Approximation Algorithms for Finding Maximum Independent Sets in Unions of Perfect Graphs

Authors: CHAKARAVARTHY, PANDIT, ROY, SABHARWAL Speaker: ARINDAM PAL

> Department of Computer Science and Engineering Indian Institute of Technology Delhi

> > November 30, 2012

 QQ

- The Maximum Independent Set Problem in Graphs
- Perfect Graphs and their Properties
- Summary of Results
- **The Common Independent Set Problem**
- LP Formulation for 2-MAXCIS
- The Rounding Algorithm and Analysis

G.

 QQ

正々 メラメ

4 D F

∢ ⁄<mark>⊡</mark> ≯

The Maximum Independent Set Problem in Graphs

- Given a graph $G = (V, E)$, and a profit (weight) function $p:V\mapsto \mathbb{R}^+$, the goal is to find an independent set of maximum profit.
- If $p(v) = 1, \forall v \in V$, this is the cardinality version.
- \bullet $[Z_{\text{UCKERMAN}}]$: It is NP-Hard to approximate MIS within a factor of $n^{1-\epsilon}$, for any $\epsilon > 0$.
- However, there are easy families of graphs for which MIS can be solved optimally in polynomial time.
- Examples are $\{interval, chordal, comparability\}$ graphs.
- All of them are *perfect graphs*.

KOD KARD KED KED E VAN

What is a Perfect Graph?

- A perfect graph is one in which the chromatic number of every induced subgraph equals the size of the largest clique of that subgraph. For every $H \subseteq G$, $\chi(H) = \omega(H)$.
- THE PERFECT GRAPH THEOREM [LOVASZ]: A graph is perfect if and only if its complement graph is also perfect.
- The Strong Perfect Graph Theorem [Chudnovsky, ROBERTSON, SEYMOUR, AND THOMAS: A graph is perfect if and only if it has no induced subgraph that is an odd cycle of length at least five or its complement. These graphs are called Berge graphs.
- Perfect graphs can be recognized in polynomial time.
- For perfect graphs, graph coloring, maximum clique, and maximum independent set problems can all be solved in polynomial time using the ellipsoid method.

 QQ

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B} \mathbf{B}$

Common Independent Set

- A subset of vertices $X \subseteq V$ is called a common independent set (CIS) of graphs $G_i = (V, E_i), 1 \le i \le t$, if X is an independent set in each graph G_i .
- Alternatively, a CIS is an independent set in the union graph $G=(V,E)$, where $E=\bigcup_{i=1}^t E_i$.
- The goal is to find the maximum weight CIS (MAXCIS).
- For a fixed constant k, the k -MAXCIS problem is the special case where the number of input graphs is $t = k$.
- We consider restricted versions of the MaxCIS problem, where all the input graphs belong to a particular class of graphs \mathcal{C} .
- \bullet In this talk, C will be the family of perfect graphs.

KOD KARD KED KED B YOUR

Summary of Results

- An $O(\sqrt{n})$ -approximation algorithm for the weighted 2- MAXCIS problem on perfect graphs.
- Can be easily generalized to an $O(n^{\frac{k-1}{k}})$ -approximation algorithm for the weighted k -MAXCIS problem on perfect graphs.
- The LP has an integrality gap of \sqrt{n} , even when both the graphs are comparability graphs and all the weights are unit.
- A stronger LP has an integrality gap of $n^{0.16}$, for unweighted comparability graphs.
- If P \neq NP, then the 2-MAXCIS problem on comparability graphs cannot be approximated within any constant factor.
- If $\mathrm{NP}\not\subseteq\mathrm{DTIME}[n^{O(\log n)}]$, then 2- MAXCIS on comparability graphs $\lim_{M \to \infty} \sum_{n=1}^{\infty} D_n \lim_{M \to \infty} \sum_{n=1}^{\infty} \int_{N} \lim_{n \to \infty} \sum_{n=1}^{\infty} \frac{1}{n^m}$

KOD KARD KED KED B YOUR

Weighted 2-MaxCIS Problem on Perfect Graphs

- Write an (exponential size) LP relaxation.
- Compute an optimal fractional solution for the LP.
- Partition the vertex set into sets of large and small vertices.
- Recover an $O(\sqrt{n})$ fraction of the LP solution for both large and small instances.
- This gives an $O(\sqrt{n})$ -approximation algorithm.

