff (pg COVERS I) AND

(BOUNDARY(Pg) COVERS I)

The relations in group 4 can be respectively
distinguished by the operators ENTERS and
PASSING defined as

I ENTERS pg
iff (pg OVERLAPS I) AND

«pg CONTAINS SP(l) OR
(pg CONTAINS EP(l»)

I PASSING pg
iff (pg OVERLAPS I) AND

(pg DISJOINT SP(l) AND
(pg DISJOINT EP(l»

Example 7: Operators for checking topological
relations between two polygons pg1 and pg2.

All the topological relations in table 1 are defined as
fundamental operators for two polygons. Two
polygons, however, can meet, cover, or overlap in
different ways. These specific relationships can be
distinguished by combinations of fundamental
operators and other predefined operators and
functions. The following is the meets-O and meets-l
examples (Figure 4).

277

MEETS-O MEETS-1

Figrue 4. Two specific cases of the MEETS relation.

pg1 MEETS-O pg2
iff (pg1 MEETS pg2) AND

(BOUNDARY(pg1) MEETS
BOUNDARY(pg2»

pg1 MEETS-l pg2
iff (pg1 MEETS pg2) AND

(BOUNDARY(pg1) OVERLAPS
BOUNDARY(pg2))

6. Spatial queries

Suppose that a spatial database consists of three
spatial relations:

Towns(Pt:POINT,
Name:TEXT,
Population:INTEGER)

Roads(Li: LINE,
Class:INTEGER,
No:INTEGER)

Provinces(Pg:POL YGON,
Name:TEXT,
Population:INTEGER)

Here, POINT, LINE and POLYGON are spatial data
types.

Query 1: Find towns inside province B passed by
second class roads.

Roads2 <- *(a:Roads,b:Provinces)
WHERE[(a.Class = 2) AND

(b.Name = 'B') AND
«b.Pg OVERLAPS a.Li) OR
(b.Pg COVERS a.Li) OR
(b.Pg CONTAINS a.Li»]

[Li:a.Li,No:a.No];

Townsl <- *(a:Towns,b:Provinces)
WHERE[(b.Name = 'B') AND

(b.Pg CONTAINS a.Pt)]

[Pt:a.Pt,N ame:a.N ame,
Population:a.Population];

Towns2 <- *(a:Townsl,b:Roads2)
WHERE[b.Li COVERS a.Pt]

[Pt:a.Pt,N ame:a.N ame,
Population:a.Population];

Relation Towns2 contains information about towns
in province B which are passed by second class roads.

Query 2: Find towns in province B which are passed
by second class road No.3.

Towns3 <- *(a:Towns2,b:Roads2)
WHERE[(b.No = 3) AND

(b.Li COVERS a.Pt)]

7. Conclusions

[Pt:a.Pt,N ame:a.N arne,
Population:a.Popula tion];

Spatial information is carried by spatial objects and
their relations. Points, lines and polygons are three
distinct types of spatial objects in the two
dimensional space. Spatial data types are a useful
mechanism for describing spatial objects in spatial
databases.

Information about instances of spatial data types are
extracted by using functions defined on the data
types. These functions are used either to extract
subsets of data or to calculate new data from the
instances. The composition and combination of
existing functions can form new functions.

To check the spatial relations of two objects in the
database, a few system-defined fundamental
topological operators are necessary. More operators
can be built from the fundamental operators and
other functions. By including spatial operators in
the query language, spatial analyses can be
performed as a number of queries to the spatial
database.

Implementation of operators and functions
discussed here as well as others included in the
spatial query language GeoSAL (Svensson et al 1991)
is going on at the National Defence Research
Establishment in Stockholm, Sweden.

Acknowledgements

The author is grateful for valuable comments from
Prof. Dr. Friedrich Quiel at the Royal Institute of
Technology in Stockholm, and Dr. Per Svensson
and Dr. Karsten Jored at the National Defence
Research Establishment in Stockholm, Sweden

References

Armstrong, M.A., 1979. Basic topology. McGraw­
Hill.

Egenhofer, M. J. & Herring, J. R., 1990. A
mathematical framework for the definetion of
topological relationships. In: Proceedings of the 4th
Int. Symposium on Spatial Data Handling, Zurich,
Switzerland, pp. 803-813.

278

Egenhofer, M. & Franzosa, R., 1991. Point-set
topological spatial relations. Int. Journal of
Geographical Information Systems, 5(2):161-174.

Huang, Z., Svensson, P. & Hauska, H., 1992. Solving
spatial analysis problems with Geo-SAL, a spatial
query language. to appear In: Proceedings of the 6th
Int. Working Conf. on Scientific and Statistical
Database Management, Switzerland, June 9-11, 1992.

Kainz, W., 1989. Order, topology and metric in GIS.
In: Proceedings of ASPRS/ ACSM, 4:154-160.

Kainz, W., 1990. Spatial relationships-topology
versus order. In: Proceedings of the 4th Int.
Symposium on Spatial Data Handling, Zurich,
Switzerland, pp. 814-819.

Kemp, Z., 1990. An object-oriented model for spatial
data. In: Proceedings of the 4th Int. Symposium on
Spatial Data Handling, Zurich, Switzerland, pp. 659-
668.

Molenaar, M., 1991. Status and problems of
geographical information systems. The necessity of a
geoinformation theory. ISPRS Journal of
Photogrammetry and Remote Sensing, 46:85-13.

Oosterom, P. & Bos, J., 1989. An object-oriented
approach to the design of geographical information
systems. In: Design and Implementation of Large
Spatial Databases, ed. by Buchmann, A. et at Lecture
Notes in Computer Science, Vol. 409:255-269,
Springer-Verlag.

Stanat, D. F. & McAllister, D. F., 1977. Discrete
Mathematics in Computer Science. Prentice-Hall.

Svensson, P. & Huang, Z., 1991. Geo-SAL: A query
language for spatial data analysis. In: Advances in
Spatial Databases, ed. by O. Gunther & H.-J. Schek,
Lecture Notes in Computer Science, Vol. 525:119-
140, Springer-Verlag.

Unland, R. & Schlageter, G., 1990. Object-oriented
database systems: concepts and perspectives. In
Database Systems of the 90's, ed. by Blaser, A.,
Lecture Notes in Computer Science, Vol. 466:154-
197, Springer-Verlag.

