k -means $++$ under Approximation Stability Manu Agarwal, Ragesh Jaiswal and Arindam Pal

Arindam Pal arindamp@cse.iitd.ac.in

TCS Innovation Labs Kolkata Department of Computer Science, IIT Delhi

May 20, 2013 TAMC 2013, University of Hong Kong

 QQ

医毛囊 医牙骨下的

- \bullet The clustering problem and k-means clustering
- Llyod's algorithm and k -means++
- Approximation stability and distance between clusterings
- **Qur contributions**
- Analysis of k -means $++$
- **Conclusion and future work**

4 D F

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

 \equiv \cap α

The clustering problem

- Given a set of data points, we need to group them together so that similar points are in the same group and *dissimilar* points are in different groups.
- Typically, these points live on a *metric space*.
- These groups are called *clusters*.
- There is an *objective function* which has to be optimized.

KEL KALEYKEN E YAG

Example of a clustering

Arindam Pal (IIT Delhi) k[-means++ under Approximation Stability](#page-0-0) May 20 2013, TAMC 2013 4 / 24

 2990

k -means clustering problem

- Suppose we have a k-clustering $C = \{C_1, \ldots, C_k\}$.
- The point c_i is the center of cluster $C_i.$
- A point x is assigned to cluster C_i if $d(x, c_i) \leq d(x, c_j)$ for any $j \neq i$.
- \bullet For the k-means clustering, we have to minimize the following objective function.

$$
\Phi(\mathcal{C}) = \sum_{i=1}^{k} \sum_{x \in C_i} d(x, c_i)^2.
$$

KEL KALEYKEN E YAG

- **1** Choose k initial centers $\mathcal{C} = \{c_1, \ldots, c_k\}$ arbitrarily.
- **②** For each $i \in \{1, ..., k\}$, set the cluster C_i to be the set of points in X that are closer to c_i than to c_j for any $j \neq i$.
- **3** For each $i \in \{1, ..., k\}$, set c_i to be the centroid of all points in C_i .

$$
c_i = \frac{1}{|C_i|} \sum_{x \in C_i} x.
$$

 \triangle Repeat Steps 2 and 3 until C does not change.

KID KATIK KEN EL YAN

Problems with Llyod's algorithm

- Since it is a heuristic algorithm, there is no guarantee that it will converge to the global optimum.
- The result depends on the initial clusters.
- There exist certain point sets (even on the plane), on which the algorithm takes exponential time $(2^{\Omega(n)})$ to converge.
- \bullet However, the smoothed running time of k-means is polynomial.
- \bullet k-means assumes that the clusters are spherical that are separable in a way so that the mean value converges towards the cluster center.

イ押 トイヨ トイヨ トーヨー

k -means convergence to a local minimum

Arindam Pal (IIT Delhi) k[-means++ under Approximation Stability](#page-0-0) May 20 2013, TAMC 2013 8 / 24

イロト イ団 トメ ミト メ ミトー (音)

 298

k -means $++$: Initialization of cluster centers

- **O** Choose the first center c_1 uniformly at random from \mathcal{X} .
- **2** Choose the next center c_i with probability $\frac{D(c_i)^2}{\sum_{i} D(i)}$ $\frac{D(c_i)}{\sum_{x \in S} D(x)^2}.$
- \bullet Here $D(x)$ is the shortest distance from a point x to the closest center we have already chosen.
- \bullet Repeat Step 2, until k centers are chosen.

KAD FERKER E NOV

Performance of k -means $++$

- k-means++ is $O(\log k)$ -competitive in expectation.
- There are examples on which k-means $++$ is $\Omega(\log k)$ -competitive in expectation.
- So, this is a tight analysis.
- Can k-means $++$ do better if the data has additional properties?

