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Summary 

Several feature extraction approaches for QSPR modelling in Cheminformatics are 
discussed in this paper. In particular, this work is focused on the use of these strategies for 
predicting mechanical properties, which are relevant for the design of polymeric materials. 
The methodology analysed in this study employs a feature learning method that uses a 
quantification process of 2D structural characterization of materials with the autoencoder 
method. Alternative QSPR models inferred for tensile strength at break (a well-known 
mechanical property of polymers) are presented. These alternative models are contrasted 
to QSPR models obtained by feature selection technique by using accuracy measures and 
a visual analytic tool. The results show evidence about the benefits of combining feature 
learning approaches with feature selection methods for the design of QSPR models.  

 

1   Introduction 

Important decisions about materials are taken in any engineering activity, especially when 
selection between specific materials affects requirements of performance and/or cost. In this 
regard, new synthetic polymers were developed to improve their utility and consequently satisfy 
the demanding market. As a result, the design of new materials is a growing field of research. 
The classic approach to achieve this objective has been empirical, but at present the ability to 
predict material properties previous synthesis has changed those experimental methods 
obtaining important reductions in time and cost. 
The increasing knowledge of relationships among the molecular structure of a material and its 
properties is the core step for modelling. However, when materials are complex, reaching these 
predictions becomes much difficult [1]. In particular, the prediction of mechanical properties, 
previous synthesis, plays a central role in material design, because these properties define the 
application profile of polymeric materials. 

The predictive models can be obtained by cheminformatics methods, specifically QSPR 
(Quantitative Structure-Property Relationship) techniques. The QSPR models are required to 
identify the relationships among several molecular descriptors (which characterizes the 
structure and other features of chemical compounds) and a target property under study (related 
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with a physicochemical or mechanical property of interest). This task can be addressed by using 
machine learning approaches. 
The development of intelligent systems for the design of QSPR models has been increasing 
significantly during last decades [2]. To treatment of this predictive modelling problem using 
machine learning involves tackling several computer science challenges. One of them consist 
into chose the most relevant molecular descriptors for the estimation of the property under 
study. This is a classical feature selection problem, where the featured variables are molecular 
descriptors and the target variable is a physicochemical or mechanical property (all of them 
quantitatively valued). In these applications, the usual number of candidate molecular 
descriptors to be evaluated for designing a QSPR model is huge. Around thousands of 
molecular descriptors are available for computation in Cheminformatic tools, like DRAGON 
[3]. Therefore, the automatic selection of an optimal set of molecular descriptors is a highly 
expensive task [4]. Furthermore, the computational effort is even harder when the feature 
selection method is executed for the inference of QSPR models in the design of polymeric 
materials. In this specific subdomain, the size and characteristics of these chemical compounds, 
usually huge macromolecules (4000-800000 g/mol), become difficult even the estimation of 
the most straightforward molecular descriptors [5]. 

Since these limitations, different approaches for dimensionality reduction and feature learning 
have emerged in the area of QSPR modelling to make simpler, or even avoid, the task of 
selecting molecular descriptors. One particular example of these techniques is based on the 
combination of the CODES and TSAR algorithms [6]. This strategy extracts a reduced set of 
new features, using neural networks for the feature learning procedure. These new features 
constitute a new space of variables, which has a low dimensionality, where variables represent 
information derived from the whole molecular structure of the compounds. In this way, the 
traditional computation of thousand molecular descriptors followed for the features selection 
step is not necessary. 

In databases of chemical compounds related to pharmacological studies and other biological 
experiments, CODES-TSAR (C-T) strategy obtains QSAR models with high levels of accuracy 
[7]. Nevertheless, its performance has never been assessed in the inference of QSPR models for 
designing synthetic polymers. For this reason, the main objective of this work is to explore the 
advantages and drawbacks of this approach on the prediction of relevant mechanical properties 
for Materials Science. In this sense, we present here an extended version of the article discussed 
in the 10th International Conference on Practical Applications of Computational Biology & 
Bioinformatics (PACBB 2016) [8], where QSPR models obtained by CODES-TSAR are 
compared to QSAR models inferred by traditional QSPR design strategies using an integrative 
approach, which applies machine learning and visual analytics tools. Besides, some 
combinations among the models obtained by the different approaches are also studied, in order 
to evaluate the impact of hybridizing these alternative QSPR methodologies. More detailed 
information and discussions about the experiments are reported in this extended version. The 
next section presents the Methodology focusing on how the descriptors of the QSPR models 
are obtained. Then, in Experiments and Results, it is explained how models were built as well 
as the performance evaluation in the context of visual analytics, considering tensile strength at 
break as an example. Finally, conclusions are presented and an idea of future work is described. 
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2 Methodology 

