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The clustering problem

Given a set of data points, we need to group them together so that
similar points are in the same group and dissimilar points are in
different groups.

Typically, these points live on a metric space.

These groups are called clusters.

There is an objective function which has to be optimized.
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Example of a clustering
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k-means clustering problem

Suppose we have a k-clustering C = {C1, . . . , Ck}.
The point ci is the center of cluster Ci.

A point x is assigned to cluster Ci if d(x, ci) ≤ d(x, cj) for any j 6= i.

For the k-means clustering, we have to minimize the following
objective function.

Φ(C) =

k∑
i=1

∑
x∈Ci

d(x, ci)
2.

Arindam Pal (IIT Delhi) k-means++ under Approximation Stability May 20 2013, TAMC 2013 5 / 24



Llyod’s algorithm

1 Choose k initial centers C = {c1, . . . , ck} arbitrarily.

2 For each i ∈ {1, . . . , k}, set the cluster Ci to be the set of points in
X that are closer to ci than to cj for any j 6= i.

3 For each i ∈ {1, . . . , k}, set ci to be the centroid of all points in Ci.

ci =
1

|Ci|
∑
x∈Ci

x.

4 Repeat Steps 2 and 3 until C does not change.
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Problems with Llyod’s algorithm

Since it is a heuristic algorithm, there is no guarantee that it will
converge to the global optimum.

The result depends on the initial clusters.

There exist certain point sets (even on the plane), on which the
algorithm takes exponential time (2Ω(n)) to converge.

However, the smoothed running time of k-means is polynomial.

k-means assumes that the clusters are spherical that are separable in
a way so that the mean value converges towards the cluster center.
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k-means convergence to a local minimum
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k-means++: Initialization of cluster centers

1 Choose the first center c1 uniformly at random from X .

2 Choose the next center ci with probability D(ci)
2∑

x∈S D(x)2
.

3 Here D(x) is the shortest distance from a point x to the closest
center we have already chosen.

4 Repeat Step 2, until k centers are chosen.

Arindam Pal (IIT Delhi) k-means++ under Approximation Stability May 20 2013, TAMC 2013 9 / 24



Performance of k-means++

k-means++ is O(log k)-competitive in expectation.

There are examples on which k-means++ is Ω(log k)-competitive in
expectation.

So, this is a tight analysis.

Can k-means++ do better if the data has additional properties?
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Distance between two clusterings

Suppose we have two k-clusterings C = {C1, . . . , Ck} and
C′ = {C ′1, . . . , C ′k} of a point set X .

Distance between C and C′ is the fraction of points on which they
disagree under the optimal matching of clusters in C to clusters in C′.
Formally,

dist(C, C′) = min
σ∈Sk

1

n

k∑
i=1

|Ci \ C ′σ(i)|,

where Sk is the set of all permutations σ : {1, . . . , k} 7→ {1, . . . , k}.
Two clusterings C and C′ are ε-close if dist(C, C′) < ε.
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Approximation stability

Suppose we are given an objective function Φ such as k-means or
k-median.

The point set X satisfies (c, ε)-approximation stability if all clusterings
C with Φ(C) ≤ c · ΦOPT are ε-close to the target clustering CT .

At most ε fraction of points have to be reassigned in C to match CT .

We can assume w.l.o.g that CT is the optimal clustering.
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Our results for large clusters

Let 0 < ε, α ≤ 1. If a dataset satisfies (1 + α, ε)-approximation
stability and each optimal cluster has size at least 60εn

α2 , then the
k-means++ algorithm gives an 8-approximation to the k-means
objective with probability Ω( 1

k ).

Let 0 < ε ≤ 1 and α > 1. If a dataset satisfies
(1 + α, ε)-approximation stability and each optimal cluster has size at
least 70εn, then the k-means++ algorithm gives an 8-approximation
to the k-means objective with probability Ω( 1

k ).

We also generalize these results for k-medians with respect to
distance measures that satisfy approximate symmetry and
approximate triangle inequality.
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Lower bound example for small clusters

We show that there exists a dataset X ∈ Rd such that the following
holds:

X satisfies the (1 + α, ε) approximation stability property.
k-means++ achieves an approximation factor of 1

2 log k with

probability at most e−
√
k−o(1).

Arindam Pal (IIT Delhi) k-means++ under Approximation Stability May 20 2013, TAMC 2013 14 / 24



An important result [BBG09]

Let C∗1 , ..., C
∗
k denote the optimal k clusters with respect to the

k-means objective function and let c∗1, ..., c
∗
k denote the centroids of

these optimal clusters.

For a point x ∈ X , let w(x) be its distance from the closest center
and w2(x) be its distance from the second closest center.

Suppose OPT is the cost of the optimal clustering.

If the dataset satisfies (1 + α, ε)-approximation-stability for the
k-means objective, then

1 If ∀i, |C∗i | ≥ 2εn, then less than εn points have
w2

2(x)− w2(x) ≤ α·OPT
εn .

2 For any t > 0, at most tεn points have w2(x) ≥ OPT
tεn .
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Preliminaries

Let c1, ..., ci be the centers chosen by the first i iterations of
k-means++.