医单位 医单位

- 3

Distance between two clusterings

- Suppose we have two k-clusterings $C = \{C_1, \ldots, C_k\}$ and $\mathcal{C}' = \{C'_1, \ldots, C'_k\}$ of a point set \mathcal{X} .
- Distance between C and C' is the fraction of points on which they disagree under the optimal matching of clusters in $\mathcal C$ to clusters in $\mathcal C'.$
- **•** Formally,

$$
dist(\mathcal{C}, \mathcal{C}') = \min_{\sigma \in \mathcal{S}_k} \frac{1}{n} \sum_{i=1}^k |C_i \setminus C'_{\sigma(i)}|,
$$

where S_k is the set of all permutations $\sigma : \{1, \ldots, k\} \mapsto \{1, \ldots, k\}.$ Two clusterings $\mathcal C$ and $\mathcal C'$ are ϵ -close if $dist(\mathcal C,\mathcal C')<\epsilon.$

KOD KARD KED KED E VAN

Approximation stability

- Suppose we are given an objective function Φ such as k-means or k -median.
- The point set X satisfies (c, ϵ) -approximation stability if all clusterings C with $\Phi(C) \leq c \cdot \Phi_{OPT}$ are e-close to the target clustering C_T .
- \bullet At most ϵ fraction of points have to be reassigned in C to match \mathcal{C}_T .
- We can assume w.l.o.g that C_T is the optimal clustering.

KORKA ERKER ADA YOUR

Our results for large clusters

- Let $0 < \epsilon, \alpha \leq 1$. If a dataset satisfies $(1 + \alpha, \epsilon)$ -approximation stability and each optimal cluster has size at least $\frac{60\epsilon n}{\alpha^2}$, then the k-means++ algorithm gives an 8-approximation to the k-means objective with probability $\Omega(\frac{1}{k}).$
- Let $0 < \epsilon \leq 1$ and $\alpha > 1$. If a dataset satisfies $(1 + \alpha, \epsilon)$ -approximation stability and each optimal cluster has size at least $70en$, then the k-means $++$ algorithm gives an 8-approximation to the k -means objective with probability $\Omega(\frac{1}{k}).$
- We also generalize these results for k -medians with respect to distance measures that satisfy approximate symmetry and approximate triangle inequality.

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\langle \bigoplus \right\rangle \end{array} \right.$

Lower bound example for small clusters

- We show that there exists a dataset $\mathcal{X} \in \mathbb{R}^d$ such that the following holds:
	- X satisfies the $(1 + \alpha, \epsilon)$ approximation stability property.
	- *k*-means $++$ achieves an approximation factor of $\frac{1}{2}\log k$ with probability at most $e^{-\sqrt{k}-o(1)}$.

 $A \equiv A \equiv A \equiv A$

An important result [BBG09]

- Let $C^*_1,...,C^*_k$ denote the optimal k clusters with respect to the k -means objective function and let $c_1^\ast,...,c_k^\ast$ denote the centroids of these optimal clusters.
- For a point $x \in \mathcal{X}$, let $w(x)$ be its distance from the closest center and $w_2(x)$ be its distance from the second closest center.
- Suppose OPT is the cost of the optimal clustering.
- **If the dataset satisfies** $(1 + \alpha, \epsilon)$ -approximation-stability for the k -means objective, then
	- **1** If $\forall i, |C_i^*| \ge 2\epsilon n$, then less than ϵn points have $w_2^2(x) - w^2(x) \le \frac{\alpha \cdot \text{OPT}}{\epsilon n}.$
	- **2** For any $t > 0$, at most $t \epsilon n$ points have $w^2(x) \geq \frac{OPT}{t \epsilon n}$.

KORKA ERKER EL AQA

Preliminaries

- Let $c_1, ..., c_i$ be the centers chosen by the first i iterations of k -means $++$.
- Suppose $j_1, ..., j_i$ are the indices of the optimal clusters to which these centers belong.
- Define $J_i = \{j_1, \ldots, j_i\}$ and $\bar{J}_i = \{1, \ldots, k\} \setminus J_i$.
- J_i is the set of indices of the clusters that are covered at the end of the i^{th} iteration.