QSPR regression (or classification) models relate a set of structural and non-structural 
descriptors (represented with 	  𝑋) with a target property of interest (𝑌) [5]. Following this 
definition, a QSPR model can be mathematically represented as a function 𝑓(𝑋) that tries to 
predict 𝑌. In the chemical field, the values of 𝑋 (typically named descriptors) are computed for 
all compounds by using specific software tools like DRAGON [3], while 𝑌 values correspond 
to the experimental target of interest. By means of a training set, the function 𝑓 can be learned 
using available machine learning techniques. In order to assess the predictive power, the 
function 𝑓 is applied to the compounds not used in the training stage. In this way, 𝑓 can estimate 
the target value of unseen compounds. In Fig. 1 it is shown a description of the methodology 
carried out in this work. 

Figure 1: Methodology and Experimental Design. The methodology has two main branches: 
feature selection on the left side and feature learning on the right side, both converge in an analysis 
through visual analytics in order to complete the study. 
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In order to construct the QSPR model, the best molecular descriptors need to be identified. A 
brute force approach is doing a combinatorial search of the best descriptors. However, the 
computational complexity of these tasks turns it prohibitive. To overcome this we propose the 
use of Delphos [9]. Delphos implements a multiobjective optimization method that explores the 
whole space of combinations of molecular descriptors looking for the best predictive subset, 
i.e. the best set of descriptors that provide accurate predictions of 𝑌 (Fig. 1 - Left). Delphos is 
based on the two-phase machine learning method. In the first phase, a wrapper method executes 
a coarse search following a heuristic method in order to be able to find an appropriate subset of 
variables in a reasonable time period. In the second phase, a thorough evaluation is applied 
using a neural network assemble, in order to determine which subsets of the coarse selection 
are the most relevant ones. 

Although the general approach is to use classical molecular descriptors, feature learning 
methods provide a different QSPR modelling technique such as the combination of CODES 
and TSAR method [6]. This technique summarizes the information provided by a set of 
descriptors into a new -and small- set so the feature selection step is no longer required. 

First, the process of QSPR model building starts describing all molecules of the database using 
its SMILES representation. SMILES (Simplified Molecular Input Line Entry System) is a 
typographical line notation for specifying chemical structure, which uses graph theory to 
represent a molecule. The nodes are atoms, and the edges are semi-rigid bonds [10]. Second, 
CODES tool is fed with the SMILES codes and as a result, a dynamic matrix is generated. This 
matrix has a variable number of rows as it is necessary for stabilization and as many columns 
as the number of atoms (excluded hydrogens). Third, TSAR tool transforms each matrix into 
the reduced set of descriptors, performing the dimensionality reduction. TSAR implements an 
autoencoder neural network [11]. This process is applied to each molecule of the database and 
the reduced descriptor table is obtained (Fig. 1- Right). 

Finally, it is discussed, in the context of visual analytic, the models obtained by each branch of 
the methodology and the models that combine descriptors from both methods. This analysis is 
performed with VIDEAN [4], available online. 

