Empirical Study of PLC Authentication Protocols in Industrial Control Systems

Adeen Ayub¹, Hyunguk Yoo², and Irfan Ahmed¹

¹ Virginia Commonwealth University
 ² University of New Orleans

Industrial Control System (ICS)

Programmable Logic Controllers (PLCs)

- Monitor and Control physical processes e.g., nuclear plant, and gas pipeline
- Run a control logic program
- Vendor-supplied engineering software
- Proprietary ICS protocol

Ladder Logic Code Snippet

Empirical Study of PLC Authentication Protocols

- Utilize Password-based user authentication
 - \circ ~ to protect control logic from unauthorised access
- Study the security design practices in authentication mechanisms of five PLCs
 - Sole reliance on network traffic

Vendors	PLCs	Engr. Software
Schneider Electric	Modicon M221	SoMachine Basic
Allen-Bradley	MicroLogix 1100 & 1400	RSLogix 500
AutomationDirect	CLICK	CLICK Software
Siemens	S 7-300	SIMATIC STEP 7

Adversary Model

Assumptions:

Access to Level 3 network of Purdue Model (i.e control center network)

Goal:

Bypass the authentication mechanism of a password protected PLC over the network

Goal achieved if any of the following tasks are accomplished

- 1- gain plaintext password
- 2- read control logic
- 3- modify control logic of a PLC
- 4- change the password

Capabilities:

Defined using the classic Dolev-Yao model i.e eavesdropping, fabrication, interception

Study Method and findings

Method

- 1- Understanding authentication protocol internals
- 2- Identifying protocol vulnerabilities
- 3- Mapping an identified vulnerability to the MITRE ATT&CK framework

Findings

- Eight exploitable vulnerabilities discovered
- CVEs include:
 - o CVE-2021-32926
 - o CVE-2020-15791
 - o CVE-2018-7791
 - o CVE-2018-7792

Vulnerabilities discovered

Vul ID	Vulnerability	M221	MicroLogix 1100	MicroLogix 1400	CLICK	Siemens S7-300	
V1	Information Disclosure	n/a	Ver <= 16.0	Ver <= 21.2	Ver 2.6	n/a	
V2	Client side authentication	n/a	Ver <= 16.0	Ver <= 21.1	n/a	n/a	
V3	Weak encryption scheme	Ver < 1.6.2	n/a	Ver 21.6	n/a	All versions	
V4	Small key space	Ver < 1.6.2	n/a	n/a	n/a	All versions	
V5	Lack of nonces	n/a	n/a	n/a	n/a	All versions	
V6	Use of same keys	n/a	n/a	n/a	n/a	All versions	
V7	Improper session management	n/a	n/a	n/a	Ver 2.6	n/a	
V8	No write protection	Ver <= 1.6.2	n/a	n/a	n/a	n/a	

MITRE ATT&CKs launched

MITRE ATT&CK ID	Attack Name	Modicon M221	MicroLogix 1100	MicroLogix 1400	CLICK	S7-300/400
T1555	Credentials from Password Stores	n/a	V1, V2	V1, V2	V1	n/a
T1040	Network Sniffing	n/a	V1	V1	V1	n/a
T1098	Unauthorised Password Reset	V3, V4, V5, V8	V2, V5	V2, V5	n/a	n/a
T1562	Impair Defenses	n/a	V2	V2	V7	n/a
T1110.002	Password Cracking	n/a	n/a	n/a	n/a	V3, V4, V5, V6
T0830	Man in the Middle	n/a	n/a	V3	n/a	n/a
T1565.00 2	Transmitted Data Manipulation	n/a	n/a	V3	n/a	n/a
T1499	Endpoint Denial of Service	n/a	n/a	V3	n/a	n/a

Case Study 1: Modicon M221

- Compact controller introduced in August 2014
- Replaced Twido controllers
- Represent the latest PLC technology
- Meet the requirements of the Industry 4.0
- Engineering software SoMachine Basic
- Proprietary protocol embedded in the Modbus protocol