 $AB + AB + AB + AB + AB$

- Let B_1 be the subset of points in $\overline{\mathcal{X}}_i$ such that for any point $x \in B_1$, $w_2^2(x) - w^2(x) \leq \frac{\alpha \cdot \text{OPT}}{\epsilon n}$ $\frac{OPT}{\epsilon n}$.
- Let B_2 denote the subset of points in $\bar{\mathcal{X}}_i$ such that for every point $x \in B_2$, $w^2(x) \ge \frac{\alpha^2 \cdot \text{OPT}}{6\epsilon n}$ $\frac{0.011}{6\epsilon n}$.
- We know that $|B_1| \leq \epsilon n$ and $|B_2| \leq \frac{6\epsilon n}{\alpha^2}$.
- Let $B=B_1\cup B_2$ and $\bar{B}=\bar{\mathcal{X}}_i\setminus B$.
- We know that $|B| \leq \frac{7\epsilon n}{\alpha^2}$.

化重压 化重压 计重

A key lemma

Lemma

Let
$$
\beta = \frac{1-\frac{\alpha}{2}}{6+\alpha}
$$
. For any $x \in \overline{B}$ we have, $D^2(x, c_t) \ge \beta \cdot D^2(x, c_{j_t}^*)$.

• Proof: Let j be the index of the optimal cluster to which x belongs.

• Note that
$$
w^2(x) = D^2(x, c_j^*)
$$
 and $w_2^2(x) \leq D^2(x, c_{j_t}^*)$.

• For any $x \in \overline{B}$, we have:

$$
w_2^2(x) - w^2(x) \ge \frac{\alpha \cdot \text{OPT}}{\epsilon n} \ge \frac{6w^2(x)}{\alpha}
$$

\n
$$
\Rightarrow w_2^2(x) \ge \left(1 + \frac{6}{\alpha}\right) \cdot w^2(x) \tag{1}
$$

Suppose that $D^2(x, c_t) < \beta \cdot D^2(x, c^*_{j_t}).$

化重变 化重变

- 3

• Then we get the following inequalities.

$$
2 \cdot D^{2}(x, c_{j}^{*}) + 2 \cdot D^{2}(x, c_{t}) \ge D^{2}(c_{t}, c_{j}^{*}) \quad (\Delta \text{ inequality})
$$

\n
$$
\Rightarrow 2 \cdot D^{2}(x, c_{j}^{*}) + 2 \cdot D^{2}(x, c_{t}) \ge D^{2}(c_{t}, c_{j_{t}}^{*}) \quad (D^{2}(c_{t}, c_{j}^{*}) \ge D^{2}(c_{t}, c_{j_{t}}^{*}))
$$

\n
$$
\Rightarrow 2 \cdot D^{2}(x, c_{j}^{*}) + 2 \cdot D^{2}(x, c_{t}) \ge \frac{1}{2} \cdot D^{2}(x, c_{j_{t}}^{*}) - D^{2}(x, c_{t})
$$

\n
$$
\Rightarrow 3 \cdot D^{2}(x, c_{t}) \ge \frac{1}{2} \cdot D^{2}(x, c_{j_{t}}^{*}) - 2 \cdot D^{2}(x, c_{j}^{*})
$$

\n
$$
\Rightarrow 3\beta \cdot D^{2}(x, c_{j_{t}}^{*}) > \frac{1}{2} \cdot D^{2}(x, c_{j_{t}}^{*}) - 2 \cdot D^{2}(x, c_{j}^{*})
$$

\n
$$
\text{(using assumption } D^{2}(x, c_{t}) < \beta \cdot D^{2}(x, c_{j_{t}}^{*}))
$$

\n
$$
\Rightarrow D^{2}(x, c_{j}^{*}) > \frac{1 - 6\beta}{4} \cdot D^{2}(x, c_{j_{t}}^{*})
$$

\n
$$
\Rightarrow w^{2}(x) > \frac{1}{1 + \frac{6}{\alpha}} \cdot w_{2}^{2}(x) \quad (D^{2}(x, c_{j_{t}}^{*}) \ge w_{2}^{2}(x) \text{ and } \beta = \frac{1 - \frac{\alpha}{2}}{6 + \alpha})
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Figure: x belongs to the uncovered cluster j .