3   Experiments and Results 

The polymer database employed in this work was previously developed by our research group 
[12]. This relates polymers with mechanical properties derived from tensile test. 66 polymers 
were extracted from it and represented by their SMILES codes. The database polymers are: 
linear, thermoplastic, amorphous, flame-retardant, thermally stable, hydrolytically stable, 
hydrolytic degradable, low toxic, and thermostable. Concerning international norms, the 
database meets the following ones: ASTM D638, ASTM D882-83, and DIN 53504.53A. Table 
1 shows additional parameters considered to make the database: Mn (Number Average 
Molecular Weight), Mw (Weight Average Molecular Weight), Mw/Mn (Polydispersity Index), 
CHS (Cross Head Speed) and testing temperature besides tensile strength at break, which is the 
property selected for predicting in this study (target). 
In a tensile test, a polymeric sample is subjected to a controlled tension (constant CHS) until 
failure (breaking point) and the process is represented by a stress-strain curve. An example can 
be observed in Figure 2. From point A to B, the deformation is considered elastic and Young's 
Modulus is calculated in this zone. When the fracture occurs, at point E, the corresponding 
stress is known as tensile strength at break. Materials which have a low tensile strength at break 
are often referred as weak materials. The results from the test are commonly used to select a 
material for a specific application or quality control [1]. 
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Table 1: Ranges of values of characteristics of the dataset polymers. 

Characteristics Ranges of values 

Mn 4700 – 76500 [g/mol] 

Mw 19500 – 2200000 [g/mol] 

Mw/Mn 1.15 – 5.6 

CHS 1 – 100 [mm/min] 

Temperature 20 – 25 [ºC] 

Tensile Strength at Break 7.5 – 103 [MPa] 

 
Figure 2: Stress-strain curve for a polymer. The beginning of the curve, from point A to B, the 
material behavior is elastic (Young's Modulus). Point C is de Yield point corresponding to the 
stress at which a material begins to deform plastically.  The point D is resulting of prominent 
decrease in local cross-sectional area which provides a deformation known as "neck". Then at 
point E fracture occurs and it is called breaking point (Tensile Strength and Elongation at Break). 

Based on the SMILE code for each monomer of the database, CODES generates a dynamic 
matrix (record of the learned process), where each value represents the correlation between 
atoms, the atom bonds and connectivity with the rest of the molecule. The next step is the 
reduction of dimensions by applying TSAR, in order to have a reasonably small number of 
descriptors for each molecule. Since this tool is based on an autoencoder algorithm, the number 
of nodes in the hidden middle layer determines the number of descriptors generated [6]. 
In previous studies and reports [13], we have experimented with 7 models obtained from both 
methodology ways (feature selection and feature learning) showed in Figure 1, as well as the 
combination from both. These models are descripted in Figure 3. The Reference Model (RM) 
is a representative of feature selection method and C-T N2 and C-T N3 are representative of 
feature learning one. RM consisted of 4 descriptors, which were chosen using a combination of 
a feature selection method and a physicochemical-motivated strategy. It is composed of the 
following descriptors: Mn, CHS, ETA_dEpsilon_D and MMC/MSC (ratio of Mass of Main Chain 
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by Mass of side chain). C-T N2 and C-T N3 were obtained with the CODES-TSAR 
methodology, with two and three neurons in the hidden layer, respectively. Molecular 
descriptor computed for the different models using DRAGON and CODES-TSAR are reported, 
together with the target property, in Table A1 and A2 in appendix. 
 

 
Figure 3: Conformation of models and their descriptors. Descriptors can be seen in black ovals, 
on the left side corresponding to feature selection and at right feature learning. The reference 
model (RM) is marked by a box and name in purple. Codes-models are identified by Tsar boxes 
and green names, 2 neurons (C-T N2) in light green and 3 neurons (C-T N3) in dark green. Those 
models which are formed by the RM have violet box, and name the color that represents its other 
descriptors, light green for 2 neurons (C-N2) and dark green 3 neurons (C-N3). Enhanced models 
are those having the chosen descriptors, marked in yellow. These models are represented by yellow 
boxes and name in the color representing their other descriptors, likewise, light green for 2 
neurons (E.-N2) and dark green 3 neurons (E.-N3). 

