Analyzing Cascading Failures in Smart Grids under Random and Targeted Attacks

Sushmita $Ruj¹$ and Arindam Pal²

1 Indian Statistical Institute, Kolkata, India Email: sush@isical.ac.in ²TCS Innovation Labs, Kolkata, India Email: arindamp@gmail.com

> May 14, 2014 AINA 2014 University of Victoria

- **•** Smart grids and interdependent networks
- Random and targeted attacks
- **Cascading failures in interdependent networks**
- Fault-tolerance of networks and giant components
- Our contributions
- Analysis of targeted attack on the communication network
- **•** Experimental results
- **Conclusion and future work**

- We model smart grids as complex interdependent networks.
- We study targeted attacks in smart grids for the first time.
- A node is compromised with probability proportional to its degree.
- We study attacks on different types of interdependent networks having binomial and power law degree distributions.
- We show that current power grid networks (having power law distribution) are more vulnerable to targeted attacks compared to random attacks.

- Smart grids are next generation electricity grids in which the power network and the communication network work in symphony.
- An interdependent network is a combination of two networks, where in addition to the intralinks within the networks, there are interlinks across the networks.
- The two networks depend on each other for seamless operation.

The smart grid as an interdependent complex network

- **Consider two interdependent scale-free networks.**
- One is a communication network $N_A = (V_A, \alpha_A)$, and the other is a power network $N_B = (V_B, \alpha_B)$.
- N_A has the power law degree distribution $P_A(k) \propto k^{-\alpha_A}$, which means that the fraction of nodes with degree k is $P_A(k)$.
- Similarly, N_B has the power law distribution $P_B(k) \propto k^{-\alpha_B}$.
- We assume that there are more communication nodes than power stations, which implies that $n_A > n_B$.

- The interlinks or support links are directed edges from one network to the other.
- We assume that a communication link supports one power station and is powered by one power node.
- This implies that both the in-degree and out-degree of a communication node is one.
- A power node is controlled by multiple communication node and supplies power to multiple communication nodes.
- This implies that both the in-degree and the out-degree of a power node is at least one.

Cascading Failure in Smart Grids

Sushmita Ruj and Arindam Pal [Cascading Failures in Smart Grids](#page-0-0) May 14 2014, AINA 2014 8 / 18

 $\frac{1}{\sqrt{2}}$

- We consider two types of attacks.
- In targeted attacks, the attacker selects a node with probability proportional to the degree of the node and makes it faulty.
- This implies that a high degree node is more prone to attack than a low degree node.
- Targeted attacks are more likely to arise in real-world situations, as we have seen during the recent Stuxnet attack.
- Intuitively, attacking the high degree nodes result in more nodes and links being disrupted, thus disrupting the network.
- In random attacks, the attacker selects a node uniformly at random from the set of all nodes.
- Here all nodes are equally likely to be attacked.

Giant Component

- \bullet A giant component in a graph on n vertices is a maximal connected component with at least cn vertices, for some constant c .
- If $c = 0.5$, this means that the giant component should have at least half of the vertices in the graph.
- A vertex can be deleted from the graph in two ways.
	- **If the vertex is attacked.**
	- If the vertex is not attacked, but all its support links on the other network has been attacked.
- Due to this kind of cascading failure of nodes, many more nodes will be compromised.
- This is different from the normal scenario, where only the attacked nodes are compromised.
- • In this paper we analyze the sizes of giant components under random and targeted attacks.

Finding the sizes of Giant components in Smart Grids

• Let ϕ_k be the probability that a node i of degree k in communication node is not removed.

$$
\phi_k = 1 - \frac{deg(i)}{\sum_{v \in V_A} deg(v)}
$$

$$
= 1 - \frac{Ak^{-\alpha_A}}{2m_A},
$$

- Fraction of nodes in the initial giant component as μ_{A_1} . (calculated in paper)
- Fraction of nodes in N_B disconnected due to attack on N_A is given by,

$$
r_{B_2} = \sum_{\tilde{k}_B=0}^{\infty} \tilde{P}_B(\tilde{k}_B)(1 - \mu_{A_1})^{\tilde{k}_B}
$$
 (1)

Fraction [of](#page-9-0) nodes in the giant component of [Ne](#page-11-0)[t](#page-9-0)[wo](#page-10-0)[rk](#page-11-0) N_B N_B N_B [is](#page-0-0) μ_{B_2} [.](#page-17-0)

Finding the sizes of Giant components in Smart Grids

• Continuing similarly, The fraction of nodes in N_A which fail due to failure of node in N_B is given by,

$$
r_{A_3} = \sum_{\tilde{k}_A=0}^{\infty} \tilde{P}_A(\tilde{k}_A)(1 - \mu_{B_2}).
$$
 (2)

Fraction of nodes in the giant component of Network N_A is $\mu_{A_3}.$ • At steady state,

$$
\mu_{A_{2n-1}} = \mu_{A_{2n+1}} = \mu_{A_{2n+3}} = \dots \tag{3}
$$

$$
\mu_{B_{2n-2}} = \mu_{B_{2n}} = \mu_{B_{2n+2}} = \dots \tag{4}
$$

 200

- We use the software library igraph to simulate smart grids.
- The communication and power networks are generated using an Erdos-Renyi model and a Barabasi-Albert model.
- For each communication node, an interlink is assigned by choosing a power node at random.
- We consider three types of attack on the communication network targeted, random and a combination of the first two.
- We study the effect of compromise by running the experiment 50 times for each input.
- Every time the same graphs are considered.

 200

Fraction of nodes in giant component for different attacks

The power and the communication network has 1,000 and 10,000 nodes respectively. The communication/power network is generated using the Barabasi-Albert model.

Sushmita Ruj and Arindam Pal [Cascading Failures in Smart Grids](#page-0-0) May 14 2014, AINA 2014 14 / 18

Fraction of nodes in giant component of communication network

The power and the communication network has 1,000 and 2,000 nodes respectively. The communication/power network is generated using Erdos-Renyi and Barabasi-Albert model.

Sushmita Rui and Arindam Pal [Cascading Failures in Smart Grids](#page-0-0) May 14 2014, AINA 2014 15 / 18

Fraction of nodes in giant component of power network

The power and the communication network has 1,000 and 2,000 nodes respectively. The communication/power network is generated using Erdos-Renyi and Barabasi-Albert model.

- In this work, we model the power and communication networks as two interdependent networks, and analyze cascading failure in smart grids for targeted attacks.
- We have carried out experiments to show that a targeted attack gives an advantage to the adversary over random attacks.
- A challenging open problem is to obtain a closed-form solution for the size of the giant component from the mathematical analysis that we have presented.
- Another important question is to present a good model of smart grids, which will be resilient to both random and targeted attacks.
- The structure of both the power and communication networks and the assignment of interlinks need to be studied.

Thank You!

∍ × \rightarrow Sushmita Ruj and Arindam Pal [Cascading Failures in Smart Grids](#page-0-0) May 14 2014, AINA 2014 18 / 18

重

×

活

4 日下

×.

 298