- 30

 Ω

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

We give a natural linear programming formulation for 2-MaxCIS. Here $x(v)$ denotes whether the vertex $v \in V$ is included in the independent set. \mathcal{C}_i is the set of all cliques in $G_i.$

$$
\begin{array}{ll}\text{maximize} & \sum_{v \in V} p(v)x(v) \\ \text{such that} & \sum_{v \in C} x(v) \le 1 & \forall C \in \mathcal{C}_1 \cup \mathcal{C}_2 \\ & 0 \le x(v) \le 1 & \forall v \in V \end{array}
$$

This LP has exponentially many constraints in n . How to solve it?

 QQQ

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

- Assign $x(v)$ as the profit of v.
- Find the maximum profit clique in G_1 and G_2 .
- **•** If both these cliques have profit at most 1, then x is a feasible solution.
- Otherwise, the constraint corresponding to the clique having profit greater than 1 is violated.

- 30

 Ω

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

4 D F

A Preparatory Lemma

Lemma

For any $X\subseteq V$, there exists a $I\subseteq X$ such that I is an independent set in $G=G_1\cup G_2$ and $p(I)\geq \frac{p(X)}{\omega_1(X)\omega_2}$ $\frac{p(x)}{\omega_1(X)\omega_2(X)}$.

- G_1 is perfect, so $G_1[X]$ can be colored with $\omega_1(X)$ colors.
- So, X can be partitioned into $\omega_1(X)$ color classes (independent sets), one of which must have profit at least $\frac{p(X)}{\omega_1(X)}.$
- Compute the maximum profit independent set I_1 in $G_1[X]$.
- Clearly, $p(I_1) \geq \frac{p(X)}{\omega_1(X)}$ $\frac{p(A)}{\omega_1(X)}$.

つへへ

- $G_2[I_1]$ can be colored with $\omega_2(I_1) \leq \omega_2(X)$ colors.
- Hence, $G_2[I_1]$ has an independent set of profit at least $\frac{p(I_1)}{\omega_2(X)}.$
- Compute the maximum profit independent set I in $G_2[I_1]$.
- Note that, $p(I) \geq \frac{p(I_1)}{\omega_2(X)} \geq \frac{p(X)}{\omega_1(X)\omega_2}$ $\frac{p(\Lambda)}{\omega_1(X)\omega_2(X)}$.
- Moreover, I is an independent set in both G_1 and G_2 . So, it is an independent set in G .

- 2

 QQQ

イロト イ押ト イヨト イヨト

The Rounding Algorithm

- Let x be the optimal fractional solution to the LP.
- Let $LP^{\star}(X) = \sum_{v \in X} p(v)x(v), X \subseteq V$.
- Partition the vertex set V in two parts, SML and LRG , the set of small and large vertices respectively.
- $SML = \left\{v : 0 \leq x(v) \leq \frac{1}{\sqrt{2}}\right\}$ \overline{n} $\}$.
- $LRG = \left\{v: \frac{1}{\sqrt{2}}\right\}$ $\frac{1}{n}$ < $x(v) \leq 1$.
- $LP^{\star} = LP^{\star}(V) = LP^{\star}(SML) + LP^{\star}(LRG)$ is the profit of the optimal LP solution.
- Let $P_{\text{max}} = \max_{v \in V} p(v)$ be the maximum profit and let v_{max} be the corresponding vertex.

Handling Large Vertices

- Define, $U_i = \left\{v: \frac{2^i}{\sqrt{n}} < x(v) \leq \frac{2^{i+1}}{\sqrt{n}} \right\}$ $\Big\}$, for $0 \leq i \leq \ell - 1$, where $\ell = \frac{1}{2}$ $rac{1}{2} \log n$.
- \bullet $U_0, \ldots, U_{\ell-1}$ forms a partition of LRG .
- Using the Lemma on U_i , find an independent set I_i of G such that $p(I_j) \geq \frac{p(U_j)}{\omega_1(U_j)\omega_2}$ $\frac{p(\overline{U_j})}{\omega_1(\overline{U_j})\omega_2(\overline{U_j})}$, for $0\leq j\leq \ell-1$.
- Among these ℓ independent sets, let I^\star be the one having the maximum profit.
- If $p(I^{\star}) > P_{\text{max}}$, output I^{\star} ; else output $\{v_{\text{max}}\}.$
- \bullet Let I be the independent set output by the algorithm.