On the other hand, the addition of RM with C-T N2 and C-T N3 were tested and we called them 
Combined Models. Namely, RM + C-T N2: Combined N2 (C.-N2) and RM + C-T N3: 
Combined N3 (C.-N3). In Figure 3 they are represented with a purple box and green letters. 
Another experiment included the summation of Mn y CHS plus CODES-TSAR Models, we 
called them Enhanced Models. In the Figure 3 they (E.-N2 and E.-N3) can be distinguished 
with a yellow box and green letters. We have picked out the CHS descriptor because it is a 
testing parameter that determines the value of the mechanical properties, and the Mn descriptor 
because it provides “macro” information about the molecules. 

The performance of 7 models is descripted in Table 2. To assess them, it should be considered 
that high predictive accuracy in statistical terms, low cardinality model (minimum number of 
descriptors) and high interpretability, in general, define a robust predictor. Statistical evaluation 
was performed with WEKA [14], using decision trees with 10-fold cross validation and the 

Journal of Integrative Bioinformatics, 13(2):286, 2016 http://journal.imbio.de/

doi:10.2390/biecoll-jib-2016-286 6

C
op

yr
ig

ht
20

16
T

he
A

ut
ho

r(
s)

.P
ub

lis
he

d
by

Jo
ur

na
lo

fI
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

T
hi

s
ar

tic
le

is
lic

en
se

d
un

de
ra

C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

L
ic

en
se

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.



WEKA standard parameters. The validation metrics (R2) of most of the models have predictive 
precision above 0.7. The cardinality of Combined and Enhanced Models is equal to or greater 
than the cardinality of the RM. This fact is not so relevant because the comparison between 
them cannot be applied. The sets of descriptors of CODES-TSAR models can be thought as a 
single descriptor (characterized by more than one value), since they must not be interpreted or 
used separately. Put it in other way, the values generated by CODES-TSAR together represent 
a particular descriptor of the entire 2D structure. It is appreciated that the models derived from 
the exclusive use of descriptors created by CODES-TSAR does not reach the predictive 
performance of the RM. Nevertheless, there is evidence to conclude that the combination of the 
information provided by the CODES-TSAR models and classical methodologies, C.-N2 and 
C.-N3 models, improves the statistical accuracy of the RM without a significant increase in 
cardinality. 
 

Table 2: Cardinality of models and performance of training and validation expressed as R2. 

Models Cardinality Training Validation 

CODES-TSAR N2 (C-T N2) (2) 0.7071 0.5788 

CODES-TSAR N2 (C-T N3) (3) 0.7513 0.4385 

Reference Model (RM) (4) 0.8840 0.8172 

Enhanced N2 (E.-N2) (4) 0.7954 0.7527 

Enhanced N3 (E.-N3) (5) 0.8734 0.5857 

Combined N2 (C.-N2) (6) 0.9333 0.8488 

Combined N3 (C.-N3) (7) 0.9253 0.8514 

 
Respect to interpretability of models, it is needed to consider that modelling polymers is very 
complex because of size and unique behaviour of these huge molecules. However, visual 
analytical computational tools as VIDEAN [4], simplify this task. At this stage, VIDEAN was 
used to analyse the relationships and interactions between the descriptors of the different 
models. This analysis was performed through interactive visual exploration of data. VIDEAN 
offers different visual representations like scatter plots of property versus descriptors values 
(Fig. 4) and an undirected graph to represent the degree of pairwise mutual information among 
descriptors (Fig. 5). 
In Figure 4 we can see that the histograms for the model C-T N3 show the same type of 
behaviour for the three descriptors respect to the property. Their low performance (0.4385, 
Table 4) is precisely due to an undesirable behaviour of the descriptors in the model, because 
each one provides information in the same zones for the structure-property relationship. For C-
T N2 the interpretation and conclusions are similar. Analyzing the model RM, it is possible to 
see that it has four descriptors with different behavior (Fig. 4), but with a lack of information at 
the right end of each chart; but it is a region in which the two models CODES-TSAR (C-T N2 
and C-T N3) show values. From the previous analysis, it could be explained why Combined 
Models improve their performance (0.8488 and 0.8514, Table 4), that means all descriptors 
together (RM + C-T) are contributing information to different zones, completing the area of 
target. 

