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ABSTRACT 

Automatic surface reconstruction entails two major problems: determining conjugate points or features (matching) and den­
sifying the matched points in object space (interpolation). The two tasks are usually performed sequentially in a hierarchical 
approach, without interacting with one another. In order to improve the success rate and the reliability of automated surface' 
reconstruction, particularly in large-scale urban areas, the matching on subsequent levels must take into account the results 
from densifying and analyzing the surface. In this paper we focus on a surface interpolator that produces as realistic surface 
representation as possible. The interpolation and surface analysis may give clues about surface discontinuities and occlusions 
- a vital feedback for the matching process on the next level in the hierarchical approach. 
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1. INTRODUCTION 

The main objective of digital photogrammetry is to collect 
enough information to model the portion of the real world 
that has been photographed. Two kinds of information are of 
major interest to accomplish that goal; surface topography, 
represented by Digital Elevation Model (DEM), and objects 
on the surface (natural or man-made) which are character­
ized as discontinuities in the surface. Besides being an essen­
tial intermediate step for object recognition, reconstruction 
of a portion of the earth's surface is the end product for 
digital photogrammetry. 

Automatic surface reconstruction entails two major prob­
lems: determining conjugate points or features in the im­
ages (matching), and densifying the matched points in object 
space (interpolation). The two tasks are usually performed 
sequentially in a hierarchical approach, without interacting 
with one another. In order to improve the success rate and 
the reliability of automated surface reconstruction, particu­
larly in large-scale urban areas, the matching on subsequent 
levels must take into account the results from densifying and 
analyzing the surface. 

This paper is a part of ongoing research focusing on the 
process of surface interpolation and analysis. The purpose of 
this paper is to define the tasks for such a process. The paper 
reviews previous works that have been done in the related 
fields. The emphasis is on the applicability of suitable for an 
automated surface interpolation. 

2. OSU SURFACE RECONSTRUCTION SYSTEM 

Due to the large amount and variety of information in the 
aerial images, the success of any image processing operation 
can not be guaranteed. This is especially the case of large­
scale urban scenes because occlusion is more frequent, and 
the visible surface is less smooth. The only alternative to 
constrain the processes is to adopt a scale-space approach 
that proceeds hierarchically from the lowest resolution for a 
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i=i+l, Final Level? 

Figure 1: Outline of OSU surface reconstruction system. 

stereo pair to the finest. OSU surface reconstruction (Schenk 
& Toth, 1992) is such hierarchical approach. It consists 
of several modules that are executed in an iterative fash­
ion(Figure 1). Each level of the process aims at refining the 
geometry of the images and improving the surface represen­
tation. 

In the asu surface reconstruction system, the process starts 
by having two conjugate images sampled at the lowest level 
of resolution. The orientation of these images is obtained 
through edge detection and matching. The results of this 
step are the orientation parameters, as well as a set of highly 
reliable matched points. The raw surface is then constructed 
by computing the 3-D object space coordinate for the set of 
points. These points are sparsely and irregularly distributed. 
Thus, a dense surface representation (DEM) must be inter­
polated for. A DEM, tesselated at the next higher level of 
resolution, is essential for surface analysis, and for the subse­
quent cycles. The final step is surface analysis for hypothesis 
generation and verification concerning potential break lines 
and surface segmentation. 

A new cycle starts with sampling the original stereo pair at 



the subsequent level of resolution, and warping the left and 
right images with respect to the interpolated surface. The 
whole process is repeated until the final refined surface is 
reached. At each level, images are rectified, the matching 
accuracy and reliability are improved, and a better surface 
representation is obtained. At the last level, the matching 
vectors vanish, the warped images become orthophotos, and 
the true surface is reconstructed. 

From this overview, it is clear that one of the objectives 
of surface interpolation is to construct as a realistic surface 
representation as possible. This task is crucial for the success 
of matching on subsequent levels. The search for a match is 
performed by centering a correlation window over a point of 
a zero-crossing contour in one image. On the other image, 
the search window is placed and shaped according to the 
expected depth range in that area (Schenk & Toth, 1991). 