Authentication Protocol

Protocol Vulnerabilities

1) Weak encryption scheme (V3)

2) Small key size (V4)

3) No write protection (V8)

MITRE ATT&CK

Unauthorised password reset (T1098)

• Kalle et al.'s password reset attack

CLIK PLC 1. Request m1 2. Send m1 3. Write request with new hash 4. Write response 5. Authentication request
(m2, masked_hash) 6. Authentication response

Modicon M221 Memory Layout

MITRE ATT&CK

• 0x00ed (efficient) password reset

Upload a control logic into attacker's ES

Evaluation

Experimental settings:

- Schneider Electric's Modicon M221 (firmware v1.5.1.0 and v1.6.0.1)
- SoMachine Basic (version 1.5 and version 1.6)
- Windows 7 VM to run the engineering software
- Ubuntu 16.04 VM to run attack scripts
- Python and Scapy

Attack type	Run time /sec	Write requests	Payload size	Failed auth. attempts	Attack success rate	
0x00ed (efficient) attack	0.06571	32	128	0	100%	
Kalle <i>et al.</i>	9.93	2458	32	2457	100%	

Case Study 2: Siemens S7-300

- Engineering Software SIMATIC STEP 7(TIA Portal)
- Users can opt for:
 - 1- Write protection
 - 2- Read and write protection

SIEMENS

Authentication Protocol

Encryption Algorithm

Algorithm 2 Pseudocode of the weak encryption algorithm Input: password ($P_0...P_7$), *K* (where *K* is one-byte secret key) Output: encrypted_password ($E_0...E_7$)

- 1: **for** i = 0 to 7 **do**
- 2: $N_i = \text{Substitute}(P_i)$
- 3: if $i \neq 2$ then
- 4: $E_i = K \oplus N_i$
- 5: **else**
- $E_i = K \oplus E_{i-2} \oplus N_i$
- 7: **end if**
- 8: **end for**

Encoding Method

Character	Encoded (Hex)										
space	10	@	70	`	50	0	0	Р	60	р	40
!	11	А	71	а	51	1	1	Q	61	q	41
"	12	В	72	b	52	2	2	R	62	r	42
#	13	С	73	с	53	3	3	S	63	S	43
\$	14	D	74	d	54	4	4	т	64	t	44
%	15	E	75	е	55	5	5	U	65	u	45
&	16	F	76	f	56	6	6	V	66	v	46
'	17	G	77	g	57	7	7	W	67	w	47
(18	Н	78	h	58	8	8	х	68	x	48
)	19	I	79	i	59	9	9	Y	69	У	49
*	1a	J	7a	j	5a	:	а	Z	6a	z	4a
+	1b	К	7b	k	5b	;	b	[6b	{	4b
,	1c	L	7c	I	5c	<	с		6c	I	4c
-	1d	М	7d	m	5d	=	d]	6d	}	4d
	1e	N	7e	n	5e	>	е	^	6e	~	4e
/	1f	0	7f	0	5f	?	f	_	6f		

Protocol Vulnerabilities

- 1) Lack of nonce (V5)
- 2) Weak encryption algorithm (V3)
- 3) Small key space (V4), i.e., just 8 bits which makes it susceptible to an exhaustive key search attack
- 4) Same key (V6) for the communication

MITRE ATT&CK

Password Cracking (T1110.002)

Two scenarios

- 1- Subverting write protection
- 2- Subverting read/write protection

Attack Evaluation

Experimental Settings:

- Siemens S7-300 (6ES7 315-2EH14-0AB0) firmware v3.2.8 and v3.2.17
- TIA Portal version v13, v15, and v16.
- Attack scripts in Python using the Snap7 library

Conclusion

- Studied five PLCs from four different vendors
- Serious design issues in authentication protocols revealed just by network traffic examination
- Completely redesign backward compatibility issues, expensive, not feasible
- Network detection, control logic verification
- Partitioning the memory space
- Increasing the key length
- DMZs