In Figure 5 we can see edges in different tones of pink that represent degrees of mutual 
information, low degree with light pink and high one with dark pink. It is desirable descriptors 
with low mutual information to contribute non-redundant information to the model. Please note 
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that (Fig. 5), almost all the descriptors have a high degree of mutual information except Mn (all 
edges are light pink). It is coherent because Mn is a very significant descriptor for polymers 
since these materials have a molecular weight distribution rather than having a single molecular 
weight. Mn represents the number average molecular weight and provides macromolecular 
information to the model. When Mn was extracted from the model, its prediction power 
decayed. 
 

 

Figure 4: Descriptors value vs Target Property: Scatterplots and Histograms for Combined 
models and RM. With red dots (scatterplot) it can be observed how the descriptor behaves with 
respect to the target property, also can be observed in yellow histograms. 

Consequently, we can conclude that the exclusive use of CODES-TSAR method was not 
enough to model and predict tensile strength at break employing this database of polymers (See 
description at first part of section 3). Though, we can realize that the new descriptors learned 
by this feature extraction technique can contribute with valuable information to QSPR models 
that have been generated using the feature selection. 
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Figure 5: Mutual Information between descriptors of each model.  

4   Conclusions 

In this work, the QSPR modelling for industrial polymer design by means of feature learning 
approaches was discussed. The method CODES-TSAR, based on the autoencoder technique, 
learns a set of variables which extract structural 2D information of the compounds. The central 
goal was to assess if the high predictive accuracy achieved by the QSPR models generated by 
CODES-TSAR for pharmacokinetic properties are well-kept in the study of mechanical 
properties associated with polymeric materials.  
With this objective in mind, several experiments related to the tensile strength at break property 
were carried out, in order to contrast the precision of CODES-TSAR against to a QSPR 
reference model by expert knowledge and feature selection approaches (RM). From the QSPR 
models inferred by CODES-TSAR, it was observed that the chemical information summarized 
by the learned variables was not enough to describe the mechanical property. Regarding this 
result, it is well-known that the autoenconder application in QSPR modelling is more suitable 

Journal of Integrative Bioinformatics, 13(2):286, 2016 http://journal.imbio.de/

doi:10.2390/biecoll-jib-2016-286 9

C
op

yr
ig

ht
20

16
T

he
A

ut
ho

r(
s)

.P
ub

lis
he

d
by

Jo
ur

na
lo

fI
nt

eg
ra

tiv
e

B
io

in
fo

rm
at

ic
s.

T
hi

s
ar

tic
le

is
lic

en
se

d
un

de
ra

C
re

at
iv

e
C

om
m

on
s

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s
3.

0
U

np
or

te
d

L
ic

en
se

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/)

.



for groups of molecules that belong to the same chemical family [6], which is unusual in 
polymeric material databases. 
This yield to the proposal of enhance the CODES-TSAR QSPR models adding molecular 
descriptors linked to macromolecular information and also tensile test parameters, which play 
a central role in the material design experiments. Moreover, it was also tested the accuracies of 
QSPR models obtained by combining all the descriptors learned by CODES-TSAR with the 
entire RM. From all these experimental results, it was settled that the CODES-TSAR 
descriptors inferred by feature learning provide significant and complementary information to 
the RM. These conclusions were supported by the mutual information values observed in the 
descriptors pairwise analysis executed using VIDEAN. It is also important to mention that the 
improvement in the predictive accuracy is achieved without a significant increase in the number 
of molecular descriptors used in the QSPR model. In fact, the tuple of variables extracted by 
CODES-TSAR can be considered as a single descriptor. 

As a future work, it is scheduled to test combined QSPR models for other mechanical properties 
related with polymeric material design, such as tensile modulus and elongation at break, jointly 
with the application of other machine learning techniques. Another interesting idea to explore 
in the future is the evaluation of this hybrid strategy, which combines feature learning and 
feature selection approaches, in the context of drug design applications. Taking into account 
that CODES-TSAR only captures structural 2D information of the compounds, the combination 
of these learned variables with 3D molecular descriptors obtained by feature selection could 
achieve QSAR models with high predictive performances. 
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Appendix 
Table A1: Molecular descriptors computed by DRAGON for the RM. 

