
The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

The Remote on the Local
Exacerbating Web Attacks Via Service Workers Caches
Marco Squarcina (TU Wien)
 @blueminimal
15th IEEE Workshop on Offensive Technologies. May 27, 2021

Joint work with
Stefano Calzavara (Università Ca' Foscari Venezia & OWASP)
Matteo Maffei (TU Wien)

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

Service Workers

● Key enabler of PWAs
● Client-side web application proxies able

to intercept HTTP requests
● Cache API allows to store HTTP

responses, offline capabilities
● SW execute in a separate context, no

direct DOM access
● Operate based on origin and path,

event-based activation

Page SW

Network

Browser

SW Cache

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

self.addEventListener('fetch', (e) => {
 e.respondWith(
 caches.match(e.request).then((r) => {
 return r ||
 fetch(e.request).then((res) => {
 return caches.open('static').then(
 (cache) => {
 cache.put(e.request,
 res.clone());
 return res;
 }
);
 });
 })
);
});

Cache-First/Offline-first Pattern

Page SW

Network

Browser

SW CodeSW Cache

1

2

3

4

5

6

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

Secret Exfiltration

Page w. XSS SW

Network

● SW Cache can be accessed also from
scripts running in the page

● Web attacker with XSS on a page can
leak cached secrets bound to the entire
origin!

● This includes secrets left over from a
previous session like
○ personally identifiable information
○ passwords
○ security tokens
○ multimedia content

Cache.match

fetch

SW Cache

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

Content Corruption

Page w. XSS SW

Network

● Cache entries can also be arbitrarily
modified and forged

● An attacker can modify a response to
○ Inject malicious JS (e.g. keylogger)

(by editing a cached JS file or by
injecting a script in a page)

○ Tamper HTTP response headers
● Similar to persistent client-side XSS

○ Reflected XSS → persistent attack
○ Denial of Service (DoS)
○ Amplification of the attack surface

Cache.put

Page

HTML, JS,
...

Compromised

SW Cache

1

2

2 3

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

● Framing
○ Disable CSP frame-ancestors and

X-Frame-Options

● Privilege Escalation
○ Disable Feature Permission Policy to

access webcam, microphone,
geolocation, etc.

PITM on HTTP responses

● Inspect and modify response objects, including HTTP headers
● Not possible with a traditional XSS, more similar to HTTP response splitting attack

● Break Isolation
○ Avoid SOP enforcement by removing

CSP sandbox directive and iframe
attribute

● Bypass Defensive Programming
○ Void the robustness of JS code

(Constants, Frozen Objects, Sealed
Objects, …)

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

Page SW

SW Cache

Network

Data Collection

● Runtime monitoring of Cache API calls
from SWs and pages

● Monitor injected by mitmproxy in SW
code and by puppeteer in the pages

● Inspect home page and search engines
for links to visit (<50 per origin)Database

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

Large Scale Assessment

● Crawled Tranco top 150K sites, visited >4M pages (June ‘20)
○ 6,709 sites use Service Workers (4.6%)
○ 3,436 sites use Service Workers + Cache API (51.2%)
○ Broken or missing CSP in 95.8% of sites using SW + Cache API

(Potentially vulnerable to our attack if a XSS is found in a page of the site)

● Automated vulnerability testing
○ 2,769 (65%) sites blindly execute a JS

payload we added to cached content
(HTML or scripts)

○ 2,040 sites cache HTML (38% executes)
○ 2,148 sites cache JS (75% executes)

Cached
Policies

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

Page SW

Network

Browser

SW Cache

Countermeasure

Straightforward solution

● Restrict Cache API to SW
● Compatibility issues with existing sites:

○ ~6% of the sites using the Cache
API, access the cache from a script

○ Identified legitimate patterns

Compatible solution

● Restrict Cache API to SW by default
● Custom header or integration with

DocumentPolicy to relax the protection

Mitigation
response.url

==
request.url

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

Conclusion

● Powerful attack against Service Workers on the design of the Cache API

● PITM-like capabilities that couldn’t be achieved by a persistent client-side XSS

● Strong, but realistic, threat model
○ XSS still widespread (35.6% of the Google Vulnerability Reward Program payout in 2018 ~ 1.2M $)*
○ CSP often misconfigured (~95%)
○ Large scale assessment (150K sites) + successful automated testing (65%)

● Proposed a backward-compatible redesign of the Cache API that would have an
immediate security benefit for the large majority of websites

* Artur Janc. Baby steps towards the precipice https://www.arturjanc.com/usenix2019/

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

Demos, PoCs, Extension, Paper ↴
https://swcacheattack.secpriv.wien/

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches

Thank you!
https://swcacheattack.secpriv.wien/

Marco Squarcina (TU Wien)
marco.squarcina@tuwien.ac.at
@blueminimal

Q+A?

 Icons from https://www.flaticon.com

mailto:marco.squarcina@tuwien.ac.at