Analysis for Large Vertices

Lemma

$$
LP^{\star}(U_j) \le \left(\frac{2\sqrt{n}}{2^j}\right) \cdot p(I_j), 0 \le j \le \ell - 1.
$$

- Define $\beta=\frac{2^j}{\sqrt{n}}.$ We have to show that $LP^\star(U_j)\leq \frac{2p(I_j)}{\beta}$ $\frac{(1j)}{\beta}$.
- We know that, $\beta \leq x(v) \leq 2\beta$.
- Hence, $LP^{\star}(U_j) \leq 2\beta \cdot p(U_j)$.
- Let $\omega_{\min} = \min{\{\omega_1(U_i), \omega_2(U_i)\}}$ and $\omega_{\max} = \max{\{\omega_1(U_i), \omega_2(U_i)\}}$.
- There exists a subset $C \subseteq U_j$, which is a clique in $G_1[X]$ or $G_2[X]$ such that $|C| = \omega_{\text{max}}$.
- \bullet The LP contains a constraint corresponding to this clique C .

\n- Hence,
$$
\sum_{v \in C} x(v) \leq 1
$$
.
\n- Since $x(v) \geq \beta$, we have $\beta \omega_{\text{max}} \leq 1$, i.e., $\beta \leq \frac{1}{\omega_{\text{max}}}$.
\n- Thus, $LP^*(U_j) \leq \frac{2p(U_j)}{\omega_{\text{max}}}$.
\n- Since, $p(I_j) \geq \frac{p(U_j)}{\omega_{\text{min}} \omega_{\text{max}}}$, it follows that $LP^*(U_j) \leq 2\omega_{\text{min}} p(I_j)$.
\n- But, $\omega_{\text{min}} \leq \omega_{\text{max}} \leq \frac{1}{\beta}$. So, $LP^*(U_j) \leq \frac{2p(I_j)}{\beta}$.
\n

 $=$ Ω

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{B}$

4 0 8

Lemma

 $LP^*(LRG) \leq 4$ √ $\overline{n} \cdot p(I^*)$.

Proof.

$$
LP^*(LRG) = \sum_{j=0}^{\ell-1} LP^*(U_j)
$$

\n
$$
\leq \sum_{j=0}^{\ell-1} \left(\frac{2\sqrt{n}}{2^j}\right) \cdot p(I_j)
$$

\n
$$
\leq 2\sqrt{n} \cdot p(I^*) \sum_{j=0}^{\ell-1} \left(\frac{1}{2^j}\right)
$$

\n
$$
\leq 4\sqrt{n} \cdot p(I^*).
$$

Arindam Pal (IIT Delhi) [MIS in Unions of Perfect Graphs](#page-0-0) November 30, 2012 16 / 18

- 로스

 2990

メロト メ都 トメ ヨ トメ ヨト

The Final Analysis

Lemma

$$
LP^{\star} \le 5\sqrt{n} \cdot p(I).
$$

- Since $p(I) \ge P_{\text{max}}$, $LP^*(SML) \le \sqrt{n} \cdot P_{\text{max}} \le \sqrt{n} \cdot p(I)$.
- Moreover, $LP^*(LRG) \leq 4\sqrt{n} \cdot p(I^*) \leq 4\sqrt{n} \cdot p(I)$.
- Hence, $LP^* = LP^*(SML) + LP^*(LRG) \leq 5\sqrt{n} \cdot p(I)$.
- Therefore, this is an $O(\sqrt{n})$ -approximation algorithm.

- 30

 QQ

- 4何 ト 4 ヨ ト 4 ヨ ト

An Interesting Observation

- In perfect graphs, MIS can be computed in polynomial time.
- \bullet In union of k perfect graphs, MIS can be approximated within a factor of $O(n^{\frac{k-1}{k}}).$
- As $k \to \infty$, the approximation factor approaches $O(n)$, which is no better than general graphs.
- This indicates that as we add more perfect graphs in the union, the perfection of the resulting graph reduces.

 QQQ

- 3

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{B}$