# Polymer Tensile strength at 
break [MPa] Mn CHS ETA_dEpsilon_D MMC/MSC 

1 38.82 146000 1,27 0 0,35 

2 39.64 765000 1,27 0 0,35 

3 40.5 231000 1,27 0 0,35 

4 43 13500 5 0 0,35 

5 44 13500 5 0 0,35 

6 30 13500 5 0 0,35 

7 80 41000 50 0,02406 7,15 

8 72 33000 50 0,02406 7,15 

9 70 42000 50 0,02339 7,13 

10 71 44000 50 0,02169 8,15 

11 83 41000 50 0,01871 6,87 

12 71 44000 50 0,01961 8,98 

13 81 41000 50 0,01968 6,92 

14 73 38000 50 0,02023 3,65 

15 51 65000 50 0,02702 6,15 

16 61 55000 50 0,02406 7,15 

17 50 64000 50 0,02406 7,15 

18 50 58000 50 0,02339 7,13 

19 53 61000 50 0,02169 8,15 

20 60 71000 50 0,01871 6,87 

21 66 81000 50 0,02023 3,65 

22 62 69000 5 0,03372 2,10 

23 18 190000 30,1 0 0,17 

24 23 500000 30,1 0 0,17 

25 16 190000 30,1 0 0,13 

26 22 450000 30,1 0 0,15 

27 21 470000 30,1 0 0,12 

28 12 460000 30,1 0 0,11 

29 19 750000 30,1 0 0,11 

30 14 250000 30,1 0 0,11 

31 18 34000 30,1 0 0,18 

32 7.5 39000 30,1 0 0,13 

33 76.53 21000 12,7 0,01618 2,24 

34 82.74 44000 12,7 0,02047 9,39 

35 30.7 68000 100 0,02948 1,80 
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36 47.4 53000 50 0,02539 0,64 

37 67.5 11000 1 0,00989 1,73 

38 99.1 9500 1 0,00989 1,73 

39 90 64000 20 0,0074 2,19 

40 85 42000 20 0,00693 2,35 

41 96 37000 20 0,00703 2,76 

42 98 43000 20 0,00658 3,44 

43 79 50000 20 0,00584 2,47 

44 58.5 8200 9 0,03118 2,48 

45 57.2 6300 9 0,02698 2,59 

46 49.4 4700 9 0,02586 2,53 

47 90 30000 20 0,00568 2,29 

48 79 17000 20 0,00592 2,55 

49 91 57000 20 0,0068 2,55 

50 96 25000 20 0,00638 3,15 

51 92 42000 20 0,00568 2,32 

52 83 33000 20 0,0074 3,21 

53 98 46000 20 0,00691 4,09 

54 102 39000 20 0,0061 2,77 

55 89 54000 20 0,00638 3,24 

56 83 41000 20 0,0061 2,77 

57 58 154000 5 0,00865 1,19 

58 54 61000 5 0,0084 1,18 

59 44 74000 5 0,00887 0,83 

60 94 31500 5 0,00816 1,08 

61 38 31500 5 0,0085 0,78 

62 80 16000 20 0,00638 3,05 

63 83 33000 20 0,0068 2,48 

64 102 63000 20 0,00808 2,71 

65 16.9 41000 5 0,04416 2,22 

66 20.8 43000 5 0,04416 2,22 
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Table A2: Molecular descriptors computed by CODES-TSAR for the C-T models. 