The other goal of the surface interpolation is to provide in­
formation for the surface analysis. It is important that the 
interpolator does not introduce new characteristics to the 
surface other than what is derived from the observations. 
Creating new maxima or minima in the surface is an exam-

. pIe for undesired side effects of interpolation. Additionally, 
the surface interpolator should not smear essential surface 
shape characteristics. Such a situation may occur when a 
smooth surface is interpolated over observations on break 
lines. 

3. SURFACE INTERPOLATION 

The problem of surface fitting consists of taking a region 
containing a list of function values, and finding a function 
on this region that agrees with the data to some extent and 
behaves reasonably between data points (Lancaster & Salka­
uskas, 1986). The accuracy that can be obtained from a 
fitting process depends on the density and the distribution 
of the reference points, and the method. Data points are 
arranged in various distribution patterns and densities. Ac­
cordingly, surface fitting methods designed for one case differ 
from those designed for dealing with other distribution pat­
terns. 

There are several criteria for classifying surface fitting meth­
ods. The first criterion is the closeness of fit of the result­
ing representation to the original data. Thereby, a fitting 
method can be either an interpolation or an approximation. 
Interpolation methods fit a surface that passes through all 
data points. Approximation methods construct a surface 
that passes near data points and minimizes, at the same 
time, the difference between the observed and the interpo­
lated values. 

Another criterion is the extent of support of the surface fit­
ting method; a method is classified as a global or a local one. 
In the global approach, the resulting surface representation 
incorporates all data points to derive the unknown coeffi­
cients of the function. By doing so, some of the local details 
submerge in the overall surface, and editing one point affects 
all distinct points. With local methods, the value of the con­
structed surface at a point considers only data at relatively 
nearby points. Thus, the resulting surface emphasizes the 
small-scale trends in the data (Watson, 1992). Many global 
schemes can be made local by partitioning the original do­
main into subdomains. 
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Yet another criterion for classifying interpolation methods 
is their mathematical models. Surface interpolation meth­
ods are divided into three main classes; weighted average 
methods, interpolation by polynomials, and interpolation by 
splines. 

3.1 Weighted average methods 

These methods use a direct summation of the data at each 
interpolation point. The value of the surface at a non-data 
point is obtained as a weighted average of all data points. 
The weight is inversely proportional to the distance rio Shep­
ard's method may serve as an example. Here, the value of a 
point is evaluated as 

when ri :f. 0, 
(1) 

when ri = O. 

Weighted average methods are suitable for interpolating a 
surface from arbitrarily distributed data. However, one 
drawback is the large amount of calculations, especially for 
many data points. To overcome this problem, the method 
is modified into a local version. A smaller subset of data is 
selected for each non-data point based on a fixed number of 
points, or a fixed area. The problem now is to define proper 
parameters (e.g. the variable JL in equation (1)). 

3.2 Interpolation by polynomials 

A polynomial p is a function defined in one dimension for all 
real numbers x by 

p(x) = ao + alx + ... + aN_lx
N

- 1 + aNx
N

, (2) 

where N is a non-negative integer and ao, ... ,aN are fixed 
real numbers. Generally, fitting a surface by polynomials 
proceeds in two steps. The first one is the determination of 
the coefficients of the polynomial based on the set of data 
points and the criteria controlling the fit of the polynomial 
function. Then, using the computed parameters, the second 
phase evaluates the polynomial to obtain values ofthe fitted 
surface at given locations. 

Piecewise polynomials are the local version for surface fitting 
with polynomials. This approach works well with irregularly 
spaced data. The general procedure for surface fitting with 
piecewise polynomials consists of the following operations: 

1. partitioning the surface into patches of triangular or 
rectangular shape, the vertices of which are the refer­
ence points. 

2. fitting locally a leveled, tilted, or second-degree plane 
at each patch, using one or more terms of the polyno­
mial. 

3. solving the unknown parameters of the polynomial. To 
enforce continuity (and smoothness) along the joining 
sides of neighboring patches, partial derivatives must 
have been estimated at each reference point. 