 \bullet This contradicts with Equation [\(1\)](#page-17-0). Hence, for any $x \in \overline{B}$ and any $t\in\{1,...,i\}$, we have $D^2(x,c_t)\geq \beta\cdot D^2(x,c^*_{j_t}).$

ヨメ メヨメ

 Ω

- Let $W_{min} = \min_{t \in [k]} \left(\sum_{x \in C_t^*, x \in \bar{B}} w_2^2(x) \right)$.
- Let C_i denote the set of centers $\{c_1, ..., c_i\}$ that are chosen in the first i iterations of k-means $++$.

• Let
$$
\mathcal{X}_i = \bigcup_{t \in J_i} C_t^*
$$
 and $\overline{\mathcal{X}}_i = \mathcal{X} \setminus \mathcal{X}_i$.

- \bullet \mathcal{X}_i denotes the points that are covered by the algorithm after step i.
- For any subset of points $Y \subseteq \mathcal{X}$, $\phi_{C_i}(Y)$ is the cost of the points in Y with respect to the centers C_i , i.e., $\phi_{C_i}(Y) = \sum_{x \in Y} \min_{c \in C_i} D^2(x, c).$
- We have $\phi_{\{c_1,...,c_i\}}(\bar{\mathcal{X}}_i) \geq \beta \cdot (k-i) \cdot W_{min}.$

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA}

- Let E_i denote the event that the set J_i contains i distinct indices from $\{1, ..., k\}$.
- \bullet This means that the first i sampled centers cover i optimal clusters.
- The next Lemma is from [AV07] and shows that given that event E_i happens, the expected cost of points in \mathcal{X}_i with respect to C_i is at most some constant times the optimal cost of \mathcal{X}_i with respect to ${c_1^*,...,c_k^*}.$
- $\forall i, \mathbf{E}[\phi_{\{c_1,\dots,c_i\}}(\mathcal{X}_i)|E_i] \leq 4 \cdot \phi_{\{c_1^*,\dots,c_k^*\}}(\mathcal{X}_i).$

KORKA ERKER ADA YOUR

- From the last lemma, we get $\Pr\left[\phi_{\{c_1,...,c_k\}}(\mathcal{X})\leq 8\cdot \phi_{\{c_1^*,...,c_k^*\}}(\mathcal{X})\right]\geq \frac{1}{2}$ $\frac{1}{2} \Pr[E_k].$
- We also show that $Pr[E_{i+1} | E_i] \geq \frac{k-i}{k-i+1}$.
- This gives $\Pr[E_k] \geq \frac{1}{k}$ $\frac{1}{k}$.
- Hence, $\Pr\left[\phi_{\{c_1,...,c_k\}}(\mathcal{X}) \leq 8 \cdot \phi_{\{c_1^*,...,c_k^*\}}(\mathcal{X})\right] \geq \frac{1}{2k}$ $\frac{1}{2k}$.
- Thus, the k-means $++$ algorithm gives an 8-approximation to the k -means objective with probability $\Omega(\frac{1}{k}).$

(K ≣) (K ≣) → 를 → ⊙ Q ⊙

Conclusion and future work

- In this work, we showed that the k-means $++$ algorithm gives a constant factor approximation to the k -means and k -median objective with probability $\Omega(\frac{1}{k}),$ provided all the clusters are large.
- We also showed that for small clusters, there is a dataset on which k -means $++$ can't achieve a constant factor approximation.
- Can we improve the upper and lower bounds in the analysis?

医毛囊 医牙骨下的