Suppose j1, ..., ji are the indices of the optimal clusters to which
these centers belong.

Define Ji = {j1, . . . , ji} and J̄i = {1, ..., k} \ Ji.
Ji is the set of indices of the clusters that are covered at the end of
the ith iteration.
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Let B1 be the subset of points in X̄i such that for any point x ∈ B1,
w2

2(x)− w2(x) ≤ α·OPT
εn .

Let B2 denote the subset of points in X̄i such that for every point
x ∈ B2, w2(x) ≥ α2·OPT

6εn .

We know that |B1| ≤ εn and |B2| ≤ 6εn
α2 .

Let B = B1 ∪B2 and B̄ = X̄i \B.

We know that |B| ≤ 7εn
α2 .
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A key lemma

Lemma

Let β =
1−α

2
6+α . For any x ∈ B̄ we have, D2(x, ct) ≥ β ·D2(x, c∗jt).

Proof: Let j be the index of the optimal cluster to which x belongs.

Note that w2(x) = D2(x, c∗j ) and w2
2(x) ≤ D2(x, c∗jt).

For any x ∈ B̄, we have:

w2
2(x)− w2(x) ≥ α ·OPT

εn
≥ 6w2(x)

α

⇒ w2
2(x) ≥

(
1 +

6

α

)
· w2(x) (1)

Suppose that D2(x, ct) < β ·D2(x, c∗jt).
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Then we get the following inequalities.

2 ·D2(x, c∗j ) + 2 ·D2(x, ct) ≥ D2(ct, c
∗
j ) (∆ inequality)

⇒ 2 ·D2(x, c∗j ) + 2 ·D2(x, ct) ≥ D2(ct, c
∗
jt) (D2(ct, c

∗
j ) ≥ D2(ct, c

∗
jt))

⇒ 2 ·D2(x, c∗j ) + 2 ·D2(x, ct) ≥
1

2
·D2(x, c∗jt)−D2(x, ct)

⇒ 3 ·D2(x, ct) ≥
1

2
·D2(x, c∗jt)− 2 ·D2(x, c∗j )

⇒ 3β ·D2(x, c∗jt) >
1

2
·D2(x, c∗jt)− 2 ·D2(x, c∗j )

(using assumption D2(x, ct) < β ·D2(x, c∗jt))

⇒ D2(x, c∗j ) >
1− 6β

4
·D2(x, c∗jt)

⇒ w2(x) >
1

1 + 6
α

· w2
2(x) (D2(x, c∗jt) ≥ w2

2(x) and β =
1− α

2

6 + α
)
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c∗jt

ct

c∗j

x

Figure: x belongs to the uncovered cluster j.

This contradicts with Equation (1). Hence, for any x ∈ B̄ and any
t ∈ {1, ..., i}, we have D2(x, ct) ≥ β ·D2(x, c∗jt).
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Let Wmin = mint∈[k]

(∑
x∈C∗t ,x∈B̄

w2
2(x)

)
.

Let Ci denote the set of centers {c1, ..., ci} that are chosen in the
first i iterations of k-means++.

Let Xi = ∪t∈JiC∗t and X̄i = X \ Xi.
Xi denotes the points that are covered by the algorithm after step i.

For any subset of points Y ⊆ X , φCi(Y ) is the cost of the points in
Y with respect to the centers Ci, i.e.,
φCi(Y ) =

∑
x∈Y minc∈Ci D

2(x, c).

We have φ{c1,...,ci}(X̄i) ≥ β · (k − i) ·Wmin.
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Let Ei denote the event that the set Ji contains i distinct indices
from {1, ..., k}.
This means that the first i sampled centers cover i optimal clusters.

The next Lemma is from [AV07] and shows that given that event Ei
happens, the expected cost of points in Xi with respect to Ci is at
most some constant times the optimal cost of Xi with respect to
{c∗1, ..., c∗k}.
∀i,E[φ{c1,...,ci}(Xi)|Ei] ≤ 4 · φ{c∗1,...,c∗k}(Xi).
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From the last lemma, we get

Pr
[
φ{c1,...,ck}(X ) ≤ 8 · φ{c∗1,...,c∗k}(X )

]
≥ 1

2Pr[Ek].

We also show that Pr[Ei+1|Ei] ≥ k−i
k−i+1 .

This gives Pr[Ek] ≥ 1
k .

Hence, Pr
[
φ{c1,...,ck}(X ) ≤ 8 · φ{c∗1,...,c∗k}(X )

]
≥ 1

2k .

Thus, the k-means++ algorithm gives an 8-approximation to the
k-means objective with probability Ω( 1

k ).

Arindam Pal (IIT Delhi) k-means++ under Approximation Stability May 20 2013, TAMC 2013 23 / 24



Conclusion and future work

In this work, we showed that the k-means++ algorithm gives a
constant factor approximation to the k-means and k-median objective
with probability Ω( 1

k ), provided all the clusters are large.

We also showed that for small clusters, there is a dataset on which
k-means++ can’t achieve a constant factor approximation.

Can we improve the upper and lower bounds in the analysis?
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