Least squares fitting by polynomials performs well if many 
points are available and the surface has fairly simple form 
(Hayes, 1987). On the other hand, interpolation by poly­
nomials with scattered data causes serious difficulties, one 
of which is a singular system of equations due to data dis­
tribution (e.g. data lie on a line). Another problem is an 



ill-conditioned normal equation system as is the case of con­
secutive intervals that contain no data. Yet another problem 
in using polynomials is their tendency to oscillate, resulting 
in a considerably undulating surface. 

3.3 Interpolation by spline functions 

A spline is a piecewise polynomial function defined on con­
tiguous segments. In defining a spline function, the conti­
nuity and smoothness between two segments are constrained 
at the interior knots by demanding the existence of certain 
derivatives. For example, a spline of degree n has n-1 deriva­
tives at the knots, denoted by en-I. 

Bicubic splines, which have continuous second derivatives 
(i.e. e2

), are commonly used for surface fitting. The solu­
tion is obtained by a least-squares approach or the tensor 
product of orthogonal functions. With increasing number of 
data points, problems with computing efficiency and accu­
racy may occur. B-splines are also frequently used for surface 
fitting. They are characterized by their finite support, which 
is the interval over which the function is non-zero. Limiting 
the support of a spline changes the normal equation into a 
band form. Thereafter, the amount of computations is re­
duced by a factor of (number of knots/4)2 (Hayes, 1987). 

Bicubic splines and B-splines work best in the case of gridded 
or uniformly-distributed dense data (Hayes, 1987). However, 
rank-deficiency in the system of equations becomes a serious 
problem when applying these approaches to scattered data. 
Because of data distribution, data points may not lie in the 
support region of splines. Another situation rises when the 
data are clustered in one region creating a set of linear equa­
tions of marginal differences, thereby producing near singu­
larity. 

Nodal basis-functions are another sub-group of methods for 
surface fitting with splines. The general procedure in this 
approach consists of defining a set of basis functions and the 
corresponding data points. Each basis function is centered 
over a data point (node). The interpolation spline function 
then is a linear combination of the basis functions. The 
advantage in using such an approach is that knowledge about 
spline locations (knots) is not required. Another advantage 
is that values at the nodes of a regular grid are found directly 
instead of the two step approach mentioned earlier (Briggs, 
1974). 

Thin plate splines are derived from the nodal basis-functions. 
These splines are also called "minimum curvature splines" 
since they are obtained by minimizing the total curvature of 
cubic spline s 

(3) 

The same form can be obtained by solving the small deflec­
tion equation of an infinite plate that deforms by bending it 
only. The displacement u due to a force Ii acting at N points 
is represented by the differential equation (Briggs, 1974) 

{}4U {}4U {}4U 
-+2--+­{}:v4 {}:v2{}y2 {}y4 

Ii, at observation position, 

o otherwise. (4) 

Adopting the physical analogy, depth data is represented by 
a set of vertical pins scattered within the region; the height 
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of an individual pin is related to the elevation of the point. 
Fitting a surface is then analogous to constraining a thin 
(elastic) plate to pass over the tips of the pins (Figure 2). 

Figure 2: Fitting thin plate over pins. 

One method for solving the differential equation is by finite 
differences or finite elements. Following this approach, the 
discrete interpolation becomes a repeated passage of a set of 
simple masks, such as the following mask for elements within 
a grid: 

1 
2 -8 2 

1 -8 20 -8 1 (5) 
2 -8 2 

1 

3.4 Surface interpolation by regularization. 

A problem is well-posed if a solution exists, is unique, and 
depends continuously on the initial data. It must also be 
well conditioned to ensure numerical stability (robust against 
noise) (Poggio et al., 1985). Shorter than these conditions, 
the problem is considered ill-posed. Reconstruction of the 
visible three· dimensional surfaces from two-dimensional im­
ages is an ill-posed problem because some information is lost 
during the imaging process (projecting 3-D into 2-D) (Pog­
gio et al., 1985). Other reasons are the noise and erroneous, 
inconsistent, and sparse measurements (Terzopoulos, 1985). 