# Polymer 
Tsar N3 Tsar N2 

node 1 node 2 node 3 node 1 node 2 

1 0.753745 0.820556 0.782008 0.800809 0.873296 

2 0.954838 0.9469 0.887678 0.955257 0.929647 

3 0.753745 0.820556 0.782008 0.819592 0.885244 

4 0.753745 0.820556 0.782008 0.949465 0.967521 

5 0.954838 0.9469 0.887678 0.800564 0.678873 

6 0.970138 0.966281 0.857908 0.784712 0.695124 

7 0.905254 0.00031 0.07454 0.924568 0.77728 

8 0.039246 0.037205 0.991329 0.004391 0.779314 

9 0.084745 0.000029 0.904698 0.997748 0.129842 

10 0.995376 0.022916 0.311917 0.560131 0.0000037 

11 0.917812 0.000431 0.09809 0.993016 0.170393 

12 0.886386 0.041 0.008313 0.985206 0.145863 

13 0.993693 0.331535 0.02099 0.000898 0.658192 

14 0.024641 0.98513 0.242095 0.976703 0.133532 

15 0.018269 0.016049 0.910829 0.969584 0.11494 

16 0.700258 0.054774 0.000001 0.006297 0.864037 

17 0.091105 0.000166 0.943813 0.000007 0.457509 

18 0.008878 0.007576 0.84421 0.089302 0.988914 

19 0.989003 0.086893 0.13976 0.466248 0.0000012 

20 0.991608 0.216791 0.083532 0.985408 0.070276 

21 0.978669 0.248306 0.009334 0.140637 0.983287 

22 0.832953 0.008828 0.009919 0.759844 0.013684 

23 0.802412 0.824827 0.783574 0.110789 0.995566 

24 0.987946 0.866058 0.985858 0.96422 0.960704 

25 0.963025 0.966944 0.970622 0.976483 0.981973 

26 0.957462 0.963936 0.981931 0.998544 0.51179 

27 0.952747 0.954494 0.964414 0.967368 0.981115 

28 0.898621 0.434523 0.303064 0.525098 0.46046 

29 0.310033 0.275702 0.942057 0.640107 0.44589 

30 0.972364 0.973282 0.96768 0.987629 0.979419 

31 0.946502 0.943581 0.934006 0.988423 0.958359 

32 0.673623 0.708839 0.830096 0.610969 0.713247 

33 0.965614 0.029194 0.01319 0.969001 0.99086 

34 0.609592 0.037243 0.03794 0.000753 0.475376 

35 0.017987 0.031356 0.950802 0.824192 0.996528 

36 0.000057 0.953947 0.17425 0.358834 0.012768 
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37 0.889771 0.073394 0.001191 0.809646 0.000754 

38 0.948097 0.104165 0.001457 0.003419 0.836936 

39 0.002743 0.205383 0.981704 0.003185 0.833625 

40 0.14766 0.951102 0.101403 0.702908 0.004285 

41 0.991862 0.233953 0.078263 0.08205 0.912811 

42 0.983387 0.269718 0.000125 0.688108 0.002846 

43 0.002678 0.062926 0.952255 0.980843 0.133111 

44 0.000133 0.06099 0.93673 0.882037 0.060925 

45 0.081738 0.991407 0.214003 0.825477 0.030545 

46 0.989587 0.223407 0.00137 0.086517 0.973462 

47 0.038373 0.145242 0.912736 0.983698 0.116522 

48 0.147181 0.918078 0.175781 0.933296 0.059676 

49 0.992751 0.278038 0.059008 0.91491 0.101742 

50 0.277233 0.053146 0.987737 0.122408 0.98003 

51 0.000001 0.000016 0.322012 0.972483 0.115897 

52 0.000656 0.005641 0.617429 0.999997 0.210174 

53 0.301179 0.99212 0.002523 0.990799 0.149685 

54 0.218517 0.043541 0.981925 0.006646 0.678342 

55 0.28613 0.000555 0.987053 0.015717 0.796457 

56 0.562355 0.134782 0.999911 0.490382 0.000024 

57 0.019547 0.97754 0.025366 0.990619 0.066309 

58 0.919308 0.000353 0.015782 0.927302 0.010914 

59 0.000365 0.992809 0.250624 0.979065 0.09733 

60 0.046404 0.984467 0.083057 0.98395 0.064206 

61 0.08891 0.946161 0.000892 0.99213 0.142431 

62 0.010496 0.316677 0.991722 0.141003 0.976993 

63 0.058475 0.991264 0.27771 0.974653 0.111869 

64 0.986898 0.056324 0.058217 0.561223 0.000421 

65 0.023354 0.890937 0.026553 0.942242 0.008934 

66 0.024006 0.860319 0.025356 0.01251 0.943572 
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