Regularization is the frame within which an ill-posed prob­
lem is changed into a well-posed one (Poggio et al., 1985). 
The class of possible solutions is restricted by introducing 
suitable a priori knowledge, which in the case of surface in­
terpolation is the continuity of the surface. The problem 
is then reformulated, based on the variational principle, so 
as to minimize an energy function E constructed from two 
functionals. The first one measures the smoothness of the so­
lution S, while the second one, D, provides a measure of the 
closeness of the solution to the observations. The two mea­
sures are combined to form the energy function E = S + D. 
Applied to the surface reconstruction problem, the energy 
function can be written as 

In practice, the function in the integration is either a thin­
plate spline (f;:tJ + 2/;y + I;y), a membrane (f;:tJ + I;y), or a 
combination of both. The variable A is the regularization pa­
rameter which controls the influence of the two functionals. 
If A is very large, the first term in the integral heavily affects 
the solution, turning it into interpolation (dose to data). 
On the other hand, if A is small, the solution emphasizes the 
smoothness of the surface. 



4. DISCONTINUITY DETECTION 

There are only a few methods which try to detect discontinu­
ities in the surface. Grimson and Pavlidis propose detecting 
discontinuities before interpolating the surface to overcome 
the problem of oscillations in the fitted surface (Grimson & 
Pavlidis, 1985). The main idea for this approach is to fit 
locally a simple surface (plane) to the data and examine the 
distribution of the residual error. IT it appears to be "ran­
dom" , then the hypothesis of no discontinuity is accepted. IT 
there is a systematic trend, then a discontinuity of a certain 
type is hypothesized. Discontinuities are subdivided into 
various types, each of which is characterized by a certain 
combination of change in magnitude and sign of the resid­
ual. Once a discontinuity is detected, the surface is broken 
down into smaller regions, and the surface reconstructor is 
passed over each of them. 

The second approach, proposed by Terzopoulos (Terzopou­
los, 1985), is related to the energy function of a thin plate. 
The thin plate surface over-shoots constraints near the dis­
continuity causing a sign change of the bending moments at 
surface inflections. Depth discontinuities are detected and 
localized by examining the bending moments in the inter­
polated surface. Changing control parameters within the 
energy function allows the surface to crease and fracture at 
the detected discontinuities and reduce the total energy. 

Another approach we investigated for detecting discontinu­
ities is based on the concept of a "line process" introduced in 
(Geman & Geman, 1984. A line process is a set of variables 
located at the lines which connect the original lattice (pixels 
or grid cells) (Figure 3). The purpose of a line process is to 
decouple adjacent pixels and reduce the total energy if the 
values of these pixels are different. In such a case, the vari­
able of the line process associated with these pixels is set to 
one, otherwise it is set to zero. 

<> <> <> 

<> <> <> 

Figure 3: Dual lattice of depth ( .. ) and line (<» elements. 

Eventually, breaking the surface into small pieces around 
each data point will result in the lowest energy state. To 
avoid this, a penalty a should be paid (in terms of energy) 
when a break line is introduced. Thus, a break line will only 
be introduced when paying the penalty is less expensive than 
not having the break line at all. The penalty function takes 
the form P = ali, where Ii is the line process. This function is 
added to the original energy function, changing the problem 
into minimizing 

E=S+D+P. (7) 

The result is a combination of a continuous function for the 
surface and a discrete one for the lines. This combination 
allows surface reconstruction and discontinuity detection at 
the same time. However, E is a non-convex function that 
has many local minima. 

One proposal to solve the non-convex function is to adopt a 
deterministic approach. The line process P is merged with 
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the interpolation function S (Blake & Zisserman, 1987). The 
modified function is expressed in one dimension as 

The resulting function controls the interaction between 
neighboring grid cells. Such a function prefers continuity 
in the surface, but allows occasional discontinuities if that 
makes for a simpler overall description - a theme called 
"weak continuity constraints". 

The modified configuration is then solved by the gradu­
ated non-convexity algorithm. The non-convex function E 
is gradually approximated by a convex one through a family 
of p intermediate functions. The parameter p represents a 
sequence of numbers ranging from one to zero. The function 
E(1) is a crude approximation to the non-convex function. 
However, as p goes to zero, E(p) becomes closer to the orig­
inal non-convex one. The neighbour interaction function is 
also modified into a function of ~,a, and p. 

5. EXPERIMENTS AND CONCLUSION 

For experimental purposes, we designed synthetic data rep­
resenting a set of irregular blocks in a small region. Depth 
information is arranged in a fashion that mimics the pattern 
of the results of the matching process in the surface recon­
struction system. Thus, depth values were provided for some 
points on, and near by, the edges of the blocks and the edge 
of the region as shown in figure 4. Figure 5 is a 3-D repre-
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Figure 4: Distribution of synthetic data points. 

sentation of these points. The location and value of a data 
point is represented by a peak, while no data points are set 
to zero. 

We evaluated the interpolation methods according to the 
following criteria: 

1. Interpolated surface must be plausible compared to the 
visible surface in the real world. 

2. The interpolation method must not jeopardize clues for 
surface analysis. 

3. The method should be able to utilize a priori informa­
tion on break lines. 



Figure 5: 3-D representation of synthetic data points. 

4. The method must be suitable for automation. No hu­
man interaction should be necessary to correct param­
eters. 

5. Reasonable demand on computer resources, i.e. time, 
memory, and storage. 

Matching aerial images typically renders a large number of 
data points, especially at the finer resolutions. Therefore, 
we have excluded all methods of least square fitting by poly­
nomials or splines because of computational considerations. 
These methods would lead to a huge system of equations (in 
the worst case is one equation per point). In addition, hav­
ing sparse data increases the risk of deficiency in the normal 
equation. Fitting a surface by piecewise polynomials, fur­
nished with proper triangulation algorithm, stands a better 
chance for more efficient and realistic surface interpolation. 
However, the user must identify the set of break lines prior 
to the interpolation. Otherwise, a peculiar surface represen­
tation would be obtained. 

The methods of weighted average are better suited for han­
dling sparse data. Besides, they do not introduce new global 
extrema in the surface. On the other hand, there is no es-

Figure 6: Surface interpolation by weighted average method. 

tablished automatic strategy for defining the data subset for 
a point. Another concern is the fact that no a priori infor­
mation about break lines can be included. Therefore, the 
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value of a point is computed based on data across break 
lines, creating undesired artifacts. Figure 6 shows the result 
of applying the weighted average method on the test data. 
The interpolated surface cannot be considered realistic. 

None of these methods provides explicit information for sur­
face analysis. This quite different for fitting a surface by a 
thin plate (or membrane). Adopting the analogy of a phys­
ical model allows exploring the mechanics of such model. 
Mechanical concepts, such as stress and bending moments 
of a plate provide the means for detecting break lines. Both 
models of thin plate and membrane are capable of achiev­
ing surface interpolation and break lines detection. Judging 
from figures 7 and 8, the membrane produces a more realistic 
surface that the thin plate model. 

Figure 7: Surface interpolation by thin plate splines. 

Figure 8: Surface interpolation by a membrane. 

Figure 7 represents the interpolated test data by a thin plate. 
The problem of over-shooting between data points is clearly 
noticeable. Figure 8 shows the interpolation by a membrane. 
Here, the problem is interpolating between high frequency 
features. This is avoided by using the weak continuity con­
straints. Interpolation by a weak membrane is shown in fig­
ure 9. The discontinuities are now detected during the sur­
face interpolation. Figure 10 shows the detected break lines 
superimposed on the surface. 



Figure 9: Surface interpolation by a weak membrane. 

Figure 10: Detected break lines in the surface. 

Ongoing research is addressing the following issues: 

• Increasing the degree of automation of surface interpo­
lation. 

• Subpixel accuracy in the determination of a break line. 

• Defining the means to convey discontinuity information 
to other modu1es and levels. 

• Integration of other cues for discontinuity, such as the 
residuals between successive levels of surface represen­
tation. 
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